Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11852
Full metadata record
DC FieldValueLanguage
dc.creatorChagas, Mariana Campista
dc.date.accessioned2023-11-19T22:31:36Z-
dc.date.available2023-11-19T22:31:36Z-
dc.date.issued2018-03-21
dc.identifier.citationCHAGAS, Mariana Campista. Comparação da Produtividade Primária Bruta entre os Sensores OLI/TIRS e MODIS. 2018. 43 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11852-
dc.description.abstractCarbon sequestration by terrestrial biomes plays a significant role in the global carbon cycle to mitigate the increase in atmospheric CO2 and the consequences of climate change. Gross Primary Production (PPP) is an important biophysical parameter of any ecosystem and plays a key role in the spatio-temporal dynamics of CO2. Uncertainty in gross carbon sequestration and its understanding at local, regional and global scales can be overcome by monitoring the surface processes of the earth at high spatial and temporal resolutions. Surface methodologies for PPB calculation provide accurate estimates, but their implementation and operational costs are high and their representativeness limited, except in large and homogeneous areas. In this sense, methods that use remote sensing are presented as an advantage to expand spatial coverage of PPB estimation, provide synthetic and consistent observations of vegetation in heterogeneous and low cost areas. Several orbital sensors have been used to determine PPB and to extrapolate local measurements. Of particular note are the Landsat satellite sensors that provide longer time records of earth surface observations and the launch of the Landsat 8 OLI / TIRS satellite in 2013 continues this legacy. The objective of this study is to present an algorithm to estimate PPB by remote sensing techniques, from sensor images, in different soil uses. The methodology is based on the estimative model of the absorbed photosynthetically active radiation - RFFA by the vegetation, combined with the light efficiency model. For this, the atmospheric and radiometric corrections of the images were performed previously and as basic input for the model, the balance of radiation and other components of the energy balance were calculated through the SEBAL (Surface Energy Balance Algorithm for Land) algorithm. Subsequently, the estimation of PPB was compared through the OLI / TIRS sensor, with the product MOD17A2. The comparison was based on the Mean Error (EM), Root Mean Square Error (REMQ). Statistical analyzes were performed in software R, version 3.4.2. The PPB estimated by the sensor made it possible to analyze the spatial distinctions between the land uses in the region. The representative image of the dry season presented the highest values of PPB indicating that the algorithm extrapolates to PPB when radiation supply, NDVI values and surface humidity are high. However, the representative image of the rainy season presented a higher Spearman correlation with the product MOD17A2, still underestimating for all soil uses. The differences between the temporal and spatial resolution of each sensor also influence the comparison, since they present specific surface data of the imaging date. The proposed algorithm, due to its applicability to the OLI / TIRS sensor, can be useful for the more accurate analysis of PPB in local study areas. However, it is necessary to better investigate temporal estimates for OLI / TIRS sensors with surface data, which integrated can determine more accurate values of PPB, especially in the more remote areas.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectProdutividade Primária Brutapor
dc.subjectSensoriamento Remotopor
dc.subjectLandsat 8por
dc.subjectGross Primary Productivityeng
dc.subjectRemote Sensingeng
dc.subjectLandsat 8eng
dc.titleComparação da Produtividade Primária Bruta entre os Sensores OLI/TIRS e MODISpor
dc.typeDissertaçãopor
dc.contributor.advisor1Delgado, Rafael Coll
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1178948690201659por
dc.contributor.referee1Delgado, Rafael Coll
dc.contributor.referee2Antunes, Mauro Antonio Homem
dc.contributor.referee3Chagas, Cesar da Silva
dc.creator.ID122.316.777-17por
dc.creator.Latteshttp://lattes.cnpq.br/3834926015056279por
