Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11570
Full metadata record
DC FieldValueLanguage
dc.creatorAmaral, Gabriela Vieira do
dc.date.accessioned2023-11-19T22:24:01Z-
dc.date.available2023-11-19T22:24:01Z-
dc.date.issued2017-07-17
dc.identifier.citationAMARAL, Gabriela Vieira do. Whey drink de uva processado por dióxido de carbono supercrítico: parâmetros de qualidade e sensoriais. 2017. 65 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11570-
dc.description.abstractEmerging supercritical carbon dioxide (SCCD) technology has been studied as a cold pasteurizing agent, however, few studies are available on its efficiency in dairy products. In this study, the effects of SCCD processing by different pressures 14, 16 and 18 MPa (35 ± 2 °C / 10 min) on whey drink, whey drink and grape juice were investigated in comparison To conventional pasteurization (heat treatment at 72 °C / 15 s). Physicochemical analyzes of pH, titratable acidity, total soluble solids, phenolic compounds, anthocyanins, antioxidant activity, angiotensin converting enzyme (ACE) inhibitory activity and volatile compounds were performed. The color, particle size, rheology, physical stability, as well as microbiological quality and sensory analysis of beverages were also smoothed. The results of this study evidenced the absence of differences between treatments in pH, titratable acidity, soluble solids, total anthocyanins and DPPH activity (p> 0.05). A direct relationship between SCCD pressure and ACE inhibitory activity was observed, with 34.63, 38.75 and 44.31% (14, 16 and 18 MPa, respectively). Few differences were found in the volatile compounds profile. The beverage processing by SCCD resulted in a product with lower particle diameter, lower consistency index and a reduction in pseudoplastic character compared to the beverage treated by the conventional process. No effect of high pressure CO2 on the sensorial attributes of the drink was observed for the studied levels. Consumers found no difference between CO2 treated beverages and heat-treated beverages. The results confirm the processing of SCCD as a promising technology for the non-thermal treatment of grape whey drink made available a health and wellness promoter beverage. Background: Non-thermal food processing is configured as an interesting alternative for the food industry due to the increased nutrient retention and minimal sensory changes in processed products. Scope and approach: The aim of this review is to address the potential of supercritical carbon dioxide technology, emphasizing milk and dairy processing, including the historical aspects, main advantages, microbial inactivation mechanisms, as well as effects in some quality parameters of dairy products. Key findings and conclusions: The use of supercritical carbon dioxide technology (SC-CO2) presents great potential application in dairy processing, since it is effective to reduce microbial load when compared to the pasteurization process, thus obtaining a product with greater shelf life and better organoleptic properties with minimal and sometimes positive changes in the intrinsic quality parameters The effect of supercritical carbon dioxide technology (SCCD, 140, 160, and 180 bar at 35 ± 2 °C for 10 min) on whey-grape juice drink characteristics was investigated. Physicochemical characterization (pH, titratable acidity, total soluble solids), bioactive compounds ( phenolic compunds, anthocyanins , DPPH and ACE activity) and the volatile compounds were performed. Absence of differences were found among treatments for pH, titratable acidity, soluble solids, total anthocyanins and DPPH activity (p>0.05). A direct relationship between SCCD pressure and ACE inhibitory activity was observed, with 34.63, 38.75, and 44.31% (140, 160, and 180 bar, respectively). Regards the volatile compounds, it was noted few differences except by the presence of ketones. The findings confirm the SCCD processing as a potential promising technology to the conventional thermal treatment. The use of supercritical technology as a non-thermal pasteurization process of the whey-grape juice drink was investigated in this study. The effects of supercritical carbon dioxide at 14, 16, and 18 MPa (35 ± 2°C/10 min) on the physical and sensory properties of the beverage, when compared to conventional pasteurization (heat treatment at 72°C/15 s) were evaluated. High-pressure CO2 processing of whey-grape juice drink resulted in a product with lower particle diameter, lower consistency index, and a reduction in pseudoplastic character when compared to the beverage treated by the conventional process. No effect of high-pressure CO2 was observed on the sensory attributes of the beverage for the levels studied. Consumers did not find differences between the CO2-treated and heat-treated beverages. Our findings suggest the use of supercritical technology with carbon dioxide as an effective alternative for the production and availability of a health and wellness promoting beverageeng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectEmerging technologyeng
dc.subjectwheyeng
dc.subjectgrape juiceeng
dc.subjectsupercritical dioxide carbon technologyeng
dc.subjectwhey-grape juice drinkeng
dc.subjectbioactive compoundseng
dc.subjectvolatile compoundseng
dc.subjectNon-thermal processeng
dc.subjectsupercritical fluideng
dc.subjectwhey - drinkeng
dc.subjecttecnologia emergentepor
dc.subjectsoro de leitepor
dc.subjectsuco de uvapor
dc.subjecttecnologia de carbono com dióxido supercríticopor
dc.subjectbebida de soro de uvapor
dc.subjectcompostos bioativospor
dc.subjectcompostos voláteispor
dc.subjectProcessamento não térmicopor
dc.subjectFluido supercríticopor
dc.subjectbebida lácteapor
dc.titleWhey drink de uva processado por dióxido de carbono supercrítico: parâmetros de qualidade e sensoriaispor
dc.title.alternativeWhey-grape drink processed by supercritical carbon dioxide: quality and sensory parameterseng
dc.typeTesepor
dc.contributor.advisor1Cruz, Adriano Gomes da
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2750728168418179por
dc.contributor.advisor-co1Meireles, Maria Angela A.
