Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11821
Full metadata record
DC FieldValueLanguage
dc.creatorGurgel, Monique de Moura
dc.date.accessioned2023-11-19T22:30:53Z-
dc.date.available2023-11-19T22:30:53Z-
dc.date.issued2011-04-14
dc.identifier.citationGURGEL, Monique de Moura. Caracterização da lignina da raque de Couroupita guianensis Aubl. por técnicas de micro análise. 2011. 46 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2011.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11821-
dc.description.abstractThe purpose of this dissertation was to study by the micro analysis the rachis lignification of Couroupita guianensis (Lecitidaceae family, originally from the Amazon) considering the influence of gravity on the formation of special tissues in order that the rachis has a positive growth with respect to the gravitational force. The experiment was conducted at the Laboratory of Wood Chemistry, where the rachis was dried, prepared to cutting anatomical and chemical analysis. Histochemical tests were analyzed by optical microscope images of tissue of the rachis, with microspectroscopy and infrared spectroscopy-FTIR. The tissue of the rachis presented features of tissue tension, with gelatinous fibers, as evidenced by the Wiesner test and the reaction Lawrens-Takaashi (zinc chloride iodate). Histochemical tests were efficient and showed that in regions of high flexibility has syringyl lignin. The micro spectrometric spectra showed the existence of lignin, but not enough to affirm the predominant type of lignin in a given region of tissue. The tissues were extracted with NaOH 1% and acetone, however, the infrared spectra of the cross sections pre-extracted with acetone, allowed to identify characteristic signs of guaiacyl and syringyl. Spectra of the milled material only extracted with organic solvents (cyclohexane, ethyl acetate ethyl and methanol) or with 1% NaOH for 1 hour confirmed that lignins are guaiacyl and syringyl type.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectGravidadepor
dc.subjecttecido de tensãopor
dc.subjectlignina e infravermelhopor
dc.subjectGravityeng
dc.subjecttension tissueeng
dc.subjectlignin and infraredeng
dc.titleCaracterização da lignina da raque de Couroupita guianensis Aubl. por técnicas de micro análisepor
dc.title.alternativeCharacterization of lignin from rachis of Couroupita guianensis Aubl. for micro analysis techniqueseng
dc.typeDissertaçãopor
dc.contributor.advisor1Abreu, Heber dos Santos
dc.contributor.advisor1ID50972650768por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9089764354163346por
dc.contributor.referee2x
dc.creator.ID10509064701por
dc.creator.Latteshttp://lattes.cnpq.br/0048844467110922por
dc.description.resumoO objetivo desta dissertação foi estudar por micro análise a lignificação da raque de Couroupita guianensis, (família Lecitidaceae, originária da Amazônia) considerando a influência da gravidade sobre a formação de tecidos especiais, tendo em vista que a raque possui um crescimento positivo com relação à força gravitacional. O experimento foi conduzido no Laboratório de Química da Madeira, onde a raque foi seca, preparada para cortes anatômicos e análise química. Os testes histoquímicos foram analisados através de imagens obtidas no microscópio óptico do tecido da raque, juntamente com microespectroscopia e espectroscopia de infravermelho-FTIR. O tecido da raque apresentou características de tecido de tensão, com fibras gelatinosas, evidenciadas pelo teste de Wiesner e pela reação de Lawrens-Takaashi (cloreto de zinco iodato). Os testes histoquímicos foram considerados eficientes e mostrou que em regiões de alta flexibilidade