Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11758
Full metadata record
DC FieldValueLanguage
dc.creatorJesus, Carolina Souza Leite de
dc.date.accessioned2023-11-19T22:29:36Z-
dc.date.available2023-11-19T22:29:36Z-
dc.date.issued2022-01-28
dc.identifier.citationJESUS, Carolina Souza Leite de. Risco de incêndios associado a mudanças da paisagem e eventos climáticos na Mata Atlântica. 2022. 41 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11758-
dc.description.abstractHuman influence on climate change has increased the occurrence of extreme events and made heat waves and droughts more frequent and severe, which leads to an increase in the number of forest fires. This work aims to develop a model using the Autoregressive Integrated Moving Average Model (ARIMA) to assess the danger of forest fires occurring for past and future climatic periods, as a function of landscape change and climatic events in the State of Rio de Janeiro in the future; to provide information that serve as subsidy for the creation of policies that aim to prevent or minimize its occurrence. Images from the Thematic Mapper sensor and the Enhanced Thematic Mapper sensor were used in the period from 1985 to 2015 in order to classify them as anthropogenic area and forest. A set of meteorological variables on daily and monthly scale for the period from 1985 to 2015 was used to calculate the F index on a monthly scale. ARIMA was used to simulate observed and future F index data up to the year 2030. The results show higher values of the Normalized Difference Fraction Index (NDFI) in areas to the south and southwest of the state, coinciding with the areas with the greatest predominance of Atlantic Forest. The most degraded regions are in the northeast and north and the year 2000 had the largest area of degraded forest. By analyzing the F index for the past, it was possible to observe a gradual increase in fires, which were associated with the occurrence of extreme events, mainly La Niña. The use of ARIMA modeling allowed us to identify that there was a change from high to very high class regarding the fire hazard of the past and future. In 2030, the minimum value of the F index reached 2.98, being considered very high in May and June. Analyzing the entire future period monthly, the highest fire hazard values were found in the months of August and September. It is important that measures are taken to minimize the effects of climate change, as such changes cause more extreme events to occur, which in turn cause more fires.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectUso e cobertura da terrapor
dc.subjectAntropizaçãopor
dc.subjectModelos de previsãopor
dc.subjectMudanças climáticaspor
dc.subjectIncêndios florestaispor
dc.subjectLand use and cover changeeng
dc.subjectAnthropizationeng
dc.subjectForecastingeng
dc.subjectClimate changeseng
dc.subjectForest firespor
dc.titleRisco de incêndios associado a mudanças da paisagem e eventos climáticos na Mata Atlânticapor
dc.title.alternativeFire risk associated with landscape changes and weather events in the Atlantic Foresteng
dc.typeDissertaçãopor
dc.contributor.advisor1Delgado, Rafael Coll
dc.contributor.advisor1ID001.729.560-21por
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-3157-2277por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1178948690201659por
dc.contributor.advisor-co1Silva Junior, Carlos Antonio da
dc.contributor.advisor-co1ID024.966.381-32por
dc.contributor.referee1Delgado, Rafael Coll
dc.contributor.referee1ID001.729.560-21por