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7459851068586682por
dc.contributor.referee1Cavalcanti, Rodrigo Nunes
dc.contributor.referee2Esmerino, Erick Almeida
dc.contributor.referee3Barbosa, Maria Ivone Martins Jacintho
dc.contributor.referee4Mathias, Simone Pereira
dc.creator.ID10655392742por
dc.creator.Latteshttp://lattes.cnpq.br/8194984154882238por
dc.description.resumoA tecnologia emergente de dióxido de carbono supercrítico (DCSC) vem sendo estudada como agente pasteurização a frio, no entanto, são poucos os estudos disponíveis a cerca da sua eficiência em derivados lácteos. Neste estudo, foram investigados os efeitos do processamento do DCSC por diferentes pressões 14, 16 e 18 MPa (35 ± 2 °C / 10 min) no whey drink de uva, bebida a base de soro de leite e suco de uva, em comparação à pasteurização convencional (tratamento térmico a 72 °C / 15 s). Foram realizadas análises físico-quimicas de pH, acidez titulável, sólidos solúveis totais, compostos fenólicos, antocianinas, atividade antioxidante, atividade inibidora da enzima conversora de angiotensina (ECA) e compostos voláteis. Também foramam alisados a cor, o tamanho de partícula, reologia, estabilidade física, assim como a qualidade microbiológica e analise sensorial das bebidas. Os resultados deste estudo evidenciaram a ausência de diferenças entre os tratamentos nas análises de pH, acidez titulável, sólidos solúveis, antocianinas totais e atividade de DPPH (p> 0,05). Foi observada uma relação direta entre pressão DCSC e atividade inibitória ACE, com 34,63, 38,75 e 44,31% (14, 16 e 18 MPa, respectivamente). Poucas diferenças foram encontratdas no perfil dos compostos voláteis. O processamento das bebidas por DCSC resultou em um produto com menor diâmetro de partícula, menor índice de consistência e uma redução no caráter pseudoplástico em comparação com a bebida tratada pelo processo convencional. Não foi observado efeito de CO2 de alta pressão nos atributos sensoriais da bebida para os níveis estudados. Os consumidores não encontraram diferenças entre as bebidas tratadas com CO2 e as bebidas tratadas termicamente. Os resultados confirmam o processamento do DCSC como uma tecnologia promissora para o tratamento não térmico de whey drink de uva disponibilizado uma bebida promotora de saúde e bem-estar Antecedentes: Os processamentos de alimentos não térmicos são configurados como uma alternativa interessante para a indústria de alimentos devido ao aumento da retenção de nutrientes e mudanças sensoriais mínimas nos produtos processados. Âmbito e abordagem: o objetivo desta revisão é abordar o potencial da tecnologia de dióxido de carbono supercrítico, enfatizando o processamento de leite e lácteos, incluindo os aspectos históricos, as principais vantagens, os mecanismos de inativação microbiana, bem como os efeitos em alguns parâmetros de qualidade dos produtos lácteos. Principais conclusões e conclusões: o uso de tecnologia supercrítica de dióxido de carbono (SC-CO2) apresenta grande potencial de aplicação no processamento de lácteos, uma vez que é efetivo reduzir a carga microbiana quando comparado ao processo de pasteurização, obtendo-se assim um produto com maior prateleira e melhores propriedades sensoriais com mudanças mínimas e às vezes positivas nos parâmetros de qualidade intrínseca. O efeito da tecnologia de dióxido de carbono supercrítico (SCCD, 140, 160 e 180 bar a 35 ± 2 °C durante 10 min) em características de bebidas de suco de uva foi investigado. Caracterização físico-química (pH, acidez titulável, sólidos solúveis totais), compostos bioativos (compostos fenólicos, antocianinas, DPPH e atividade ACE) e os compostos voláteis foram realizados. A ausência de diferenças foi encontrada entre tratamentos para pH, acidez titulável, sólidos solúveis, antocianinas totais e atividade de DPPH (p> 0,05). Foi observada uma relação direta entre pressão SCCD e atividade inibitória ACE, com 34,63, 38,75 e 44,31% (140, 160 e 180 bar, respectivamente). Atende aos compostos voláteis, observou-se poucas diferenças, exceto pela presença de cetonas. Os resultados confirmam o processamento do SCCD como uma potencial tecnologia promissora para o tratamento térmico convencional O uso da tecnologia supercrítica como processo de pasteurização a frio da bebida de suco de uva e soro de uva foi investigado neste estudo. Os efeitos do dióxido de carbono supercrítico em 14, 16 e 18 MPa (35 ± 2 °C / 10 min) nas propriedades físicas e sensoriais da bebida, quando comparados à pasteurização convencional (tratamento térmico a 72 °C / 15 s) Foram avaliados. O processamento de CO2 de alta pressão da bebida de suco de soro de soro de leite resultou em um produto com menor diâmetro de partícula, menor índice de consistência e uma redução no caráter pseudoplástico em comparação com a bebida tratada pelo processo convencional. Não foi observado efeito de CO2 de alta pressão nos atributos sensoriais da bebida para os níveis estudados. Os consumidores não encontraram diferenças entre as bebidas tratadas com CO2 e as bebidas tratadas termicamente. Nossas descobertas sugerem o uso da tecnologia supercrítica com dióxido de carbono como uma alternativa efetiva para a produção e disponibilidade de uma bebida promotora de saúde e bem-estarpor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesAbida, J., Rayees, B., & Masoodi, F. A. (2014). Pulsed light technology: A novel method for food preservation. International Food Research Journal, 21, 839-848. Acerbi, F., Guillard, V., Guillaume, C., & Gontard, N. (2016). Impact of selected composition and ripening conditions on CO2 solubility in semi-hard cheese. Food Chemistry, 192, 805-812. Barba, F. J., Zhu, Z., Koubaa, M., Sant'Ana, A. S., & Orlen, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science and Technology, 49, 96-109. Bonnaille, L. M., & Tomasula, P. M. (2012). Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched a-lactalbumin and b-lactoglobulin food ingredients. Journal of Agricultural and Food Chemistry, 60, 5257-5266. Bonnaillie, L. M., & Tomasula, P. M. (2015). Carbon dioxide: An alternative processing method for milk. In N. Datta, & P. M. Tomasula (Eds.), Emerging dairy processing technologies: Opportunities for the dairy industry (pp. 205-240). Campbell, R. E., & Drake, M. A. (2013). Invited review: The effect of native and nonnative enzymes on the flavor of dried dairy ingredients. Journal of Dairy Science, 96, 4773-4783. Cappato, L. P., Ferreira, M. V. S., Guimaraes, J. T., Portela, J. B., Costa, A. L. R., Freitas, M. Q., et al. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science & Technology, 62, 104-112. Cappelletti, M., Ferrentino, G., & Spilimbergo, S. (2014). Supercritical carbon dioxide combined with high power ultrasound: An effective method for the pasteurization of coconut water. The Journal of Supercritical Fluids, 92, 257-263. Casas, J., Valverde, M. T., Marín-Iniesta, F., & Calvo, L. (2012). Inactivation of Alicyclobacillus acidoterrestris spores by high pressure CO2 in apple cream. International Journal of Food Microbiology, 156, 18-24. Castro, W. F., Cruz, A. G., Bisinotto, M. S., Guerreiro, L. M. R., Faria, J. A. F., Bolini, H. M. A., et al. (2013). Development of probiotic dairy beverages: Rheological properties and application of mathematical models in sensory evaluation. Journal of Dairy Science, 96, 16-25. Cavalcanti, R. N., Albuquerque, C. L. C., & Meireles, M. A. A. (2016). Supercritical CO2 extraction of cupuassu butter from defatted seed residue: Experimental data, mathematical modeling and cost of manufacturing. Food and Bioproducts Processing, 97, 48-62. 23 Cavalcanti, R. N., & Meireles, M. A. A. (2012). In J. Pawliszyn, & H. L Lord (Eds.), Comprehensive sampling and sample preparation (Vol. 2). Oxford, U.K: Elsevier. Ceni, G., Silva, M. F., Valerio, C., Jr., Cansian, R. L., Oliveira, J. V., Rosa, C. D., et l. (2016). Continuous inactivation of alkaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent. Journal of CO2 Utilization, 13, 24-28. Chandrapala, J., & Leong, T. (2014). Ultrasonic processing for dairy applications: Recent advances. Food Engineering Reviews, 7, 143-158. Chitra, J., Deh, S., & Mishra, H. N. (2015). Selective fractionation of cholesterol from whole milk powder: Optimization of supercritical process conditions. International Journal of Food Science and Technology, 50, 2467-2474. Chichester, West Sussex: John Wiley & Sons, Ltd, The Atrium, Southern Gate. PO198SQ.UK. Burbrink, C. N., & Hayes, K. D. (2006). Effect of thermal treatment on the activation of bovine plasminogen. International Dairy Journal, 16, 580, 505. Clayes, W. L., Cardeon, S., Daube, G., Block, J., Dewettinck, J., Dierick, K., et al. (2013). Raw or heated cow milk consumption: Review of risks and benefits. Food Control, 31, 251-262. Cruz, A. G., Faria, J. A. F., Saad, S. M. I., Bolini, H. M. A., San’ Ana, A. S., & Cristianini. (2010). High pressure processing and pulsed electric fields: Potential use in probiotic dairy foods processing. Trends in Food Science and Technology, 21, 483-493. Dalgleish, D. G., & Corredig, M. (2012). The structure of the casein micelle of milk and its changes during processing. Annual Review of Food Science and Technology, 3, 449-467. Di Giacomo, G., Taglieri, L., & Carozza, P. (2009). Pasteurization and sterilization of milk by supercritical carbon dioxide treatment. In: Proceeding of ISSF 2009 New Trends in Supercritical Fluids: Energy, Materials, Processing, Bordeaux (France). FAO, Food and Agriculture Organization of the United Nations. (2016). Dairy production and products. http://www.fao.org/agriculture/dairy-gateway/milk-andmilk-products/en/#.VuL1rLnSnrd/ (Accessed 13 May 16). Ferrão, L. L., Silva, E. B., Silva, H. L. A., Silva, R., Mollakhalili, N., Granato, D., et al. (2016). Strategies to develop healthier processed cheeses: Reduction of sodium and fat contents and use of prebiotics. Food Research International, 86, 93-102. Gulsun, G. A. (2015). Non-thermal processing of milk and milk products for microbial safety. In B. H. Ozer, & G. Akdemir-Evrendilek (Eds.), Dairy microbiology and biochemistry, recent developments (pp. 232-344). New York, U.S.A: Taylor & Francis. Guneser, O., & Yuceer, Y. K. (2012). Effect of ultraviolet light on water- and fatsoluble vitamins in cow and goat milk. Journal of Dairy Science, 95(11), 6230-6241. 24 Hongmei, L., Zhong, K., Liao, X., & Hu, X. (2014). Inactivation of microorganisms naturally present in raw bovine milk by high-pressure carbon dioxide. International Journal of Food Science and Technology, 49, 696-702. Hu, W., Zhou, L., Xu, Z., Zhang, Y., & Liao, X. (2013). Enzyme Inactivation in food processing using high pressure carbon dioxide technology. Critical Reviews in Food Science and Nutrition, 53, 145-161. Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K.-H., Knorr, D., et al. (2016). Opinion on the use of ohmic heating for the treatment of foods. Trends in Food Science and Technology, 35, 84-97. Jakobsen, M., Jensen, P. N., & Risbo, J. (2009). Assessment of carbon dioxide solubility coefficients for semihard cheeses: the effect of temperature and fat content. European Food Research and Technology, 229, 287. Jermann, C., Koutchma, T., Margas, E., Leadley, C., & Ros-Polski, V. (2015). Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Science & Emerging Technologies, 31, 14-27. Jimenez-Sanchez, C., Lozano-Sanchez, A. S.-G., & Fernandez-Gutierrez, A. (2017). Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Critical Reviews in Food Science and Nutrition, 57, 501-523. Khosravi-Darani, K. (2010). Research activities on supercritical fluid science in food biotechnology. Critical Reviews in Food Science and Nutrition, 50, 479-488. Kobayashi, F. (2007). The durability of the bactericidal effect of supercritical CO2 bubbling of E. Coli bacteria. Bulletin of the School of Agriculture Meiji University (Japan), 57(1), 13-17. Kobayashi, F., Odake, S., Miura, T., & Akuzawa, R. (2016). Pasteurization and changes of casein and free amino acid contents of bovine milk by low-pressure CO2 microbubble. LWT - Food Science and Technology, 71, 221-226. Krolczyk, J. B., Dawidziuk, T., Janiszewska-Turak, E., & Sołowiej, B. (2016). Use of whey and whey preparations in the food industry e a review. Polish Journal of Food and Nutrition Sciences, 66, 157-165. Kulkarni, N. G., Kar, J. R., & Singhal, R. S. (2017). Extraction of flaxseed oil: A comparative study of three-phase partitioning and supercritical carbon dioxide using response surface methodology. Food and Bioprocess Technology, 10, 940-948. Liu, Y., Chen, D., & Wang, S. (2013). Effect of sub- and super-critical CO2 pretreatment on conformation and catalytic properties evaluation of two commercial enzymes of CALB and Lipase PS. Journal of Chemical Technology and Biotechnology, 88, 1750-1756. 25 Lücking, G., Stoeckel, M., Atamer, Z., Hinrichs, J., & Ehling-Schulz, M. (2013). Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage. International Journal of Food Microbiology, 166, 270-279. Macías, S., Castro, N., Argüello, A., & Jimenez Flores, R. (2014). Supercritical fluid extraction application on dairy products and by-products. In J. Osbone (Ed.), Handbook on supercritical fluids (pp. 281-300). New York: Nova Science Publishers. Marszałek, K., Ska˛pska, S., Wozniak, L., & Sokołowska, B. (2015). Application of supercritical carbon dioxide for the preservation of strawberry juice: Microbial and physicochemical quality, enzymatic activity and the degradation kinetics of anthocyanins during storage. Innovative Food Science and Emerging Technologies, 32, 101-109. Maubois, J. L. (2011). Liquid milk products: Membrane processed liquid milk. In J. W. Fuquay, P. F. Fox, & P. L. H. McSweeney (Eds.), Encyclopedia of dairy sciences (pp. 307-309).San Diego, U.S.A: Academic Press. McAuley, C. M., Singh, T. K., Haro-Maza, J. F., Williams, R., & Buckow, R. (2016). Microbiological and physicochemical stability of raw, pasteurised or pulsed electric field-treated milk. Innovative Food Science and Emerging Technologies, 38, 365-373. Miller, B. M., Sauer, A., & Moraru, C. I. (2012). Inactivation of Escherichia coli in milk and concentrated milk using pulsed-light treatment. Journal of Dairy Science, 95(10), 5597-5603. Mir, S. A., Shah, M., & Mir, M. M. (2016). Understanding the role of plasma technology in food industry. Food Bioprocess Technology, 9, 734-750. Moraes, M. N., Zabot, G. L., & Meireles, M. A. A. (2015). Extraction of tocotrienols from annatto seeds by a pseudo continuously operated SFE process integrated with low-pressure solvent extraction for bixin production. The Journal of Supercritical Fluids, 96, 262-271. NIST (National Institute of Standards and Technology). (2005). NIST chemistry WebBook. NIST Standard Reference Database Number 69, Gaithersburg MD, 20899 http://webbook.nist.gov (Accessed 12 March 2017). North America Milk Market. (2016). Scenario, industry analysis, size, share, growth, trends, and forecast, 2013-2019. http://www.transparencymarketresearch.com/ north-america-milk-market.html/ (Accessed 13 March 2016). Odriozola-Serrano, I., Aguilo-Aguayo, I., Soliva-Fortuny, I., & Martín-Belloso, O. (2013). Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends in Food Science and Technology, 29, 98-107. Oliveira, R. B. A., Magalho, L. P., Nascimento, J. S., Costa, L. E. O., Portela, J. B., Cruz, A. G., et al. (2016). Processed cheese contamination by spore-forming bacteria: A 26 review of sources, routes, fate during processing and control. Trends in Food Science and Technology, 57(Part A), 11-19. Osorio-Tobon, J. F., Silva, E. K., & Meireles, M. A. A. (2016). Nanoencapsulation of flavors and aromas by emerging technologies A2-Grumezescu, Alexandru Mihai. In Encapsulations (pp. 89-126). Academic Press. Park, H. S., Choi, H. J., Kim, M.