possui lignina siringílica. Os espectros micro espectrométrico mostraram a existência de lignina, entretanto não o suficiente para afirmar o tipo de lignina predominante em uma determinada região do tecido. Os tecidos foram extraídos com NaOH 1% e com acetona, contudo, os espectros no infravermelho dos cortes transversais pré-extraídos com acetona, permitiu identificar sinais característicos de lignina guaiacílica e siringilíca. Os espectros do material moído somente extraídos com solventes orgânicos (ciclohexano, acetato de etila e metanol) ou com NaOH 1% por 1 hora confirmaram que as ligninas são do tipo guaiacila e siringilapor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Florestaspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispor
dc.relation.referencesABREU, H. S. Biossíntese de Lignificação, UFRRJ, Itaguaí, 63p., 1994. ABREU, H. S., NASCIMENTO, A. M.; MARIA, M. A. Lignin structure and wood properties, Wood and Fiber Science, v. 31, n. 4, 426-433, 1999. ABREU, H. S.; MAÊDA, J.; LATORRACA, J. F.; PEREIRA, R. P. W.; MONTEIRO, M. B. O.; ABREU, F.; CARMO, J. Proposta de modificação da biossíntese da lignina como estratégia para correção de defeitos em madeiras. Silva Lusitana,v.11, n.2, p.217-225, 2003. ABREU, S.H.; LATORRACA, J. V. F.; PEREIRA, W. P. R.; MONTEIRO, M.B.O.; ABREU, F.A.; AMPARADO, K.F. A supamolecular proposal of lignin structure and its relation with the wood properties. Anais da Academia Brasileira de Ciências, v. 81, n.1, 1- 6, 2009. ALLEN, J.; BISBEE, P. A.; DARNELL, R. L.; KUANG, A.; LEVINE, L. H.; MUSGRAVE, M. E.; LOON, J. J. W. A.Gravity of growth in Brassica rapa e Arabidopsis thaliana (Brassicaceae): Consequences for secondary metabolism. American Journal of Botany, v. 96, n. 3, p. 652-660, 2009. ALLEN, J.; BISBEE, P. A.; DARNELL, R. L.; KUANG, A.; LEVINE, L. H.; MUSGRAVE, M. E.; VAN LOON, J. J. W. A. Gravity control of growth form in Brassica rapa and Arabidopsis thaliana (brassicaceae): consequences for secondary metabolism. American Journal of Botany, v. 96, n.3, p. 652–660, 2009. ANTEROLA, A. M.; LEWIS, N. G. Trends in lignin modification: acomprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry, v. 61, p. 221-294, 2002. ARGYROPOUPOS, D.S.; MENACHEM, S.B. Lignin. Adv. Bloch Enc Biotech, v. 57, p. 127-158, 1997. 28 BAUCHER, M.; HALPIN, C.; PETIT-CONIL, M.; BOERJAN, W. Lignin: genetic engineering and impact on pulp. Critical Reviews in Biochemistry and Molecular Biology, v.38, p. 305-350, 2003. BERTHIER, S.; STOKES, A. Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading. Tree Physiology, v. 26, p. 73-79, 2005. BOERJAN, W.; RALPH, J.; BAUCHER, M. Lignin biosynthesis. Annual Review Plant Biology , v. 54, p. 519-546, 2003. BOATRIGHT, J; NEGRE, F; CHEN, X; KISH, C. M; WOOD, B; PEEL, G; ORLOVA, I; GANG, D; RHODES, D; DUDAREVA, N. Understanding in Vivo Benzenoid Metabolism in Petunia Petal Tissue. Plant Physiology, v.135, p.1993-2011, 2004. BOYCE, C. K.; ZWIENIECKI, M. A.; CODY, G. D.; JACOBSEN, C.; WIRICK, S.; KNOLL, A.H.; HOLBROOK, N. M. Evolution of xylem lignifications and hydrogel transport regulation. Proceedings of the National Academy of Siences of the United States of America, v. 101, p. 17555-17558, 2004. BONAWITZ, N. D.; CHAPPLE, C. The genetics of lignin biosynthesis: connecting genotype to phenotype, Annual Review of Genetics, v. 44, p. 337-363, 2010. CHABANNES, M.; BARAKATE, A .; LAPIERRE, C.; MARITA, J. M.; RALPH, J. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant Journal, v. 28, p. 257-270, 2001. CHAFFEY, N. Wood formation in trees: Cell and molecular biology techniques. Taylor & Francis Books, London, 2002. CHEN, F.; DIXON, R. A. Lignin modification improves fermentable sugar yields for biofuel production. National Biotechnology, v. 25, p. 759-761, 2007. 