dc.description.resumoO sequestro de carbono por biomas terrestres desempenha um papel significativo no ciclo global do carbono para mitigar o aumento de CO2 atmosférico e as consequências das mudanças climáticas. A Produção Primária Bruta (PPB) é um importante parâmetro biofísico de qualquer ecossistema e desempenha um papel fundamental na dinâmica espaço-temporal de CO2. A incerteza na captação bruta de carbono e seu entendimento em escalas locais, regionais e globais podem ser superados através do monitoramento dos processos de superfície da terra em altas resoluções espaciais e temporais. As metodologias de superfície para o cálculo da PPB fornecem estimativas precisas, porém seu custo de implantação e operacionalidade é alto, e sua representatividade limitada, salvo em áreas extensas e homogêneas. Neste sentido, métodos que empregam o sensoriamento remoto se apresentam como vantagem para expandir a cobertura espacial da estimativa da PPB, fornecer observações sintéticas e consistentes da vegetação em áreas heterogêneas e com baixo custo. Diversos sensores orbitais têm sido empregados na determinação da PPB e para extrapolar as medições locais. Destacam-se os sensores dos satélites Landsat que fornecem registros temporais mais longos de observação da superfície da terra e o lançamento do satélite Landsat 8 OLI/TIRS em 2013 continua esse legado. O objetivo deste estudo é apresentar um algorítimo para estimar a PPB por técnicas de sensoriamento remoto, a partir de imagens do sensor, em diferentes usos do solo. A metodologia baseia-se no modelo de estimativa da radiação fotossinteticamente ativa absorvida – RFFA pela vegetação, combinado ao modelo de eficiência do uso da luz. Para isso, foram realizadas as correções atmosféricas e radiométricas das imagens previamente e como entrada básica para o modelo, foi calculado o saldo de radiação e demais componentes do balanço de energia através do algoritmo SEBAL (Surface Energy Balance Algorithm for Land). Posteriormente, foram comparadas a estimativa da PPB através do sensor OLI/TIRS, com o produto MOD17A2. A comparação foi baseada no Erro Médio (EM), Raiz do Erro Médio Quadrático (REMQ). As análises estatísticas foram realizadas no software R, versão 3.4.2. A PPB estimada pelo sensor possibilitou analisar as distinções espaciais entre os usos do solo na região. A imagem representativa da estação seca, apresentou os maiores valores de PPB indicando que o algorítimo extrapola a PPB quando oferta de radiação, valores de NDVI e umidade da superfície são altos. Porém a imagem representativa do período chuvoso, apresentou maior correlação Spearman com o produto MOD17A2, ainda com subestimativa para todos os usos do solo. As diferenças entre a resolução temporal e espacial de cada sensor também influenciam na comparação, pois apresentam dados de superfície específicos da data de imageamento. O algorítimo proposto, devido a sua aplicabilidade ao sensor OLI/TIRS, pode ser útil para a análise mais precisa da PPB em áreas de estudo locais. No entanto, é necessário averiguar melhor as estimativas temporais para os sensores OLI/TIRS com dados de superfície, que integrados poderão determinar valores mais precisos de PPB, principalmente nas áreas mais remotas.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Florestaspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispor
dc.relation.referencesAHONGSHANGBAM, J. et al. Estimating Gross Primary Production of a Forest Plantation Area Using Eddy Covariance Data and Satellite Imagery. J Indian Soc Remote Sens. 2016. ALMEIDA, C. T. Produtividade Primária Bruta na Amazônia Legal: relação com variáveis meteorológicas e validação do produto MOD17A2. 77f. Dissertação (Mestrado em ciências Ambientais e Florestais) – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016. ALMEIDA, C. T. et al. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. INTERNATIONAL JOURNAL OF CLIMATOLOGY, v. 37, p. 2013-2026, 2016. Disponível em: <http://onlinelibrary.wiley.com/doi/10.1002/joc.4831/abstract>. Acesso em: 11 dez. 2017. ALLEN, R.; BASTIAANSSEN, W.; WATERS, R.; TASUMI, M.; TREZZA, R. Surface energy balance algorithms for land (SEBAL), Idaho implementation – Advanced training and user’s manual. Idaho, 2002. 97p. ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013. DOI: 10.1127/0941-2948/2013/0507. BRASIL. Ministério do Desenvolvimento Agrário. Plano territorial de desenvolvimento rural sustentado. Rio Branco: PESACRE, 2007. 135 p. ALVES, L. E. R. et al. Balanço de Radiação Através do Satélite Landsat-8 na Bacia do Rio Pajeú. Revista do Departamento de Geografia da USP, São Paulo, v. 33, p. 117-127, 2017. ANAV, A., et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. v. 53, 785–818. 2015. AUBINET, M. et al. Estimates of the annual net carbon and water exchange of forests: Euroflux methodology. Advances in Ecological Research. v. 30, p. 113-175, 2000. ANDREAE M. O. et al. Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments. J Geophys Res. v. 107, 2002. doi: 10.1029=2001JD000524 AVISSAR, R. e NOBRE, C.A. Preface to special issue on the Large-Scale Biosphere- Atmosphere experiment in Amazonia (LBA). J. Geophys. Res. v.107, 2002 http://dx.doi.org/10.1029/2002JD002507 BRAGA, A. P. Estimativa da Produtividade Primária Bruta em Áreas Agrícolas e de Vegetação Primária no Cerrado por Sensoriamento Remoto. 66f. Dissertação. (Mestrado em Meteorologia) – Universidade Federal de Campina Grande, Campina Grande, 2013. BASTIAANSSEN, W.G.M. Regionalization of surface flux densities and moisture indicators in composite terrain. 1995. 288 f. Thesis (Ph.D) - Agricultural University, Wageningen, The Netherlands. 38 BASTIAANSSEN, W. G. M.; MENENTI, M.; FEDDES, R. A.; HOLTSLAG, A. A. M. The surface energy balance algorithm for land (SEBAL): Part 1 formulation, Journal of Hydrology, v.212-213, p.198-212, 1998. BASTIAANSSEN, W. G. M. SEBAL-based sensible and latent heat in the irrigated Gediz Basin, Turkey. Journal of Hydrology, v. 229, p 87-100. 2000. BASTIAANSSEN, W. G. M. e ALI, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems and Environment, v. 94, p.321-340, 2003 BEER, C. et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science. v.329, n.5993, p.834-838, 2010. BEGON, M et al. Ecologia: de individuos a ecossistemas. 4 ed.[S.L.]: Artmed, 2007. BOEGH, E.; SOEGAARD, H.; THOMSEN, A. Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance. Remote Sensing of Environment, v.79, n.1, p.329-343, 2002. BROWN, D. S. et al. Land occupations and deforestation in the Brazilian Amazon. Land Use Policy. v. 54, p. 331-338, 2016. CANADELL, J. G., et al. Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems. v. 3, p.115–130, 2000. CARNEIRO FILHO, A. Atlas de pressões e ameaças às terras indígenas na Amazônia brasileira. São Paulo : Instituto Socioambiental, 2009. 48p. CHANDER, G.; MARKHAM, B.; HELDER, D. “Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+ and EO-1 ALI sensors”, Remote Sensing of Environment v.113 p. 893-903, 2009. CHAPIN III, F. S.; MATSON, P. A.; MOONEY, H. A. Principles of Terrestrial Ecosystem Ecology. Germany: Springer-Verlag, p. 436 . 2002. CHAPIN, F. S. et al. Principles of terrestrialecosystem ecology. 2 Edição. Springer New York Dordrecht Heidelberg London. 2011. 546 p. CORLETT, R. T. The Impacts of Droughts in Tropical Forests Review Article .Trends in Plant. Science. v. 21, n. 7, p. 584-593. 2016. ESTOQUE, R. C. e MURAYAMA, Y. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral índices. Ecological Indicators. v. 56, p. 205–217. 2015 FALGE, E. et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, v.113, n.1–4, p.53-74. 2002. 39 FIGUEROA, S. N.; NOBRE, C. A. Precipitions distribution over Central and Western Tropical South America. Climanálise - Boletim de Monitoramento e Análise Climática, v.5, n.6, p. 36 - 45, 1990. FIELD, C. B.; RANDERSON, J. T.; MALMSTROM, C. M. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, v.51, p.74-88, 1995. FRIEDLINGSTEIN, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Climate. v.19, p.3337–3353. 2006. FU, P. e WENG, O. Consistent land surface temperature data generation from irregularly spaced Landsat imagery. Remote Sensing of Environment. v. 184, p. 175–187. 