-D., & Kim, K. H. (2013). Addition of ethanol to supercritical carbon dioxide enhances the inactivation of bacterial spores in the biofilm of Bacillus cereus. International Journal of Food Microbiology, 166, 207-212. Paul, I. D., Jayakumar, C., & Mishra, H. N. (2016). Optimization of process parameters for supercritical fluid extraction of cholesterol from whole milk powder using ethanol as co-solvent. Journal of the Science of Food and Agriculture, 96, 4885-4895. Pereira, P. C. (2014). Milk nutritional composition and its role in human health. Nutrition, 30, 619-627. Perrut, M. (2012). Sterilization and virus inactivation by supercritical fluids: a review. The Journal of Supercritical Fluids, 66, 359-371. Pore˛bska, I., Sokołowska, B., Ska˛pska, S., & Rzoska, S. J. (2017). Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control, 73(Part A), 24-30. Porto, C. D., Decorti, D., & Tubaro, F. (2010). Effects of continuous dense-phase CO2 system on antioxidant capacity and volatile compounds of apple juice. International Journal of Food Science and Technology, 45, 1821-1827. Prado, G. H. C., Khan, M., Saldaña, M. D. A., & Temelli, F. (2012). Enzymatic hydrolysis of conjugated linoleic acid-enriched anhydrous milk fat in supercritical carbon dioxide. Journal of Supercritical Fluids, 66, 198-206. Ruas-Madiedo, P., Bada-Gancedo, J. C., Fernandez-Garcia, E., Llano, D. G., & Reyes-Gavilan, C. G. (1996). Preservation of the microbiological and biochemical quality of raw milk by carbon dioxide addition: A pilot-scale study. Journal of Food Protection, 59, 502-508. Sanchez-Macías, D., Laubscher, A., Castro, N., Argüello, A., & Jimenez-Flores, R. (2013). Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese. Journal of Dairy Science, 96, 132-1334. Sanli, D., Bozbag, S. E., & Erkey, C. (2012). Synthesis of nanostructured materials using supercritical CO 2: Part I. Physical transformations. Journal of Materials Science, 47, 2995-3025. Santos, D. T., & Meireles, M. A. A. (2013). Micronization and encapsulation of functional pigments using supercritical carbon dioxide. Journal of Food Process Engineering, 36, 36-49. 27 Sikin, A. M., Walkling-Ribeiro, M., & Rizvi, S. S. H. (2016). Synergistic effect of supercritical carbon dioxide and peracetic acid on microbial inactivation in shredded Mozzarella-type cheese and its storage stability at ambient temperature. Food Control, 70, 174-182. Silva, E. K., & Meireles, M. A. A. (2014). Encapsulation of food compounds using supercritical technologies: Applications of supercritical carbon dioxide as an antisolvent. Food and Public Health, 4, 247-258. Siqueira, A. M. O., Machado, E. C. L., & Stamford, T. L. M. (2013). Dairy beverage containing cheese whey and fruit. Ciência Rural, 43, 1693-1700. Spence, A. J., Jimenez-Flores, R., Qian, M., & Goddik, R. (2009). Phospholipid enrichment in sweet and whey cream buttermilk powders using supercritical fluid extraction. Journal of Dairy Science, 92, 2373-2381. Spilimbergo, S., Komes, D., Vojvodic, A., Levaj, B., & Ferrentino, G. (2013). High pressure carbon dioxide pasteurization of fresh-cut carrot. The Journal of Supercritical Fluids, 79, 92-100. Spilimbergo, S., Mantoan, D., Quaranta, A., & Dealla Mea, G. (2009). Real-time monitoring of cell membrane modification during supercritical CO2 pasteurization. Journal Supercritical Fluids, 48, 93-97. Stoeckel, M., Lidolt, M., Stressler, T., Fischer, L., Wenning, M., & Hinrichs, J. (2016). Heat stability of indigenous milk plasmin and proteases from pseudomonas: A challenge in the production of ultra-high temperature milk products. International Dairy Journal, 61, 250-261. Tetra Pak. (2016). Dairy index issue 7. A global balancing act: Dairy supply & demand, 30 September 2014 http://www.tetrapak.com/br/about/dairy-index/ (Accessed 13 May 16). Tisi, A. D. (2004). Effects of dense phase CO2 on enzyme activity and casein proteins in raw milk. A thesis presented to the faculty of the graduate School of Cornell Universit. In Partial fulfillment of the requirements for the degree of Masters of Science. Ithaca, N.Y: Cornell University. Truong, T., Palmer, M., Bansal, N., & Bhandari, B. (2017). Effect of solubilised carbon dioxide at low partial pressure on crystallisation behaviour, microstructure and texture of anhydrous milk fat. Food Research International, 95, 82-90. Tzia, C., & Liadakis, G. (2003). Extraction optimization in food engineering. Boca Ranton: CRC Press, 456 pp. Valsasina, L., Pizzol, M., Smetana, S., Georget, E., Mathys, A., & Heinz, V. (2015). Environmental assessment of ultra-high pressure homogenisation for milk and fresh cheese production. EXPO 2015 conference, LCA for “Feeding the planet and energy for life”, Stresa, Italy. 28 Vigano, J., Machado, A. P. F., & Martínez, J. (2015). Sub- and supercritical fluid technology applied to food waste processing. The Journal of Supercritical Fluids, 96, 272-286. Werner, B. G., & Hotchkiss, J. H. (2006). Continuous flow nonthermal CO2 processing: The lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk. Journal of Dairy Science, 89, 872-881. Yang, B., Shi, Y., Xia, X., Xi, M.,Wang, X., Ji, B., et al. (2012). Inactivation of foodborne pathogens in raw milk using high hydrostatic pressure. Food Control, 28, 273-278. Yao, Y., Zhao, G., Xiang, J., Zou, X., Jin, Q., & Wang, X. (2016). Lipid composition and structural characteristics of bovine, caprine and human milk fat globules. International Dairy Journal, 56, 64-73. Yee, J. L., Khalil, H., & Jimenez-Flores, R. (2007). Flavor partition and fat reduction in cheese by supercritical fluid extraction: Processing variables. Dairy Science and Technology, 87, 269-285. Yee, J. L., Walker, J., Khalil, H., & Jimenez-Flores, R. (2008). Effect of variety and maturation of cheese on supercritical fluid extraction efficiency. Journal of Agricultural and Food Chemistry, 56, 5153, 5137. Yoon, Y., Lee, S., & Choi, K.