Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11477
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Barbosa, Ahmad El Ghazzaqui | |
dc.date.accessioned | 2023-11-19T22:15:09Z | - |
dc.date.available | 2023-11-19T22:15:09Z | - |
dc.date.issued | 2020-07-09 | |
dc.identifier.citation | BARBOSA, Ahmad El Ghazzaqui. Encapsulamento do β-Caroteno presente no óleo de Sacha inchi pela coacervação complexa : formação, caracterização e liberação. 2020. 80 f. Dissertação( Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/11477 | - |
dc.description.abstract | Sacha inchi oil (OSI) (Plukenetia volubilis L) is rich in fatty acids and carotenoids such as β-carotene (β-C). β-C is a precursor of vitamin A and has antioxidant properties. Such compounds are sensitive to external factors (heat, oxidation and alkalinity) and under such conditions may have their biological potential reduced. Microencapsulation is an alternative in protecting sacha inchi oil and its components. Among microencapsulation methods, complex coacervation has advantages such as low concentration of wall materials, high encapsulation efficiency, and a variety of biopolymers that can be used as wall materials. Complex coacervation consists of electrostatic interactions between two or more polymeric solutions, which have opposite charges. It consists of three basic steps: emulsification, coacervation and cross-linking. Biopolymers such as proteins and polysaccharides are the most used as wall materials in microencapsulation by complex coacervation, these are natural and have functional properties. The objective of this work was to encapsulate the β-C present in the OSI through the complex coacervation technique using whey protein (WPI) and carboxymethylcellulose (CMC) as wall material. The WPI and CMC system proved to be efficient as a wall material, with high β-C encapsulation efficiency (96.21%). The gastrointestinal simulation system indicated that the release of β-C occurred mainly in the intestine (92%) and a relatively smaller portion in the gastric phase (11-16%). Bioaccessibility demonstrated that 33.14% of β-C is available for absorption, while the stability of microcapsules was 82.73%. The simulation in oily foods occurred by Fickian diffusion according to the Rigger-Peppas model. The results achieved suggest the effectiveness of the wall materials used to encapsulate active ingredients | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Biopolímeros | por |
dc.subject | isolado proteico do soro | por |
dc.subject | interação eletrostática | por |
dc.subject | eficiência de encapsulamento | por |
dc.subject | carotenoides | por |
dc.subject | biopolymers | eng |
dc.subject | whey protein isolate | eng |
dc.subject | electrostatic interaction | eng |
dc.subject | encapsulation efficiency | eng |
dc.subject | carotenoids | eng |
dc.title | Encapsulamento do β-Caroteno presente no óleo de Sacha inchi pela coacervação complexa : formação, caracterização e liberação | por |
dc.title.alternative | Encapsulation of β-Carotene present in Sacha inchi oil by complex coacervation: formation, characterization and release | eng |
dc.type | Dissertação | por |
dc.contributor.advisor1 | Garcia Rojas, Edwin Elard | |
dc.contributor.advisor1ID | 014.548.996.54 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0003-3388-8424 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1205756654416987 | por |
dc.contributor.referee1 | Garcia Rojas, Edwin Elard | |
dc.contributor.referee1ID | 014.548.996.54 | por |
dc.contributor.referee1ID | https://orcid.org/0000-0003-3388-8424 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/1205756654416987 | por |
dc.contributor.referee2 | Ramos, Andresa Viana | |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/6521360661286527 | por |
dc.contributor.referee3 | Bastos, Lívia Pinto Heckert | |
dc.contributor.referee3ID | https://orcid.org/0000-0001-5760-3820 | por |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/1578379346432268 | por |
dc.creator.ID | 136.639.057-13 | por |
dc.creator.Lattes | http://lattes.cnpq.br/3508041844301692 | por |