29 CÔTÉ, W. A.; DAY, A. C.; TIMELL, T. E. A contribution to the ultrastructure of tension wood fibers. Wood Science Technology, v. 3, p. 257-271, 1969. COWLES , J. R; SCHELD, H. W.; MAY, R.; PETERSON, C. Experiments on plants grown in space: Growth and lignifications in seedlings exposed to eight days of microgravity. Annals of Botany, v. 54, n. 3, p. 33-48, 1984. DARNELL, R. D.; LEVINE, L. H.; BISBEE, P. A.; ALLEN, J.; MUSGRAVE, M. E. Glucosinolate production in hypergravity in Brassica rapa. Gravitational and Space Biology, v. 21, n. 33, 2007. DAVIN, L. B.; JOURDES, M.; PATTEN, A. M.; KIM, K. W.; VASSAO, D. G.; LEWIS, N. G. Dissection o f lignin macro- molecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Natural Product. Reports, v. 25, p. 1015-1090, 2008. DEAN, J. F. D. Synthesis of lignin in mutant and transgenic plants. In Biotechnology of Biopolymers: From Synthesis to Patents, p. 3-26, 2005. DÉRJARDIN, A. D.; LAURANS, F.; ARNAUD, D.; BRETON, C.; PILATE, G.; LEPLÉ, J. Wood formation in Angiosperms. Plant biology and pathology. p. 325- 334, 2010. DIXON, R. A; CHEN, F; GUO, D; PARVATHI, K. The biosynthesis of monolignols: a “metabolic grid,” or independent pathways to guaiacyl and syringyl units? Phytochemistry, v.57, p.1069–84, 2001. DO, C.T.; P OLLET, B .; THEVENIN, J.; SIBOUT, R.; DENOUE, D. et al. Both caffeoyl coenzyme A 3- O- methyltransferase and caffeic acid O-methyltransferase are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta, v. 226, p.1117-1129, 2007. DU, S.; YAMAMOTO, F. An overview of the biology of reaction wood formation. Journal of Integrative Plant Biology, v. 49, n. 2, p. 131−143, 2007. 30 FENGEL, D. E.; WEGENER, G. Wood, chemistry, ultrastructure, reaction, Berlin 1 ed. Walter de Gruyter, p. 66, 1984. FREUDENBERG, K.; NEISH, A. C. The constitution and biosynthesis of lignin. SpringerVerlag, Berlin, 1968. FRIEDMAN, W. E; COOK, M. E. The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data. The Royal Society, v. 355, p. 857-868, 2000. GOTTLIEB, O. R. The role of oxygen in phytochemical evolution towards diversity, Phytochemistry, v. 28, n. 10, p.2545-2558, 1989. GOTTLIEB, O. R.; BORIN, R. M. B. E.; BOSÍSIO, B. M. Lignification: an evolutionary perspective, An. Acd. bras. Ci., v. 67 (Supl 3) p.355-361, 1995. HABRANT, A.; LAURANS, F.; DÉJARDIN, A.; LEPLÉ, J.C.; PILATE, G.; CATHALA, B.; CHABBERT, B. Physical and chemical changes of poplar cell walls during tension wood formation, In: 12th. INT. SYMP. ON WOOD AND PULPING CHEMISTRY (ISWPC), Madison, Wisconsin (USA), p. 8-12, 2003. HARTIG, R. Holzuntersuchungen. Altes und Neues. Julius Springer, Berlin, 1901. HIGUCHI, T. Lignin biochemistry: Biosynthesis and biodegradation. Wood Science Technology, v. 24, p. 23-63, 1990. HOSON, T.; SOGA, K.; WAKABAYASHI, K.; KAMISAKA, S.; TANIMOTO, E. Growth and cell wall changes in rice roots during spaceflight. Plant and Soil, v. 255, p. 19 -26, 2003. HUMPHREYS, J. M.; CHAPPLE, C. Rewriting the lignin roadmap. Plant Biology, v. 5, p. 224-229, 2002. 31 KENDRICK, P.; CRANE, P. R. The origin and early evolution of plants on land. Nature, v. 389, p. 33-39, 1997. KRAUS, J.E.; ARDWIN, M. Manual básico de métodos em morfologia. EDUR, Seropédica, 198p, 1997. KWON, M.; BEDGAR, D.L.; PIASTUCH, W.; DAVIN, L.B.; LEWIS, N.G. Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity. Phytochemistry, v. 57, p. 847-857, 2001. KWON, M. Tension Wood as a model system to explore the carbon partitioning between lignin and cellulose biosynthesis in woody plants. Journal of Applied Biological Chemistry, v. 51, n. 3, p. 83-87, 2008. JOUREZ, B.; RIBOUX, A.; LECLERCQ, A. Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘Ghoy’). IAWA Journal, v. 22, p. 133-157, 2001. LANGE, B. M.; LAPIERRE, C. SANDERMANN, H. Elicitor-induced spruce stress lignin. Structural similarity to early developmental lignins. Plant Physiol, v. 108, p. 1277-1287, 1995. LARSON, P. R. The vascular cambium: Development and structure. Springer-Verlag, Berlin, 1994. LEVINE , L. H.; HEYENGA, A. G.; LEVINE, H. G.; CHOI, J.; DAVIN, L. B.; KRIKORIAN, A. D.; LEWIS, N. G. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment. Phytochemistry, v. 57, p. 835-846, 2001a. LEVINE , L. H.; LEVINE, H. G.; STRYJEWSKI, E. C.; PRIMA, V.; PIASTUCH, W. C. Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings. Journal of Gravitational Physiology, v. 8, p. 21-27, 2001b. 32 LEWIS, N. G. A 20th centrury roller coaster rider: a short account of lignifications. Plant Biology, v. 2, p. 153-162, 1999. LEWIS, N. G; SARKANEN, S. Lignin and Lignan Biosynthesis. Washington, DC, ACS Symposium Series; American Chemical Society, 1998. LI, L.; POPKO, J.L.; UMEZAWA, T.; CHIANG, V.L. 5-Hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in Angiosperms. The Journal of Biological Chemistry, v. 275, p. 6537-6545, 2000. LI, L.; CHENG, X. F.; LESHKEVICH, J.; UMEZAWA, T.; HARDING, S. A.; CHIANG, V. L. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. The Plant Cell, v. 13, p. 1567–1586, 2001. LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, 3 ed. Instituto Plantarum, Nova Odessa, São Paulo, 2000. MARTONE, P. T.; LU, F.; SOMERVILLE, C.; ESTEVEZ, J.; RUEL, K.; DENNY, M. W.; RALPH, J. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture.Current Biology, v. 19, n. 2, p. 169-175, 2009. MENDEN, B.; KOHLHOFF, M.; MOERSCHBACHER, B.M. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry, n. 68, p. 513-520, 2007. MONTEIRO, M. B. O.; PEREIRA, R. P. W.; ABREU, H. S. Bioquímica da lignificação de células xilemáticas. Floresta e Ambiente, v. 11, n. 2, p. 48-57, 2004. MOORE, K. J.; JUNG, H. J. G. Lignin and fiber digestion. Journal Range Manage, v. 54, p. 420-430, 2001. MUSGRAVE , M. E. Seeds in space. Seed Science Research, v. 12, p. 1-16, 2002. 33 MUSGRAVE , M. E.; KUANG, A.; TUOMINEN, L. K.; LEVINE, L. H.; MORROW, R. C. Seed storage reserves and glucosinolates in Brassica rapa L. grown on the International Space Station. Journal of the American Society for Horticultural Science, v. 130, p. 848- 856, 2005. NAKABAYASHI , I.; KARAHARA, I.; TAMAOKI, D.; MASUDA, K.; WAKASUGI, T.; YAMADA, K.; SOGA, K. Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana. Annals of Botany, v. 97, p. 1083-1090, 2006 . NEDUKHA, E. M. Possible mechanisms of plant cell wall changes at microgravity. Advances Space Research, v. 1, p. 109-111, 1996. NORBERG, P.H.; MEIER, H. Physical, chemical properties of the gelatinous layer in tension wood fibres of aspen (Populus tremula L.), Holzforschung, v. 20, p. 174-178, 1966. PETER, G.; NEALE, D. Molecular basis for the evolution of xylem lignification. Plant Biology, v. 7, p. 737-742, 2004. PILATE, G.; CHABBERT, B.; YOSHINAGA, A.; LEPLÉ, J.C.; LAURANS, F.; LAPIERRE, C.; RUEL, K. Lignification and tension wood. Plant biology and pathology. v.327, p. 889-901, 2004. PLOMION, C.; LEPROVOST, G.; STOKES, A. Wood formation in trees. Plant Physiology, v. 127, p. 1513-1523, 2001. RALPH, J. Lignins: natural polymers from oxidative coupling of 4- hydroxyphenylpropanoids. Phytochemistry Review, v. 3, p. 29-60, 2004. ROGERS, L. A.; CAMPBELL, M. M. The genetic control of lignin deposition during plant growth and development. New Phytologist, v. 164, p. 17-30, 2004. 