dc.contributor.referee1IDhttps://orcid.org/0000-0002-3157-2277por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1178948690201659por
dc.contributor.referee2Wanderley, Henderson Silva
dc.contributor.referee2IDhttps://orcid.org/0000-0002-4031-3509por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9838743472295687por
dc.contributor.referee3Pereira, Marcos Gervasio
dc.contributor.referee3IDhttps://orcid.org/0000-0002-1402-3612por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3657759682534978por
dc.contributor.referee4Rodrigues, Rafael de Ávila
dc.contributor.referee4ID053.648.536-40por
dc.contributor.referee4Latteshttp://lattes.cnpq.br/8062645091909175por
dc.creator.ID137.716.787-90por
dc.creator.IDhttps://orcid.org/0000-0002-8637-3531por
dc.creator.Latteshttp://lattes.cnpq.br/8250781086495193por
dc.description.resumoA influência humana nas mudanças climáticas aumentou a ocorrência de eventos extremos e tornou ondas de calor e secas mais frequentes e severas, o que leva ao aumento do número de incêndios florestais. Esse trabalho tem o objetivo de desenvolver um modelo com o uso da estatística Autoregressive Integrated Moving Average Model (ARIMA) para avaliar o perigo de ocorrência de incêndios florestais para periodos climáticos passado e futuro, em função da mudança da paisagem e eventos climáticos, no Estado do Rio de Janeiro no futuro; a fim de prover informações que sirvam de subsídio para criação de políticas que visem evitar ou minimizar sua ocorrência. Foram utilizadas imagens do sensor Thematic Mapper e o sensor Enhanced Thematic Mapper no período de 1985 a 2015 com o objetivo de classificá-las em área antropizada e floresta. Foi utilizado um conjunto de variáveis meteorológicas em escala diária e mensal para o período de 1985 a 2015 para cálculo do índice F em escala mensal. O ARIMA foi utilizado para simular os dados observados e futuros do índice F até o ano de 2030. Os resultados mostram maiores valores de Normalized Difference Fraction Index (NDFI) em áreas ao sul e sudoeste do estado, coincidindo com as áreas de maior predominância de Mata Atlântica. As regiões mais degradadas estão a nordeste e norte e o ano de 2000 apresentou maior área de floresta degradada. Por meio da análise do índice F para o passado foi possível observar aumento gradativo de incêndios, que foram associados à ocorrência de eventos extremos, principalmente a La Niña. O uso da modelagem ARIMA permitiu identificar que houve mudança de classe de alto para muito alto quanto ao perigo de incêndio do passado e futuro. Em 2030 o valor mínimo do índice F atingiu 2.98, sendo considerado muito alto em maio e junho. Analisando todo o período futuro mensalmente, os maiores valores de perigo de incêndio foram encontrados nos meses de agosto e setembro. É importante que sejam tomadas medidas para minimizar os efeitos das mudanças climáticas, já que tais mudanças provocam maior ocorrência de eventos extremos, que por sua vez causam mais incêndios.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Florestaspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispor
dc.relation.referencesALKHAZALEH, M. M. H. e AL-ZEAUD, A. H. Forecasting Insurance Sector Volatility In Amman Stock Exchange Using ARIMA Model. Arab Journal of Administration, v. 35, n. 1, p. 467–481, 2018. ALVARES, C. A., STAPE, J. L., SENTELHAS, P. C., DE MORAES GONÇALVES, J. L., e SPAROVEK, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507 ANDERSON, L. O. et al. Conceptual model of disaster risk management and warning system associated with wildfires and public policy challenges in Brazil. Territorium: Revista Portuguesa de Riscos, Prevenção e Segurança, 26(26 (I)), 43–61, 2019. https://doi.org/10.14195/1647-7723_26-1_4 ANDRADE, C. F. de, DUARTE, J. B., BARBOSA, M. L. F., ANDRADE, M. D. de, OLIVEIRA, R. O. DE, DELGADO, R. C., PEREIRA, M. G., BATISTA, T. S., & TEODORO, P. E. Fire outbreaks in extreme climate years in the State of Rio de Janeiro, Brazil. Land Degradation & Development, 30(11), 1379–1389, 2019. https://doi.org/10.1002/LDR.3327 ANDRADE, C. F., DELGADO, R. C., BARBOSA, M. L. F., TEODORO, P. E., JUNIOR, C. A. da S., WANDERLEY, H. S., e CAPRISTO-SILVA, G. F. Fire regime in Southern Brazil driven by atmospheric variation and vegetation cover. Agricultural and Forest Meteorology, 295, 108194, 2020. https://doi.org/10.1016/J.AGRFORMET2020.108194 BARBOSA, M. L. F., DELGADO, R. C., FORSAD DE ANDRADE, C., TEODORO, P. E., SILVA JUNIOR, C. A., WANDERLEY, H. S., & CAPRISTO-SILVA, G. F. Recent trends in the fire dynamics in Brazilian Legal Amazon: Interaction between the ENSO phenomenon, climate and land use. Environmental Development. 2021. https://doi.org/10.1016/j.envdev.2021.100648 BETTS, R. A. et al. ENSO and the Carbon Cycle. El Niño Southern Oscillation in a Changing Climate. 453–470. 2020. https://doi.org/10.1002/9781119548164.CH20 BRANCALION, P. H. S., NIAMIR, A., BROADBENT, E., CROUZEILLES, R., BARROS, F. S. M., ALMEYDA ZAMBRANO, A. M., BACCINI, A., ARONSON, J., GOETZ, S., REID, J. L., STRASSBURG, B. B. N., WILSON, S., e CHAZDON, R. L. Global restoration opportunities in tropical rainforest landscapes. Science Advances, 5(7), 2019, eaav3223. https://doi.org/10.1126/sciadv.aav3223 BROCKWELL, P. J., & DAVIS, R. A. Introduction to Time Series and Forecasting. Springer Texts in Statistics. 3a edição. Suíça. 2016. doi:10.1007/978-3-319-29854-2 CAI, W., et al. Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment :9, 2(9), 628–644. 2021. https://doi.org/10.1038/s43017-021-00199-z 37 CAMBARDELLA, C. A., MOORMAN, T. B., NOVACK, J. M., PARKIN, T. B., KARLEN, D. L., R.F., T., & KNOPKA, A. E. Field scale variability of soil properties in central Iowa soil. Soil Science Society America Journal, 58, 1240–1248, 1994. CARVALHO, A. S., MARQUES, S., & ROSÁRIO, F. E Tudo o Fogo Queimou: Vivências dos Médicos de Família Após o Grande Incêndio de 15 de Outubro de 2017. Acta Médica Portuguesa, 31(1), 7, 2018. https://doi.org/10.20344/amp.10178 CEPERJ. (2019). O Estado do Rio de Janeiro e seu Ambiente. http://www.ceperj.rj.gov.br/Conteudo.asp?ident=85 CLEMENTE, S. S., OLIVEIRA, J. F. DE, & PASSOS LOUZADA, M. A. Focos de Calor na Mata Atlântica do Estado do Rio de Janeiro. Revista Brasileira de Meteorologia, 32(4), 669– 677, 2017. https://doi.org/10.1590/0102-7786324014 COLLINS, B. M. Fire weather and large fire potential in the northern Sierra Nevada. Agricultural and Forest Meteorology, 189–190, 30–35, 2014. https://doi.org/10.1016/j.agrformet2014.01.005 DANTAS, V. DE L., HIROTA, M., OLIVEIRA, R. S., & PAUSAS, J. G. Disturbance maintains alternative biome states. Ecology Letters, 19(1), 2016. https://doi.org/10.1111/ele.12537 DOS SANTOS, J. F. C., GLERIANI, J. M., VELLOSO, S. G. S., DE SOUZA, G. S. A., DO AMARAL, C. H., TORRES, F. T. P., MEDEIROS, N. D. G., & DOS REIS, M. Wildfires as a major challenge for natural regeneration in Atlantic Forest. Science of The Total Environment, 650, 809–821, 2019. https://doi.org/10.1016/J.SCITOTENV.2018.09.016 DWIVEDI, D. K.; KELAIYA, J. H.; SHARMA, G. R. Forecasting monthly rainfall using autoregressive