Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11398
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Carmo, Matheus Rodrigues Silva do | |
dc.date.accessioned | 2023-11-19T22:13:33Z | - |
dc.date.available | 2023-11-19T22:13:33Z | - |
dc.date.issued | 2020-06-16 | |
dc.identifier.citation | CARMO, Matheus Rodrigues Silva do. Propriedades probióticas de lactobacilos isolados de origem humana: capacidade de adesão e inibição de patógeno. 2020. 45 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/11398 | - |
dc.description.abstract | Balanced intestinal microbiota is associated with a healthy lifestyle and the consumption of prebiotic foods and /or foods that are sources of probiotic microorganisms are important to achieve this goal. Probiotics are live microorganisms that, when ingested in adequate amounts, confer benefits to the host health. Essential requirements to be considered probiotic are the ability to adhere and colonize the intestine and pathogens inhibition. Lactobacilli are part of the group of lactic acid bacteria (LAB), having important technological and probiotic properties. The objective of the study is to evaluate the probiotic properties of lactobacilli strains from human origin by their capacity for adhesion, colonization and pathogen inhibition. The following strains of lactobacilli were used: 4 strains of Lacticaseibacillus paracasei, 3 strains of Lacticaseibacillus rhamnosus and 2 strains of Limosilactobacillus fermentum. The hydrophobicity of the cell surface of the strains was evaluated, their ability to adhere to intestinal epithelial cells (Caco-2 cells) and their capacity to inhibit the foodborne pathogen Salmonella Typhimurium DTA 41 through the mechanisms of competition, exclusion and displacement. Despite presenting low percentage of cell surface hydrophobicity, all strains showed a high adhesion to Caco-2 cells, with no significant difference between isolated strains and Christian Hansen's commercial probiotic L. casei. Both the isolated strains and the commercial strain were able to inhibit Salmonella biofilms, in addition to reducing the pathogen's adhesion to Caco-2 cells. However, the reduction in Salmonella adhesion to Caco-2 cells by human isolates, especially L. rhamnosus DTA 73, was superior compared to the commercial strain, which was not effective in excluding or displace the pathogen. In the plastic surface, inhibition through competition and exclusion mechanisms was significantly more effective when compared to inhibition by displacement for all strains. The results of the study suggest that the isolated strains have a high capacity for adhesion and pathogen inhibition and should be used not only to prevent, but also to treat diarrhea since they also have the ability to displace Salmonella in Caco-2 cells.Further in vitro and in vivo tests must be carried out to establish the probiotic properties of lactobacilli strains, in addition to understanding the mechanisms which make them capable of adhering to intestinal epithelial cells and inhibiting pathogens. | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Lactobacilos | por |
dc.subject | probióticos | por |
dc.subject | adesão | por |
dc.subject | mucosa | por |
dc.subject | microbiota | por |
dc.subject | Caco-2 | por |
dc.subject | Lactobacilli | eng |
dc.subject | probiotics | eng |
dc.subject | adhesion | eng |
dc.subject | mucous | eng |
dc.title | Propriedades probióticas de lactobacilos isolados de origem humana: capacidade de adesão e inibição de patógeno | por |
dc.title.alternative | Probiotic properties of lactobacilli strains from human origin: adhesion capacity and pathogen inhibition | eng |
dc.type | Dissertação | por |
dc.contributor.advisor1 | Luchese, Rosa Helena | |
dc.contributor.advisor1ID | 270.942.270-00 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7341531211426066 | por |
dc.contributor.referee1 | Luchese, Rosa Helena | |
dc.contributor.referee2 | Ferreira, Elisa Helena da Rocha | |
dc.contributor.referee3 | Guerra, André Fioravante | |
dc.creator.ID | 149.270.917-40 | por |
dc.creator.Lattes | http://lattes.cnpq.br/8682340991698898 | por |