34 SANZ BISET, J.; CAMPOS, J. L. C; EPIQUIÉN, M. A. R, CAÑIGUERAL, S.. A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). Journal of Ethnopharmacology, n. 122, p. 333-362, 2009. . SCURFIELD, G.; WARDROP, A.B. The nature of reaction wood. VII. Lignification in reaction wood. Australian Journal Botany, v. 11, p. 107-116, 1963. SIMS, R. E. H.; MABEE, W.; SADDLER, J. N.; TAYLOR, M. An overview of second generation biofuel technologies. Bioresource Technology, v. 101, p. 1570-1580, 2010. SJOSTROM, E. Wood Chemistry: Fundamentals and Applications. 2ª edição, Academic Press, Inc: San Diego, CA, 1992. SOGA, K.; WAKABAYASHI, K.; KAMISAKA, S.; HOSON, T. Mechanoreceptors rather than sedimentable amyloplasts perceive the gravity signal in hypergravity-induced inhibition of root growth in azuki bean. Functional Plant Biology, v. 32 , n. 2, p. 175-179, 2005. STUTTE, G. W.; MONJE, O.; HATFIELD, R. D.; PAUL, A. L.; FERL, R. J.; SIMONE, C. G. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta, v. 224, p. 1038-1049, 2006. STUTTE. G. W.; MONJE, O.; HATFIELD, R. D.; PAUL, A. L.; Ferl. R. J.; SIMONE, C. G. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat.Planta, p. 1038-1049, 2006. TAMAOKI, D.; KARAHARA, I.; SCHREIBER, L.; WAKASUGI, T.; KAMISAKA, S. Effects of hypergravity conditions on elongation growth and lignin formation in the inflorescence stem of Arabidopsis thaliana. Journal of plant research, v. 119, n. 2, p. 79-84, 2006. TIMELL, T. E. The chemical composition of tension wood. Svensk. Papperstidn, v. 72, n. 6, p. 173–181, 1969. 35 TIMELL, T. E. Compression Wood in Gymnosperms. Springer-Verlag, New York, v. 1-3, 1986. TOMLINSON, P.B. Reaction tissues in Gnetum gnemon. A preliminary report. IAWA Journal, v. 22, p. 401-413, 2001. UMEZAWA, T . The cinnamate/ monolignol pathway. Phytochemistry Review, v. 9, p. 1- 17, 2009. VANCE, C. P.; KIRK, T. K.; SHERWOOD, R. T. Lignification as a mechanism of disease resistance. Annual Review of Phytopathologist, v. 18, p. 259-288, 1980. VAN DOORSSELAERE, J.; BAUCHER, M .; CHOGNOT, E.; CHABBERT, B.; TOLLIER, M. T., et al. A novel lignin in poplar trees with reduced caffeic acid/5-hydroxyferulic acid Omethyltransferase activity. Plant Journal, v, 8, p. 855-864, 1995. VOLKMANN, D.; BALUSKA, F. Gravity: one of the driving forces for evolution. Protoplasma, v. 226, p. 143-148, 2006. VOLKMASNN, D.; BALUSKA, F. Gravity: one oh the driving forces for evolution. Protoplasma, v. 229, p. 143-148, 2006. WADA, M.; OKANO, T.; SUGIYAMA, J.; HORII, F. Characterization of tension and normally lignified wood cellulose in Populus maximowivzii, Cellulose, v. 2, p. 223-233, 1995. WAKABAYASHI , K. , SOGA, K.; KAMISAKA, S.; HOSON, T. Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions. Space life sciences: Gravity-relate effects on plants and spaceflight and man-made environments on biological systems. Advances in Space Research, v. 36, p. 1292-1297, 2005.por
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/61231/2011%20-%20Monique%20de%20Moura%20Gurgel.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3736
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2020-07-22T15:29:35Z No. of bitstreams: 1 2011 - Monique de Moura Gurgel.pdf: 2794501 bytes, checksum: 977542d06e268c0b1e3280cae9cfc8d3 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-07-22T15:29:35Z (GMT). No. of bitstreams: 1 2011 - Monique de Moura Gurgel.pdf: 2794501 bytes, checksum: 977542d06e268c0b1e3280cae9cfc8d3 (MD5) Previous issue date: 2011-04-14eng
Appears in Collections:Mestrado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2011 - Monique de Moura Gurgel.pdfMonique de Moura Gurgel2.73 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.