2016 GIONGO, P. R. el al. Albedo à superfície a partir de imagens Landsat 5 em áreas de cana-de-açúcar e cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, p.279-287, 2010. GITELSON, A. A.et al. Synoptic Monitoring of Gross Primary Productivity of Maize Using Landsat Data. IEEE Geosciences and Remote Sensing Letters, v.5, n.2, p.133-137, 2008. GOUGH, C. M. Terrestrial Primary Production: Fuel for Life. Nature Education Knowledge, v.3, n.10, p.28, 2012. GUSTAVSSON, L. et al. Climate effects of bioenergy from forest residues in comparison to fossil energy. Applied Energy, v. 138, p. 36-50, out 2017. Disponível em: <http://dx.doi.org/10.1016/j.apenergy.2014.10.013>. Acesso em: 12 set. 2017. HUETE, A. R. Adjusting vegetation indices for soil influences. International Agrophysics, v.4, n.4, p.367-376, 1988. HOLZMAN, M.E, et al. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, v. 28, p. 181–192. 2014. HOMMA, A. K. O. Expansão agropecuária e desmatamento na Amazônia: Quais os caminhos. In: COELHO, A. B., TEIXEIRA, E. C. e BRAGA, M. J. (Eds.). Recursos Naturais e Crescimento Econômico. 1. ed. Viçosa, MG: [s.n.]. p. 125–176. IQBAL, M. An Introduction to Solar Radiation. New York: Academic Press. 1983. 212p. IPCC- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 2014. 151 p. IRONS, J. R. et al. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment. v. 122, p.11–21. 2012. 40 IRONS, J.R. e MASEK, J.G. Requirements for a Landsat data continuity mission. Photogrammetric Engineering and Remote Sensing. v.72. p. 1102–1108. 2006. LIU M. et al. Evolution and variation of atmospheric carbon dioxide concentration over terrestrial ecosystems as derived from eddy covariance measurements. Atmospheric Environment. v.114, p. 75–82. 2015. MALHI, Y. et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, v.15, n.5, p.1255-1274, 2009. MALLICK, K. et al. A surface temperature initiated closure (STIC) for surface energy balance fluxes. Remote Sensing of Environment, v. 141. p.243–261. 2014 MARKHAM, B. L. et al. Landsat-8 Operational Land Imager radiometric calibration and stability. Remote Sensing. N. 6 p. 12275–12308. 2014. MARKHAM, B.L.; BAKER, J.L. “Landsat MSS and TM Post-Calibration Dynamix Ranges, Exoatmospheric Reflectances and At-Satellite Temperatures”. Landsat Technical Notes, n. 1, p. 3-5, 1987. MARKHAM, B. L. & BARKER, J. L. Thematic mapper band pass solar exoatmospherical irradiances. International Journal of Remote Sensing, v. 8, n. 3, p. 517-523, 1987. MISHRA, N. et al. Continuous calibration improvement in solar reflective bands: Landsat 5 through Landsat 8. Remote Sensing of Environment Available online. 2016. http://dx.doi.org/10.1016/j.rse.2016.07.032 MOREIRA, Maurício Alves. Fundamentos do sensoriamento remoto e metodologias de aplicação. 4 ed. Viçosa, MG: Editora UFV, 2011. 422 p. MOREIRA, D. S. Simulação numérica do ciclo do carbono na Amazônia. 2013. 209f. Tese (Doutorado em Meteorologia) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2013. MONTEITH, J.L. Evaporation and environment. In: The State and Movement of Water in Living Organisms. Cambridge University Press, Swansea/Cambridge, UK, pp. 205–234. 1965 MONTEITH, J. L. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, v.9, p.747-766, 1972. PROPASTIN, P. et al. Effects of canopy photosynthesis saturation on the estimation of gross primary productivity from MODIS data in a tropical forest. Remote Sensing of Environment. v. 121, p. 252–260. 2012. PULLENS, J. W. M. et al. Carbon fluxes of an alpine peatland in Northern Italy. Agricultural and Forest Meteorology, v.220, p.69-82. 2015 RAMPELOTTO, H. P. A química da vida como nós não conhecemos. Quim. Nova, v.35, n. 8, p.1619-1627, 2012. 41 REICH, P. B. et al. Leaf demography and phenology in Amazonian rain forest: A census of 40,000 leaves of 23 tree species. Ecological Monographs, v.74, n.1, p.3-23, 2004. REUTER, D. C. et al, 2015. The Thermal Infrared Sensor (TIRS) on Landsat 8: Design Overview and Pre-Launch Characterization. Remote Sens, n. 7, p. 1135-1153. 2015. RESTREPO-COUPE, N. et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology. p. 128– 144. 2013 ROSCOE, R. Rediscutindo o papel dos ecossistemas terrestres no seqüestro de carbono. Cadernos de Ciência & Tecnologia, v. 20, n. 2, p. 209-223. 2003. ROUSE, J.W. et al. Monitoring vegetation systems in the great plains with ERTS. In: Third ERTS Symposium, Proceedings, NASA SP-351, NASA, Washignton, DC, v. 1, p. 309-317, 1973. ROY , D.P.et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment. v.145, p. 154–172. 