integrated moving average model (ARIMA) and artificial neural network (ANN) model: A case study of Junagadh, Gujarat, India. Journal of Applied and Natural Science, v. 11, n. 1, p. 35–41, 19 fev. 2019. FAO - Food and Agriculture Organization, 1998. FAO Irrigation and Drainage Paper: No. 56. FAO FAO - Food and Agriculture Organization, 2007. Fire management and global assesment. FERREIRA, L. N., VEGA-OLIVEROS, D. A., ZHAO, L., CARDOSO, M. F., & MACAU, E. E. N. Global fire season severity analysis and forecasting. Computers & Geosciences, 134, 104339 (2019). doi:10.1016/j.cageo.2019.104339 FREITAS, W. K., GOIS, G., PEREIRA, E. R., OLIVEIRA JUNIOR, J. F., MAGALHÃES, L. M. S., BRASIL, F. C., & SOBRAL, B. S. Influence of fire foci on forest cover in the Atlantic Forest in Rio de Janeiro, Brazil. Ecological Indicators, 115, 2020. https://doi.org/10.1016/j.ecolind.2020.106340 IBGE .2021. Panorama Brasil - Rio de Janeiro. Instituto Brasileiro de Geografia e Estatística. https://cidades.ibge.gov.br/brasil/rj/panorama 38 IPCC. Climate Change: AR6 Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Issues 1– 151), 2021. https://archive.ipcc.ch/pdf/assessment- report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf IUFRO. 2018. Annual Reports. International Union of Forest Research Organizations. https://www.iufro.org/publications/annual-report/article/2019/06/06/annual-report-2018/ JESUS, C. S. L. DE, DELGADO, R. C., PEREIRA, M. G., SOUZA, L. P. DE, JUNIOR, C. A. DA S., RIBEIRO, L. P., BATISTA, T. S., & TEODORO, P. E. Changes in past global solar radiation based on climate models and remote sensing in the state of Rio de Janeiro, Brazil. Bioscience Journal, 1357–1364, 2018. https://doi.org/10.14393/BJ-v34n5a2018-39485 JIMÉNEZ-RUANO, A., DE LA RIVA FERNÁNDEZ, J., & RODRIGUES, M. Fire regime dynamics in mainland Spain. Part 2: A near-future prospective of fire activity. Science of The Total Environment, 705, 135842, 2020. https://doi.org/10.1016/J.SCITOTENV.2019.135842 JÚNIOR, C. M. S.; SIQUEIRA, J. V.; SALES, M. H.; FONSECA, A. V.; RIBEIRO, J. G.; NUMATA, I.; COCHRANE, M. A.; BARBER, C. P.; ROBERTS, D. A.; BARLOW, J. Ten- Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sens. 5, 5493-5513, 2013. doi:10.3390/rs5115493 KENDALL, M. G. (1975). Rank Correlation Methods (C. Griffin, Ed.; 4th Editio). MACHADO-SILVA, F., LIBONATI, R., LIMA, T. F. M., PEIXOTO, R. B., FRANÇA, J. R. A., MAGALHÃES, M. A. F.M., SANTOS, F. L. M., RODRIGUES, J. A., & DACAMARA, C. C. Drought and fires influence the respiratory diseases hospitalizations in the Amazon. Ecological Indicators, 109, 2020. https://doi.org/10.1016/j.ecolind.2019.105817 MANN, H. B. Nonparametric Tests Against Trend. Econometrica, 13(3), 245, 1945. https://doi.org/10.2307/1907187 MENEZES, G. S. C., CAZETTA, E., & DODONOV, P. Vegetation structure across fire edges in a Neotropical rain forest. Forest Ecology and Management, 453, 2019. https://doi.org/10.1016/j.foreco.2019.117587 MORELLO, T., MARCHETTI RAMOS, R., O. ANDERSON, L., OWEN, N., ROSAN, T. M., & STEIL, L. Predicting fires for policy making: Improving accuracy of fire brigade allocation in the Brazilian Amazon. Ecological Economics, 169, 106501. 