-H. (2016). Microbial benefits and risks of raw milk cheese. Food Control, 53, 201-2015. Yver, A. L., Bonnaillie, L. M., Yee, W., McAloon, A., & Tomasula, P. M. (2012). Fractionation of whey protein isolate with supercritical carbon dioxide and process modeling and cost estimation. International Journal of Molecular Science, 13, 240-259. Zabot, G. L., Moraes, M. N., Carvalho, P. I. N., & Meireles, M. A. A. (2015). New proposal for extracting rosemary compounds: Process intensification and economic evaluation. Industrial Crops and Products, 77, 758-771. Zhong, Q., & Jin, M. (2008). Enhanced functionalities of whey proteins treated with supercritical carbon dioxide. Journal of Dairy Science, 91, 490-499. Actis-Gorettaa, L, Ottaviani, J. I., Keenb, C. L. & Fraga, C. G. (2003). Inhibition of angiotensin converting enzyme (ACE) activity by £avan-3-ols and procyanidins. FEBS Letters, 555, 597-600. Addeo, F., Chianese, L., Salzano, A., Sacchi, R., Cappuccio, U., Ferranti, P., Malorni, A. (1992). A characterization of the 12% trichloroacetic acid-insoluble oligopeptideos of Parmigiano-reggiano cheese. Journal of Dairy Research, 59, 401- 411. OAC (Association of Official Analytical Chemistry), 2000. Official Methods of Analysis, 17th ed, Washington, D.C. USA. Apostolidis, E., Kwon, Y.I., Shetty, K. (2007). Inhibitory potential of herb, fruit, and fungalenriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Science and Emerging Technologies, 8, 46-54. Bamforth, C. W. & Ward, R. E. (2014). The Oxford Handbook of Food Fermentations. Oxford University Press, 805 p. Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25–30. Boulton, Roger B.,Singleton, Vernon L., Bisson, Linda F., Kunkee, & Ralph E. (1999). Principles and Practices of Winemaking. Springer. Burdock G. A. (2001). Fenaroli's Handbook of Flavor Ingredients, Fourth. CRC Press, 1864p. Carunchiawhetstine, M. E., Croissant, A. E. & Drake, M. A. (2005). Characterization of dried whey protein concentrate and isolate flavour. Journal of Dairy Science, 88, 3826–3839. 42 Ceni, G., Silva, M. F., Valério, C. Jr., Cansian, R. L. Oliveira, J. V., Rosa, C. D., & Mazutti, M. A. (2016). Continuous inactivation of alkaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent. Journal of CO2 Utilization, 13, 24–28. Chen, J., Zhang, J., Song, L., Jiang, Y., Wu, J., & Hu, X. S. (2010). Changes in microorganism, enzyme, aroma of Hami melon (Cucumis melo L.) juice treated with dense chase carbon dioxide and stored at 4 °C. Innovative Food Science and Emerging Technologies, 11, 623–629. Coelho E, Rocha SM, Barros AS, Delgadillo I, Coimbra MA. (2007). Screening of variety-and pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile. Analytica Chimica Acta, 597, 257-264. Cushman, D.W., & Cheung, H. S. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20, 1637–1648. Damar,S., Balaban, M. O. & Sims, A. C. (2009). Continuous dense-phase CO2 processing of a coconut water beverage. International Journal of Food Science and Technology, 44, 666–673. Del Pozo-Insfran, D., Balaban, M .O & Talcott, S. T. (2006). Enhancing the retention of phytochemicals and organoleptic attributes in muscadine grape juice through a combined approach between dense phase CO2 processing and copigmentation. Journal of Agricultural and Food Chemistry, 54, 6705-6712. Del Pozo-Insfran, D., Balaban, M .O & Talcott, S. T. (2006). Microbial stability, phytochemical retention, and organoleptic attributes of dense phase co2 processed muscadine grape juice. Journal of Agricultural and Food Chemistry, 54, 5468-5473. Fabroni, S., Amenta, M., Timpanaro, N., & Rapisarda, P. (2010). Supercritical carbon dioxide-treated blood orange juice as a new product in the fresh fruit juice Market. Innovative Food Science and Emerging Technologies, 11, 477–484. Felicio, T.L., Esmerino, E.A., Vidal, V.A.S., Cappato, L.P., Garcia, R.K.A., Cavalcanti, R.N., Freitas, M.Q., Conte Junior, C.A., Padilha, M.C., Silva, M.C., Raices, R.S.L., Arellano, D.B., Bollini, H.M.A., Pollonio, M.A.R. & A.G. Cruz. (2016). Physico-chemical changes during storage and sensory acceptance of low sodium probiotic Minas cheese added with arginine. Food Chemistry, 196 628–637. Fellows, P. J. (2006). Tecnologia do processamento de alimentos. 2ª ed. Porto Alegre: Editora Artmed. 602p. Flamini, R. (2008). Hyphenated Techniques in Grape and Wine Chemistry. John Wiley Professio. 362p. Garcia-Gonzalez, L., Geeraerdc, A. H., Spilimbergod, S., Elsta, K., Van Ginnekena, L., Debevereb, J., Van Impee, J.F., & Devlieghere, F. (2007). High pressure carbon dioxide 43 inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117, 1–28. Kalua C. M. & Boss P. K. (2010). Comparison of major volatile compounds from riesling and cabernet sauvignon grapes (vitis vinifera l.) from fruitset to harvest. Australian Journal of Grape and Wine Research, 16, 337–348. Klepotek, Y., Otto, K. & Böhm, V. (2005). Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins and antioxidant capacity. Journal of Agricultural and Food Chemistry, 53, 5640-5646. Kostrubsky V. E., Strom, S. C., Wood, S. G., Wrighton, S. A., Sinclair, P. R., & Sinclair, J. F. (1995). Ethanol and isopentanol increase CYP3A and CYP2E in primary cultures of human hepatocytes. Archives Biochemistry Biophysics, 322, 2. 516-520. Lamsen, M. L. L. & Zhong, Q. (2011). Impacts of supercritical extraction on gc/ms profiles of volatiles in whey protein isolate sampled by solid-phase microextraction. Journal of Food Processing and Preservation, 35, 869–883. Lee, B., Lin, P., Cha, H. S., Luo, J. & Chen, F. (2016). Characterization of volatile compounds in Cowart muscadine grape (Vitis rotundifolia) during ipening stages using GC-MS combined with principal component analysis. Food Science and Biotechnology, 25, 1319-1326. Lin, L., Lv, S., & Li, B. (2012). Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chemistry, 131, 225– 230. Noguerol-Pato R, González-Álvarez M, González-Barreiro C, Cancho-Grande B., & Simal-Gándara J. (2013). Evolution of the aromatic profile in Garnacha tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chemistry, 139, 1052-1061. Atkins, P. W. & Paula, J. (2006). Physikalische Chemie, 4. Auflage, Wiley-VCH, Weinheim, 1118. Yuk, H. G., Sampedro, F., Fan, X. & Geveke, D J. (2014). Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas–liquid metal contactor. Journal of Food Processing and Preservation, 38, 630–638. Ramírez-Rodrigues, M. M., Plaza, L. M., Azeredo A., Balaban, O. M & Marshall, M. R. (2012). Phytochemical, sensory attributes and aroma stability of dense phase carbon dioxide processed Hibiscus sabdariffa beverage during storage. Food Chemistry, 134, 1425–1431. Ramchandran, L., & Shah, P. N. (2010). Characterization of functional, biochemical and textural properties of synbiotic low-fat yogurts during refrigerated storage. LWT - Food Science and Technology, 43, 819–827. Rai, A. K., Sanjukta, S., & Jeyaram, K. (2010). Production of Angiotensin I Converting Enzyme Inhibitory (ACE-I) Peptides during Milk Fermentation and Their Role in Reducing Hypertension. Critical Reviews in Food Science and Nutrition, 1549-7852. Ribéreau-Gayon P., Glories Y., Maujean A. & Dubourdieu D., (1998). Traité d’oenologie 2. Chimie du vin. stabilisation et treatments. Dunod, Paris,137. Sabokbar N., & Khodaiyan, F. (2016). Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains. International Journal of Food Science and Technology, 53, 739–747. Singleton VL, Rossi JAJ (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158. Smacchi, E. & Gobbetti, M. (1998). Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, Pseudomonas fluoresces ATCC 948 and the angiotensin I converting enzyme. Enzyme and Microbial Technology, 22, 687-698. Spilimbergo, S. & Ciola, L. (2010). Supercritical CO2 and N2O pasteurisation of peach and kiwi juice. International Journal of Food Science and Technology, 45, 1619–1625. Susmita, D. A. S. & Bratati, D. E. (2013). Valuation of Angiotensin I-Converting Enzyme (ACE) inhibitory potential of some underutilized indigenous fruits of West Bengal using an in vitro model. Fruits, 68, 499- 506. Verzera, A, Ziino, M., Scacco, A., Lanza, C.M., Mazzaglia, A., Romeo, V., Condurso, C. (2008). Volatile compound and sensory analysis for the characterization of an Italian white wine from “Inzolia” grapes. Food Analytical Methods, 1, 144-151. Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Cappato, L. P., Guimaraes, J. T., Alvarenga, V. O., Esmerino, E. A., Portela, J. B., Sant’ Ana, A. S., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Meireles, M. A. A. & Cruz A.G. (2017). Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects, Trends in Food Science & Technology, 64 94-101. APHA. Compendium of Methods of Microbiological Examination of Foods. 5th ed. Salfinger, Y and Tortorello, ML editors, American Public Health Association, Washington DC; 2015. Cappelletti, M., Ferrentino, G., Endrizzi, I., Aprea, E., Betta, E., Corollaro, M. L., Charles, M., Gasperi, F. & Spilimbergo, S. (2015). High Pressure Carbon Dioxide pasteurization of coconut water: A sport drink with high nutritional and sensory quality. Journal of Food Engineering, 145, 73–81. Ceni, G., Silva, M. F., Valério, C. Jr., Cansian, R. L. Oliveira, J. V., Rosa, C. D. & Mazutti, M. A. (2016). Continuous inactivation of alcaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent. Journal of CO2 Utilization, 13, 24–28. Chen, J., Zhang, J., Song, L., Jiang, Y., Wu, J. & Hu, X. S. (2010). Changes in microorganism, enzyme, aroma of Hami melon (Cucumis melo L.) juice treated with dense chase carbon dioxide and stored at 4 °C. Innovative Food Science and Emerging Technologies, 11, 623–629. Cruz, A.G., Cadena, R. S. Faria, J. A. F., Oliveira, C. A. F., Cavalcanti, R. N., Bona, E. Bolini, H. M. A. & Silva, M. A. A. P. (2011). Consumer acceptability and purchase intent of probiotic yoghurt with added glucose oxidase using sensometrics, artificial neural networks and logistic regression. International Journal of Dairy Technology, 64, 4, 549-556. Cruz, A. G., Cavalcanti, R. N., Guerreiro, L. M. R., Sant’Ana, A. S., Nogueira, L. C., Oliveira, C. A. F., Deliza, R., Cunha R. L., Faria, ., J. A. F. & Bolini, H. M. A. (2013). Developing a prebiotic yogurt: Rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. Journal of Food Engineering, 114 323-330. Hongmei, L., Zhong, K. Liao, X. & Hu, X. (2014). Inactivation of microorganisms naturally present in raw bovine milk by high-pressure carbon dioxide. International Journal of Food Science and Technology, 49, 696–702. 