2014. ROY, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 2015. RUHOFF, A. et al. Determinação da irradiância solar no topo da atmosfera para cálculo do albedo e balanço de energia a partir de imagens Landsat 8 OLI. Anais XVII Simpósio Brasileiro de Sensoriamento Remoto – SBSR. INPE, 2015. RUNNING, S.W. et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience. v. 54, p. 547–560, 2004. RUNNING, Q. M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. SALESKA, S. et al. Fluxos de Carbono do Ecossistema e Metabolismo da Floresta Amazônica. Amazonia and Global Change. American Geophysical Union. Geophysical Monograph Series 186, 2009. SIMS, D. A. et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment, v.112, n.4, p.1633-1646, 2008. SILBERG, B. 2016 had hottest March on Record. NASA’s Jet Propulsion Laboratory, EUA, 20 abr. 2016. Disponível em: <http://climate.nasa.gov/news/2432/2016-had-hottest-march-on-record/>. Acesso em: 22 mai. 2016. SILVA, B. B. et al. Balanço de radiação no perímetro irrigado São Gonçalo - PB mediante imagens orbitais. Revista Caatinga, v.24, n.3, p.145 -152. 2011. 42 SILVA, B. B. et al. Determinação Por Sensoriamento Remoto Da Produtividade Primária Bruta Do Perímetro Irrigado São Gonçalo – PB. Revista Brasileira de Meteorologia, v.28, n.1, p.57 – 64. 2013. SLEETER, B.M. et al. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales. Global Environmental Change. v. 22. p. 896–914. 2012. SUDAM – SUPERINTENDÊNCIA DO DESENVOLVIMENTO DA AMAZÔNIA. Legislação sobre a criação da Amazônia Legal. Disponível em: <http://www.e.gov.br/defaultCab. asp?idservinfo=35616&url=http://www.ada.gov.br/ index.php?option=com_content&task=category§i onid=9&id=54&Itemid=51>. Acesso em: 07 jul. 2016. SWANN, A. L. S. et al. Future deforestation in the Amazon and consequences for South American climate. Agricultural and Forest Meteorology. v. 214–215, p. 12-24. 2015. TASUMI, M.; ALLEN, R.G.; TREZZA, R. Estimation of at surface reflectance and albedo from satellite for routine, operational calculation of land surface energy balance. Journal of Hydrology, v. 13, n. 2, p. 51-63, 2008. USGS. Landsat 8 (L8) Data Users Handbook, 2015, LSDS-1574, version 2.0. Sioux Falls, USA: USGS EROS. Disponível em: :https://landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf). Acesso em 23 jun 2016 VERMA, M. et al. Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agricultural and Forest Meteorology. v. 214-215. p. 416–429. 2015. VERMOTE, E. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Available online .2016. http://dx.doi.org/10.1016/j.rse.2016.04.008 VON RANDOW, C. et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. v.78, n.1, p.5-26, 2004. WRIGHT, S. J. e SCHAIK, C. P. Light and the phenology of tropical trees. American Naturalist, v.143, n.1, p.192-199, 1994. WU, C. et al. Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices. Agricultural and Forest Meteorology, v.149, p.1015–1021, 2009. XIAO, X. M. et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, v.91, n.2, p.256-270. 2004. YUAN, W. et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sensing of Environment. v. 114, p. 1416–1431. 2010. 43 YUAN, W. et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteorol. 192–193, 108–120. 2014. doi.org/10.1016/j.agrformet.2014.03.007 ZHANG, Y. et al. Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agricultural and Forest Meteorology, v. 223, p. 36-50, 2016. Disponível em: <https://doi.org/10.1016/j.agrformet.2016.04.003>. Acesso em: 15 set. 2017.por
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/66200/2018%20-%20Mariana%20Campista%20Chagas.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4910
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-08-13T11:32:00Z No. of bitstreams: 1 2018 - Mariana Campista Chagas.pdf: 1578026 bytes, checksum: d565e9de0c94132f5b30c91bdd07c8d0 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-08-13T11:32:02Z (GMT). No. of bitstreams: 1 2018 - Mariana Campista Chagas.pdf: 1578026 bytes, checksum: d565e9de0c94132f5b30c91bdd07c8d0 (MD5) Previous issue date: 2018-03-21eng
Appears in Collections:Mestrado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Mariana Campista Chagas.pdf2018 - Mariana Campista Chagas1.54 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.