2020. doi:10.1016/j.ecolecon.2019.106501 NATH, B., DHAKRE, D., & BHATTACHARYA, D. Forecasting wheat production in India: An ARIMA modelling approach. Journal of Pharmacognosy and Phytochemistry, 8(1), 2158–2165, 2019. https://www.researchgate.net/publication/331471229_Forecasting_wheat_production_in_Indi a_An_ARIMA_modelling_approach NOAA. El Niño and La Niña: Frequently asked questions. NOAA Climate Gov, 2021. Disponível em: https://www.climate.gov/news-features/understanding-climate/el- ni%C3%B1o-and-la-ni%C3%B1a-frequently-asked-questions 39 OLIVEIRA SOUZA, T. C., DELGADO, R. C., MAGISTRALI, I. C., DOS SANTOS, G. L., DE CARVALHO, D. C., TEODORO, P. E., da Silva Júnior, C. A., & Caúla, R. H. Spectral trend of vegetation with rainfall in events of El Niño-Southern Oscillation for Atlantic Forest biome, Brazil. Environmental Monitoring and Assessment, 190(11), 2018. https://doi.org/10.1007/s10661-018-7060-1 OZTURK, S., & OZTURK, F. Forecasting Energy Consumption of Turkey by Arima Model. Journal of Asian Scientific Research, 8(2), 52–60, 2018. https://doi.org/10.18488/journal.2.2018.82.52.60 PEREIRA, R. M. S., WANDERLEY, H. S., & DELGADO, R. C. Homogeneous regions for rainfall distribution in the city of Rio de Janeiro associated with the risk of natural disasters. Natural Hazards, 2021. https://doi.org/10.1007/s11069-021-05056-2 PÉREZ, J., MALDONADO, S., & LÓPEZ-OSPINA, H. (2016). A fleet management model for the Santiago Fire Department. Fire Safety Journal, 82, 1–11, 2021. https://doi.org/10.1016/j.firesaf.2016.02.008 PETTITT, A. N. A non-parametric approach to the change-point problem. Applied Statistic, 28, 2, 126-135, 1979. https://doi.org/10.2307/2346729 SANTANA, R. O., DELGADO, R. C., & SCHIAVETTI, A. The past, present and future of vegetation in the Central Atlantic Forest Corridor, Brazil. Remote Sensing Applications: Society and Environment, 20, 2020. https://doi.org/10.1016/j.rsase.2020.100357 SANTOS, J. F., SOARES, R. V., & BATISTA, A. C. Perfil dos incêndios florestais no Brasil em áreas protegidas no período de 1998 a 2002. Floresta, 36, 93–100, 2006. https://revistas.ufpr.br/index.php/floresta/article/viewFile/5510/4040 SANTOS, R. O.; DELGADO, R. C.; VILANOVA, R. S.; SANTANA, R. O.; ANDRADE, C.F.; TEODORO, P. E.; SILVA JÚNIOR, C. A.; CAPRISTO-SILVA, G. F.; LIMA, M. NMDI application for monitoring different vegetation covers in the Atlantic Forest biome, Brazil. Weather and Climate Extremes, 33, 2021. https://doi.org/10.1016/j.wace.2021.100329 SHARPLES, J. J., MCRAE, R. H. D., WEBER, R. O., & GILL, A. M. A simple index for assessing fire danger rating. Environmental Modelling & Software, 24(6), 764–774, 2009. http://dx.doi.org/10.5380/rf.v36i1.5510 SILVA JUNIOR, C. A., TEODORO, P. E., DELGADO, R. C., PEREIRA, L., TEODORO, R., LIMA, M., DE ANDRÉA PANTALEÃO, A., ROJO BAIO, F. H., BRITO DE AZEVEDO, G., TAÍS DE OLIVEIRA, G., AZEVEDO, S., FERNANDO CAPRISTO- SILVA, G., ARVOR, D., CASSIELE, &, & FACCO, U. (123 C.E.). Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Scientific RepoRtS |, 10, 16246, 2020. https://doi.org/10.1038/s41598-020-72571-w SILVA, C. O., DELGADO, R. C., TEODORO, P. E., SILVA JUNIOR, C. A., & RODRIGUES, R. A. Spatially explicit modeling of land use and land cover in the State of Rio de Janeiro- Brazil. Remote Sensing Applications: Society and Environment, 18, 100303, 2020. https://doi.org/10.1016/J.RSASE.2020.100303 40 SILVA, R., PEREIRA, J., & BORGES, L. Paisagem como retrato do desenvolvimento social, econômico e ambiental de uma sociedade: o caso de Ouro Preto, MG. Advances in Forestry Science, Barros 2015, 167–174, 2017. https://doi.org/2357-8181 SOS Mata Atlântica. Restam apenas 12,4% da floresta que existia originalmente. SOS Mata Atlântica. 2021. Disponível em: https://www.sosma.org.br/causas/mata-atlantica/ SLAVIA, A. P., SUTOYO, E., & WITARSYAH, D. Hotspots Forecasting Using Autoregressive Integrated Moving Average (ARIMA) for Detecting Forest Fires. IEEE International Conference on Internet of Things and Intelligence System. 