63 Kobayashi, F., Odake, S., Miura, T. & Akuzawa, R. (2016). Pasteurization and changes of casein and free amino acid contents of bovine milk by low-pressure CO2 microbubble. LWT - Food Science and Technology, 71, 221-226. Kubo, M. T. K., Augusto, P. E. D. & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Research International, 51,170–179. Liu, Y., Hu, X. S. & Zhao, X. Y. (2012). Combined effect of high pressure carbon dioxide and mild heat treatment on overall quality parameters of watermelon juice. Innovative Food Science and Emerging Technologies, 13, 112–119. Macfie, H., Bratchell, N., Greenhoff K. & Vallis, L. V. (1989). Designs to balance the effects of order of presentation and fi rst order carryover effects in hall tests. Journal of Sensory Studies, 4, 2, 129-148. Marszałek, K., Skąpska, S., Woźniak, L. & Sokołowska, B. (2015). Application of supercritical carbon dioxide for the preservation of strawberry juice: Microbial and physicochemical quality, enzymatic activity and the degradation kinetics of anthocyanins during storage. Innovative Food Science and Emerging Technologies, 32, 101–109. Patel, S. Functional food relevance of whey protein: A review of recent findings and scopes ahead. (2015). Journal of Functional Foods, 19, 308–319. Perestrelo, R., Lu, Y., Santos, S. A. O., Silvestre, A. J. D., Neto, C. P., Câmara, J. S. & Rocha, S. M. (2012). Phenolic profile of Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC–DAD–ESI-MSn: Novel phenolic compounds in Vitis vinifera L. grape. Food Chemistry, 135 94-104. Perrut, M. (2012). Sterilization and virus inactivation by supercritical fluids: a review. The Journal of Supercritical Fluids, 66, 359– 371. Pozo-Insfran, D. D., Balaban, M .O & Talcott, S. T. (2006). Microbial stability, phytochemical retention, and organoleptic attributes of dense phase CO2 processed muscadine grape juice. Journal of Agricultural and Food Chemistry, 54, 5468-5473. Ramírez-Rodrigues, M. M., Plaza, L. M., Azeredo A., Balaban, O. M & Marshall, M. R. (2012). Phytochemical, sensory attributes and aroma stability of dense phase carbon dioxide processed Hibiscus sabdariffa beverage during storage. Food Chemistry, 134, 1425–1431. Ruggiero, A., Vitalini, S., Burlini, N., Bernasconi, S. & Iriti, M. (2013). Phytosterols in grapes and wine, and effects of agrochemicals on their levels. Food Chemistry, 141 3473-3479. Sinha, R., Radha, C., Prakash, J. & Kaul, P. (2007). Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation. Food Chemistry, 101, 1484-1491. 64 Werner, B. G. & Hotchkiss, J. H. (2006). Continuous flow nonthermal CO2 processing: the lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk. Journal Dairy Science, 89, 872-881. Xu, Z., Zhang, L., Wang, Y., Bi, X., Buckow, R. & Liao, X. (2011). Effects of high pressure CO2 treatments on microflora, enzymes and some quality attributes of apple juice. Journal of Food Engineering, 104, 577–584. Zhong, Q. & Jin, M. (2008). Enhanced functionalities of whey proteins treated with supercritical carbon dioxide. Journal Dairy Science, 91,490–499. Zhou, L. Y., Wang, Y. Y., Hu, X. S., Wu, J. H. & Liao, X. J. (2009). Effect of high pressure carbon dioxide on the quality of carrot juice. Innovative Food Science & Emerging Technologies, 10(3), 321–327. Zou, H., Lin, T., Bi, X., Zhao, L., Wang, Y. & Liao, X. (2016). comparison of high hydrostatic pressure, high-pressure carbon dioxide and high-temperature short-time processing on quality of mulberry juice. Food Bioprocess Technology, 9, 217–231.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5988/2017%20-%20Gabriela%20Vieira%20do%20Amaral.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/15278/2017%20-%20Gabriela%20Vieira%20do%20Amaral.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/21580/2017%20-%20Gabriela%20Vieira%20do%20Amaral.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/27964/2017%20-%20Gabriela%20Vieira%20do%20Amaral.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/34580/2017%20-%20Gabriela%20Vieira%20do%20Amaral.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/40968/2017%20-%20Gabriela%20Vieira%20do%20Amaral.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/47324/2017%20-%20Gabriela%20Vieira%20do%20Amaral.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/53746/2017%20-%20Gabriela%20Vieira%20do%20Amaral.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2208
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2018-03-07T15:22:05Z No. of bitstreams: 1 2017 - Gabriela Vieira do Amaral.pdf: 1320069 bytes, checksum: bc0ab4f1fe7a912edee70092297020a1 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2018-03-07T15:22:12Z (GMT). No. of bitstreams: 1 2017 - Gabriela Vieira do Amaral.pdf: 1320069 bytes, checksum: bc0ab4f1fe7a912edee70092297020a1 (MD5) Previous issue date: 2017-07-17eng
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Gabriela Vieira do Amaral.pdf2017 - Gabriela Vieira do Amaral1.29 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.