dc.description.resumo | O óleo sacha inchi (OSI) (Plukenetia volubilis L) é rico em ácidos graxos e carotenoides como o β-caroteno (β-C). O β-C é percussor da vitamina A e possui propriedades antioxidantes. Tais compostos apresentam sensibilidade a fatores externos (calor, oxidação e alcalinidade) e sob tais circunstâncias podem ter seu potencial biológico reduzido. A microencapsulação é uma alternativa na proteção do óleo sacha inchi e seus componentes. Dentre os métodos de microencapsulação, a coacervação complexa apresenta vantagens como baixa concentração de materiais de parede, elevada eficiência de encapsulação, e uma variedade de biopolímeros que podem ser utilizados como materiais de parede. A coacervação complexa consiste na interação eletrostáticas entre duas ou mais soluções poliméricas, que possuem cargas opostas. Consiste em três etapas básicas: emulsificação, coacervação e reticulação. Os biopolímeros como proteínas e polissacarídeos são os mais utilizados como materiais de parede na microencapsulação por coacervação complexa, estes são naturais e apresentam propriedades funcionais. O objetivo deste trabalho foi encapsular o β-C presente no OSI através da técnica de coacervação complexa utilizando como material de parede o isolado proteico do soro (IPS) e carboximetilcelulose (CMC). O sistema IPS e CMC mostrou-se eficiente como material de parede, apresentaram alta eficiência de encapsulação do β-C (96.21%). O sistema de simulação gastrointestinal indicou que a liberação de β-C ocorreu principalmente no intestino (92%) e uma parcela relativamente menor na fase gástrica (11-16%). A bioacessibilidade demonstrou que 33,14% do β-C está disponível para absorção, enquanto a estabilidade das microcapsulas foi de 82,73%. A simulação em alimentos oleosos ocorreu por difusão Fickian de acordo com modelo Rigger-Peppas. Os resultados alcançados sugerem a eficácia dos materiais parede utilizados para encapsular ingredientes ativos | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | por |
dc.relation.references | Bagheri, L., Madadlou, A., Yarmand, M., & Mousavi, M. E. (2013). Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Research International, 51(2), 866–871. https://doi.org/10.1016/j.foodres.2013.01.058 Bao, C., Jiang, P., Chai, J., Jiang, Y., Li, D., Bao, W., … Li, Y. (2019). The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International, 120(February), 130–140. https://doi.org/10.1016/j.foodres.2019.02.024 Barbucci, R., Magnani, A., & Consumi, M. (2000). Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules, 33(20), 7475–7480. https://doi.org/10.1021/ma0007029 Barkhordari, S., Yadollahi, M., & Namazi, H. (2014). PH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. Journal of Polymer Research, 21(6). https://doi.org/10.1007/s10965-014-0454-z Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta - Bioenergetics, 1767(9), 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004 Bastos, P. H. L., Vicente, J., Santos, C. dos C. H., Carvalho, M. G. de, & Garcia-Rojas, E. E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102(December 2019). https://doi.org/10.1016/j.foodhyd.2019.105605 Boiko, Y. A., Kravchenko, I. A., Shandra, A. A., & Boiko, I. A. (2017). Extraction, identification and anti-inflammatory activity of carotenoids out of Capsicum Anuum L. Journal of HerbMed Pharmacology, 6(1), 10–15. Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature 48 Protocols, 14(4), 991–1014. https://doi.org/10.1038/s41596-018-0119-1 Chen, H., & Zhong, Q. (2015). Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend. Food Chemistry, 174, 630–636. https://doi.org/10.1016/j.foodchem.2014.11.116 Clugston, R. D. (2019). BBA - Molecular and Cell Biology of Lipids Carotenoids and fatty liver disease : Current knowledge and research gaps ☆. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, (November). Commission Regulation 10/ 2011 EU, (10/2011/EC). (2011). COMMISSION REGULATION (EU) No 10/2011 of 14 January 2011. Retrieved from https://www.fsai.ie/uploadedFiles/Reg10_2011.pdf da Silva, M. M., Paese, K., Guterres, S. S., Pohlmann, A. R., Rutz, J. K., Flores Cantillano, R. F., … Rios, A. de O. (2017). Thermal and ultraviolet–visible light stability kinetics of co-nanoencapsulated carotenoids. Food and Bioproducts Processing, 105, 86–94. https://doi.org/10.1016/j.fbp.2017.05.004 Dai, Q., Zhu, X., Yu, J., Karangwa, E., Xia, S., Zhang, X., & Jia, C. (2016). Mechanism of Formation and Stabilization of Nanoparticles Produced by Heating Electrostatic Complexes of WPI-Dextran Conjugate and Chondroitin Sulfate. Journal of Agricultural and Food Chemistry, 64(27), 5539–5548. https://doi.org/10.1021/acs.jafc.6b01213 Diarrassouba, F., Remondetto, G., Garrait, G., Alvarez, P., Beyssac, E., & Subirade, M. (2015). Self-assembly of β-lactoglobulin and egg white lysozyme as a potential carrier for nutraceuticals. Food Chemistry, 173, 203–209. https://doi.org/10.1016/j.foodchem.2014.10.009 Donhowe, E. G., & Kong, F. (2014). Beta-carotene: Digestion, Microencapsulation, and In Vitro Bioavailability. Food and Bioprocess Technology, 7(2), 338–354. https://doi.org/10.1007/s11947-013-1244-z 49 Eratte, D., Wang, B., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2014). Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food and Function, 5(11), 2743–2750. https://doi.org/10.1039/c4fo00296b Fan, Y., Yi, J., Zhang, Y., Wen, Z., & Zhao, L. (2017). Physicochemical stability and in vitro bioaccessibility of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. Food Hydrocolloids, 63(2017), 256–264. https://doi.org/10.1016/j.foodhyd.2016.09.008 Gammone, M., Riccioni, G., & Nicolantonio, D. (2014). Carotenoids: potential allies of cardiovascular health? Food and Nutrition Research. Retrieved from http://www.world-heart-federation.org/cardiovascular-health/cardiovascular-disease-risk-factors/%5Cnhttp://www.fpcardiologia.pt/%5Cnhttp://www.heart.org/HEARTORG/Conditions/More/ToolsForYourHeartHealth/Numbers-That-Count-for-a-Healthy-Heart_UCM_305427_Art Gaonkar, A., Vasisht, N., Khare, A. R., & Sobel, R. (2014). Microencapsulation in the food Industry: A Pratical Implementation Guide (1°). San Diego: Academic Press: Elsevier. Guillén, M. D., Ruiz, A., Cabo, N., Chirinos, R., & Pascual, G. (2003). Characterization of sacha inchi (Plukenetia volubilis L.) Oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. JAOCS, Journal of the American Oil Chemists’ Society, 80(8), 755–762. https://doi.org/10.1007/s11746-003-0768-z Hamaker, B., Valles, C., Gilman, R., Hardmeier, R. M., Clark, D., Garcia, H. H., … Lescano, M. (1992). Amino acid and fatty acid profiles ofthe Inca peanut (Plukenetia volubilis L.). Cereal Chem, 6, 461–463. Harnsilawat, T., Pongsawatmanit, R., & McClements, D. J. (2006). Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light 50 scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 20(5), 577–585. https://doi.org/10.1016/j.foodhyd.2005.05.005 Iddir, M., Degerli, C., Dingeo, G., Desmarchelier, C., Schleeh, T., Borel, P., … Bohn, T. (2019). Whey protein isolate modulates beta-carotene bioaccessibility depending on gastro-intestinal digestion conditions. Food Chemistry, 291(April), 157–166. https://doi.org/10.1016/j.foodchem.2019.04.003 Ilyasoglu, H., & El, S. N. (2014). Nanoencapsulation of EPA/DHA with sodium caseinate-gum arabic complex and its usage in the enrichment of fruit juice. LWT - Food Science and Technology, 56(2), 461–468. https://doi.org/10.1016/j.lwt.2013.12.002 Jain, A., Thakur, D., Ghoshal, G., Katare, O. P., & Shivhare, U. S. (2015). Microencapsulation by Complex Coacervation Using Whey Protein Isolates and Gum Acacia : An Approach to Preserve the Functionality and Controlled Release of β -Carotene. Food and Bioprocess Technology, 1–10. https://doi.org/10.1007/s11947-015-1521-0 Javanbakht, S., & Shaabani, A. (2019a). Carboxymethyl cellulose-based oral delivery systems. International Journal of Biological Macromolecules, 133, 21–29. https://doi.org/10.1016/j.ijbiomac.2019.04.079 Javanbakht, S., & Shaabani, A. (2019b). Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. International Journal of Biological Macromolecules, 123, 389–397. https://doi.org/10.1016/j.ijbiomac.2018.11.118 Jones, O. G., Decker, E. A., & Mcclements, D. J. (2010). Comparison of protein-polysaccharide nanoparticle fabrication methods: Impact of biopolymer complexation before or after particle formation. Journal of Colloid and Interface Science, 344(1), 21–29. https://doi.org/10.1016/j.jcis.2009.12.017 Jones, O. G., Decker, E. A., & McClements, D. J. (2009). Formation of biopolymer particles 51 by thermal treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloids, 23(5), 1312–1321. https://doi.org/10.1016/j.foodhyd.2008.11.013 Koupantsis, T., Pavlidou, E., & Paraskevopoulou, A. (2016). Glycerol and tannic acid as applied in the preparation of milk proteins e CMC complex coavervates for flavour encapsulation. Food Hydrocolloids, 57, 62–71. https://doi.org/10.1016/j.foodhyd.2016.01.007 Le Goff, M., Le Ferrec, E., Mayer, C., Mimouni, V., Lagadic-Gossmann, D., Schoefs, B., & Ulmann, L. (2019). Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie, 167, 106–118. https://doi.org/10.1016/j.biochi.2019.09.012 Li, K., Wang, B., Wang, W., Liu, G., Ge, W., Zhang, M., … Kong, M. (2019). Microencapsulation of Lactobacillus casei BNCC 134415 under lyophilization enhances cell viability during cold storage and pasteurization, and in simulated gastrointestinal fluids. Lwt, 116(February), 108521. https://doi.org/10.1016/j.lwt.2019.108521 Li, P., Wen, J., Ma, X., Lin, F., Jiang, Z., & Du, B. (2018). Structural, functional properties and immunomodulatory activity of isolated Inca peanut (Plukenetia volubilis L.) seed albumin fraction. International Journal of Biological Macromolecules, 118, 1931–1941. https://doi.org/10.1016/j.ijbiomac.2018.07.046 Li, S. S., Wang, X. L., An, Q. Da, Xiao, Z. Y., Zhai, S. R., Cui, L., & Li, Z. C. (2020). Upon designing carboxyl methylcellulose and chitosan-derived nanostructured sorbents for efficient removal of Cd(II) and Cr(VI) from water. International Journal of Biological Macromolecules, 143, 640–650. https://doi.org/10.1016/j.ijbiomac.2019.12.053 Lim, W. T., & Nyam, K. L. (2016). Characteristics and controlled release behaviour of microencapsulated kenaf seed oil during in-vitro digestion. Journal of Food Engineering, 182, 26–32. https://doi.org/10.1016/j.jfoodeng.2016.02.022 52 Liu, W., Wang, J., Julian, D., & Zou, L. (2018). Encapsulation of β -carotene-loaded oil droplets in caseinate / alginate microparticles : Enhancement of carotenoid stability and bioaccessibility. Journal of Functional Foods, 40(September 2017), 527–535. https://doi.org/10.1016/j.jff.2017.11.046 Lv, L., Fu, C., Zhang, F., & Wang, S. (2019). Thermally-induced whey protein isolate-daidzein co-assemblies: Protein-based nanocomplexes as an inhibitor of precipitation/crystallization for hydrophobic drug. Food Chemistry, 275(July 2018), 273–281. https://doi.org/10.1016/j.foodchem.2018.09.057 Lv, Y., Yang, F., Li, X., Zhang, X., & Abbas, S. (2014). Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocolloids, 35, 305–314. https://doi.org/10.1016/j.foodhyd.2013.06.003 Malaki Nik, A., Wright, A. J., & Corredig, M. (2011). Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models. Colloids and Surfaces B: Biointerfaces, 83(2), 321–330. https://doi.org/10.1016/j.colsurfb.2010.12.001 McClements, D. J. (2014). Nanoparticle and microparticle based delivery systems. https://doi.org/10.1201/b17280 Peng, C., Zhao, S. Q., Zhang, J., Huang, G. Y., Chen, L. Y., & Zhao, F. Y. (2014). Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry, 165, 560–568. https://doi.org/10.1016/j.foodchem.2014.05.126 Rezaeinia, H., Ghorani, B., Emadzadeh, B., & Tucker, N. (2019). Electrohydrodynamic atomization of Balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. Food Hydrocolloids, 93(February), 374–385. 53 https://doi.org/10.1016/j.foodhyd.2019.02.018 Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5(1), 37–42. https://doi.org/10.1016/0168-3659(87)90035-6 Rojas-moreno, S., Osorio-revilla, G., Gallardo-velázquez, T., Cárdenas-bailón, F., & Meza-márquez, G. (2018). Effect of the cross-linking agent and drying method on encapsulation efficiency of orange essential oil by complex coacervation using whey protein isolate with different polysaccharides. Journal of Microencapsulation, 165–180. https://doi.org/10.1080/02652048.2018.1449910 Rutz, J. K., Borges, C. D., Zambiazi, R. C., Da Rosa, C. G., Da Silva, M. M., Cleonice, G., & Médelin, M. (2016). Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chemistry, 202, 324–333. https://doi.org/10.1016/j.foodchem.2016.01.140 Sah, B. N. P., McAinch, A. J., & Vasiljevic, T. (2016). Modulation of bovine whey protein digestion in gastrointestinal tract: A comprehensive review. International Dairy Journal, 62, 10–18. https://doi.org/10.1016/j.idairyj.2016.07.003 Santos, M. B., da Costa, N. R., & Garcia-Rojas, E. E. (2018). Interpolymeric Complexes Formed Between Whey Proteins and Biopolymers: Delivery Systems of Bioactive Ingredients. Comprehensive Reviews in Food Science and Food Safety, 17(3), 792–805. https://doi.org/10.1111/1541-4337.12350 Sathasivam, T., Muniyandy, S., Chuah, L. H., & Janarthanan, P. (2018). Encapsulation of red palm oil in carboxymethyl sago cellulose beads by emulsification and vibration technology: Physicochemical characterization and in vitro digestion. Journal of Food Engineering, 231, 10–21. https://doi.org/10.1016/j.jfoodeng.2018.03.008 Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., 54 & Huang, Q. (2017). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules, 107, 1800–1810. https://doi.org/10.1016/j.ijbiomac.2017.10.044 Siepmann, J., & Peppas, N. A. (2012). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 64(SUPPL.), 163–174. https://doi.org/10.1016/j.addr.2012.09.028 Soares, da S. B., Siqueira, R. P., de Carvalho, M. G., Vicente, J., & Garcia-Rojas, E. E. (2019). Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chemistry, 298(February), 125045. https://doi.org/10.1016/j.foodchem.2019.125045 Soukoulis, C., Cambier, S., Hoffmann, L., & Bohn, T. (2016). Chemical stability and bioaccessibility of β-carotene encapsulated in sodium alginate o/w emulsions: Impact of Ca2+ mediated gelation. Food Hydrocolloids, 57, 301–310. https://doi.org/10.1016/j.foodhyd.2016.02.001 Tavares, L., & Zapata Noreña, C. P. (2019). Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids, 89(October 2018), 360–369. https://doi.org/10.1016/j.foodhyd.2018.10.052 Thakur, D., Jain, A., Ghoshal, G., Shivhare, U. S., & Katare, O. P. (2017). Microencapsulation of β -Carotene Based on Casein / Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon : an Approach to Enhance Photo-stability and Retention of Functionality. AAPS PharmSciTech, 18(5), 1447–1459. https://doi.org/10.1208/s12249-017-0806-1 Vicente, J., Cezarino, T. D. S., José, L., Pereira, B., Pinto, E., Raymundo, G., … Garcia-rojas, E. E. (2017). Microencapsulation of sacha inchi oil using emulsion-based delivery 55 systems. Food Research International, 99(June), 612–622. Wang, S., Zhu, F., & Kakuda, Y. (2018). Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chemistry, 265(April), 316–328. https://doi.org/10.1016/j.foodchem.2018.05.055 Weinbreck, F., Nieuwenhuijse, H., Robijn, G. W., & De Kruif, C. G. (2003). Complex Formation of Whey Proteins: Exocellular Polysaccharide EPS B40. Langmuir, 19(22), 9404–9410. https://doi.org/10.1021/la0348214 Ye, Q., Georges, N., & Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in Food Science and Technology, 78(January), 167–179. https://doi.org/10.1016/j.tifs.2018.05.025 Yuan, Y., Kong, Z. Y., Sun, Y. E., Zeng, Q. Z., & Yang, X. Q. (2017). Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. Lwt, 75, 171–179. https://doi.org/10.1016/j.lwt.2016.08.045 | por |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/70581/2020%20-%20Ahmad%20El%20Ghazzaqui%20Barbosa.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5952 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-08-31T15:32:25Z No. of bitstreams: 1 2020 - Ahmad El Ghazzaqui Barbosa.pdf: 888916 bytes, checksum: dd7c44d6de6ebbcd89d9b9e250bb4a2b (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-08-31T15:32:25Z (GMT). No. of bitstreams: 1 2020 - Ahmad El Ghazzaqui Barbosa.pdf: 888916 bytes, checksum: dd7c44d6de6ebbcd89d9b9e250bb4a2b (MD5) Previous issue date: 2020-07-09 | eng |
Appears in Collections: | Mestrado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2020 - Ahmad El Ghazzaqui Barbosa.pdf | 2020 - Ahmad El Ghazzaqui Barbosa | 868.08 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.