2019. doi:10.1109/iotais47347.2019.898 STAVER, A. C., ARCHIBALD, S., & LEVIN, S. A. The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science, 334(6053), 2011. https://doi.org/10.1126/science.1210465 SYPHARD, A. D. et Al. Human presence diminishes the importance of climate in driving fire activity across the United States. Proceedings of the National Academy of Sciences, 114(52). 2017. https://doi.org/10.1073/pnas.1713885114 TEODORO, P. E. et Al. Twenty-year impact of fire foci and its relationship with climate variables in Brazilian regions. Environmental Monitoring and Assessment, 194(2), 90, 2022. https://doi.org/10.1007/s10661-021-09702-x TITO, T. M., DELGADO, R. C., DE CARVALHO, D. C., TEODORO, P. E., DE ALMEIDA, C. T., DA SILVA JUNIOR, C. A., DOS SANTOS, E. B., & DA SILVA JÚNIOR, L. A. S. Assessment of evapotranspiration estimates based on surface and satellite data and its relationship with El Niño–Southern Oscillation in the Rio de Janeiro State. Environmental Monitoring and Assessment 192:7, 192(7), 1–15, 2020. https://doi.org/10.1007/S10661-020- 08421-Z VIEIRA, B. C., GRAMANI, M. F. Serra do Mar: The most “Tormented” relief in Brazil. Landscapes and Landforms of Brazil, 285-297, 2015. https://doi.org/10.1007/978-94-017- 8023-0_26 VILANOVA, R. S., DELGADO, R. C., DA SILVA ABEL, E. L., TEODORO, P. E., SILVA JUNIOR, C. A., WANDERLEY, H. S., & CAPRISTO-SILVA, G. F. Past and future assessment of vegetation activity for the state of Amazonas-Brazil. Remote Sensing Applications: Society and Environment, 17, 100278, 2020. https://doi.org/10.1016/J.RSASE.2019.100278 WANDERLEY, H. S., FERNANDES, R. C., & LUIZ DE CARVALHO, A. Mudança térmica na cidade do Rio de Janeiro e o desvio ocasionado durante um evento de El Niño intenso. Revista Brasileira de Geografia Física v, 12, 1291–1301, 2019. XAVIER, A. C., KING, C. W., & SCANLON, B. R. Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatology, 36(6), 2644–2659, 2016. https://doi.org/10.1002/JOC.4518 41 YANG, W., GARDELIN, M., OLSSON, J., & BOSSHARD, T. Multi-variable bias correction: Application of forest fire risk in present and future climate in Sweden. Natural Hazards and Earth System Sciences, 15(9), 2037–2057, 2015. https://doi.org/10.5194/nhess-15-2037-2015 ZHANG, X., ZHOU, Q., WENG, S., & ZHANG, H. (2021). ARIMA Model-Based Fire Rescue Prediction. Scientific Programming, 2021. https://doi.org/10.1155/2021/3212138 ZOU, L., & YANG, L. Time series study of the impact of serious fires on fire occurrence statistics in cities of Jiangsu. Fire Safety Journal, 44(7), 925–932, 2009 https://doi.org/10.1016/j.firesaf.2009.05.002por
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74122/2022%20-%20Carolina%20Souza%20Leite%20de%20Jesus.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6783
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-07-31T15:15:44Z No. of bitstreams: 1 2022 - Carolina Souza Leite de Jesus.pdf: 2090838 bytes, checksum: ff2221172d7d6ffbf335d0eb13c066b5 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-07-31T15:15:45Z (GMT). No. of bitstreams: 1 2022 - Carolina Souza Leite de Jesus.pdf: 2090838 bytes, checksum: ff2221172d7d6ffbf335d0eb13c066b5 (MD5) Previous issue date: 2022-01-28eng
Appears in Collections:Mestrado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Carolina Souza Leite de Jesus.pdf2022 - Carolina Souza Leite de Jesus2.04 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.