dc.description.resumo | Uma microbiota intestinal equilibrada está associada a um estilo de vida saudável. O consumo de alimentos prebióticos e / ou que contenham microrganismos probióticos pode assegurar o equilíbrio dessa microbiota. Probióticos são microrganismos vivos que, quando ingeridos em quantidades adequadas, conferem benefícios à saúde do hospedeiro. A capacidade de aderir e colonizar o intestino e de inibição de patógenos representam requisitos essenciais para microrganismos serem considerados probióticos. Os lactobacilos fazem parte do grupo de bactérias ácido-lácticas (LAB), possuindo importantes propriedades tecnológicas e probióticas. O objetivo do estudo foi avaliar as propriedades probióticas de cepas de lactobacilos de origem humana por sua capacidade de adesão, colonização e inibição de patógeno. Foram utilizadas 4 cepas de Lacticaseibacillus paracasei, 3 cepas de Lacticaseibacillus rhamnosus e 2 cepas de Limosilactobacillus. fermentum. Avaliou-se a hidrofobicidade da superfície celular das cepas, sua capacidade de aderir às células epiteliais intestinais (Caco-2) e sua capacidade de inibir o patógeno de origem alimentar Salmonella Typhimurium DTA 41 através dos mecanismos de competição, exclusão e desacoplamento. Apesar de apresentar baixo percentual de hidrofobicidade da superfície celular, todas as cepas apresentaram alta capacidade de adesão nas células Caco-2, não havendo diferença significativa entre as cepas isoladas e a cepa probiótica comercial da Christian Hansen L. casei. Tanto as cepas isoladas quanto a comercial foram capazes de inibir os biofilmes de Salmonella, além de reduzir a adesão do patógeno nas células Caco-2. No entanto, a redução da adesão de Salmonella nas células Caco-2 pelos isolados humanos, especialmente L. rhamnosus DTA 73 foi superior em comparação à cepa comercial, que não foi eficaz em excluir ou desacoplar o patógeno. Em superfície plástica a inibição através dos mecanismos de competição e exclusão foi significativamente mais eficaz quando comparada à inibição por desacoplamento para todas as cepas. Os resultados do estudo sugerem que as cepas isoladas possuem alta capacidade de adesão e inibição de patógeno, podendo ser usada não apenas para prevenir, mas também para tratar diarreia já que também apresentam capacidade de desacoplar Salmonella em células Caco-2. Outros testes in vitro e in vivo devem ser realizados para estabelecer as propriedades probióticas das cepas de lactobacilos, além de compreender os mecanismos que as tornam capazes de aderir às células epiteliais intestinais e de inibir patógenos. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | por |
dc.relation.references | ABRAMOV, V. M.; KOSAREV, I. V.; PRIPUTNEVICH, T. V.; MACHULIN, A. V. et al. S-layer protein 2 of Lactobacillus crispatus 2029, its structural and immunomodulatory characteristics and roles in protective potential of the whole bacteria against foodborne pathogens. International Journal of Biological Macromolecules, 150, p. 400-412, 2020/05/01/ 2020. ALIZADEH BEHBAHANI, B.; NOSHAD, M.; FALAH, F. Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microbial Pathogenesis, 136, p. 103677, 2019/11/01/ 2019. ALTONSY, M. O.; ANDREWS, S. C.; TUOHY, K. M. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: Mediation by the mitochondrial pathway. International Journal of Food Microbiology, 137, n. 2, p. 190-203, 2010/02/28/ 2010. ANNUK, H.; HYNES, S. O.; HIRMO, S.; MIKELSAAR, M. et al. Characterisation and differentiation of lactobacilli by lectin typing. Journal of Medical Microbiology, 50, n. 12, p. 1069-1074, 2001. Article. BÄCKHED, F.; DING, H.; WANG, T.; HOOPER, L. V. et al. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101, n. 44, p. 15718-15723, 2004. BATISTA, A. L. D.; SILVA, R.; CAPPATO, L. P.; FERREIRA, M. V. S. et al. Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. Journal of Functional Foods, 38, p. 242-250, 2017/11/01/ 2017. BELGUESMIA, Y.; ALARD, J.; MENDIL, R.; RAVALLEC, R. et al. In vitro probiotic properties of selected lactobacilli and multi-strain consortium on immune function, gut barrier strengthening and gut hormone secretion. Journal of Functional Foods, 57, p. 382-391, 2019/06/01/ 2019. BU, X.-D.; LI, N.; TIAN, X.-Q.; HUANG, P.-L. Caco-2 and LS174T cell lines provide different models for studying mucin expression in colon cancer. Tissue and Cell, 43, n. 3, p. 201-206, 2011/06/01/ 2011. BYRD, J. C.; BRESALIER, R. S. Mucins and mucin binding proteins in colorectal cancer. Cancer and Metastasis Reviews, 23, n. 1-2, p. 77-99, 2004. Review. CANNON, J. P.; LEE, T. A.; BOLANOS, J. T.; DANZIGER, L. H. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis, 24, n. 1, p. 31-40, Jan 2005. CASEY, P. G.; GARDINER, G. E.; CASEY, G.; BRADSHAW, B. et al. A Five-Strain Probiotic Combination Reduces Pathogen Shedding and Alleviates Disease Signs in Pigs Challenged with <em>Salmonella enterica</em> Serovar Typhimurium. Applied and Environmental Microbiology, 73, n. 6, p. 1858, 2007. CHEN, P. X.; ZHANG, H.; MARCONE, M. F.; PAULS, K. P. et al. Anti-inflammatory effects of phenolic-rich cranberry bean (Phaseolus vulgaris L.) extracts and enhanced cellular antioxidant enzyme activities in Caco-2 cells. Journal of Functional Foods, 38, p. 675-685, 2017/11/01/ 2017. CHEN, X.; XU, J.; SHUAI, J.; CHEN, J. et al. The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. International Journal of Food Microbiology, 115, n. 3, p. 307-312, 2007/04/20/ 2007. DAVOODABADI, A.; DALLAL, M. M. S.; LASHANI, E.; EBRAHIMI, M. T. Antimicrobial activity of Lactobacillus spp. isolated from fecal flora of healthy breast-fed infants against diarrheagenic Escherichia coli. Jundishapur Journal of Microbiology, 8, n. 12, 2015. Article. DE ANGELIS, M.; GOBBETTI, M. Environmental stress responses in Lactobacillus: A review. 4, n. 1, p. 106-122, 2004. DE ANGELIS, M.; GOBBETTI, M. Lactobacillus SPP.: General Characteristics☆. In: Reference Module in Food Science: Elsevier, 2016. DEL CARMEN, S.; DE MORENO DE LEBLANC, A.; LEVIT, R.; AZEVEDO, V. et al. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. International Immunopharmacology, 42, p. 122-129, 2017/01/01/ 2017. DENG, K.; CHEN, T.; WU, Q.; XIN, H. et al. In vitro and in vivo examination of anticolonization of pathogens by Lactobacillus paracasei FJ861111.1. Journal Of Dairy Science, 98, n. 10, p. 6759-6766, 2015. DEVI, S. M.; KURREY, N. K.; HALAMI, P. M. In vitro anti-inflammatory activity among probiotic Lactobacillus species isolated from fermented foods. Journal of Functional Foods, 47, p. 19-27, 2018/08/01/ 2018. DI CRISCIO, T.; FRATIANNI, A.; MIGNOGNA, R.; CINQUANTA, L. et al. Production of functional probiotic, prebiotic, and synbiotic ice creams. Journal of Dairy Science, 93, n. 10, p. 4555-4564, 2010/10/01/ 2010. DIAS, C. O.; DOS SANTOS OPUSKI DE ALMEIDA, J.; PINTO, S. S.; DE OLIVEIRA SANTANA, F. C. et al. Development and physico-chemical characterization of microencapsulated bifidobacteria in passion fruit juice: A functional non-dairy product for probiotic delivery. Food Bioscience, 24, p. 26-36, 2018/08/01/ 2018. FAGHFOORI, Z.; POURGHASSEM GARGARI, B.; SABER GHARAMALEKI, A.; BAGHERPOUR, H. et al. Cellular and molecular mechanisms of probiotics effects on colorectal cancer. Journal of Functional Foods, 18, p. 463-472, 2015/10/01/ 2015. FALAH, F.; VASIEE, A.; BEHBAHANI, B. A.; YAZDI, F. T. et al. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. Microbial Pathogenesis, 131, p. 246-253, 2019/06/01/ 2019. FAO/WHO. Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO food and nutrition paper, 0254-4725 ; 85., n. Accessed from https://nla.gov.au/nla.cat-vn3788914, 2006. FAYE, T.; TAMBURELLO, A.; VEGARUD, G. E.; SKEIE, S. Survival of lactic acid bacteria from fermented milks in an in vitro digestion model exploiting sequential incubation in human gastric and duodenum juice. Journal of Dairy Science, 95, n. 2, p. 558-566, 2012/02/01/ 2012. FONTANA, L.; BERMUDEZ-BRITO, M.; PLAZA-DIAZ, J.; MUÑOZ-QUEZADA, S. et al. Sources, isolation, characterisation and evaluation of probiotics. British Journal of Nutrition, 109, n. S2, p. S35-S50, 2013. GAGNON, M.; KHEADR, E. E.; LE BLAY, G.; FLISS, I. et al. In vitro inhibition of Escherichia coli O157:H7 by bifidobacterial strains of human origin. International Journal of Food Microbiology, 92, n. 1, p. 69-78, 2004/04/01/ 2004. GANDHI, A.; SHAH, N. P. Effect of salt stress on morphology and membrane composition of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum, and their adhesion to human intestinal epithelial-like Caco-2 cells. Journal of Dairy Science, 99, n. 4, p. 2594-2605, 2016/04/01/ 2016. GUERRA, A.; JUNIOR, W.; SANTOS, G.; ANDRIGHETTO, C. et al. Lactobacillus paracasei probiotic properties and survivability under stress-induced by processing and storage of ice cream bar or ice-lolly. Ciência Rural, 08/15 2018. HARDY, H.; HARRIS, J.; LYON, E.; BEAL, J. et al. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology. Nutrients, 5, n. 6, 2013. HIDALGO, I.; RAUB, T.; BORCHARDT, R. Characterization of the Human Colon Carcinoma Cell Line (Caco-2) as a Model System for Intestinal Epithelial Permeability. Gastroenterology, 96, p. 736-749, 04/01 1989. HOLZAPFEL, W. H.; WOOD, B. J. B. Introduction to the LAB. In: Lactic Acid Bacteria, 2014. p. 1-12. HOSSAIN, M. I.; MIZAN, M. F. R.; ASHRAFUDOULLA, M.; NAHAR, S. et al. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. LWT, 118, p. 108864, 2020/01/01/ 2020. KAMADA, N.; CHEN, G. Y.; INOHARA, N.; NÚÑEZ, G. Control of pathogens and pathobionts by the gut microbiota. Nature Immunology, 14, p. 685, 06/18/online 2013. Review Article. KOLACEK, S.; HOJSAK, I.; BERNI CANANI, R.; GUARINO, A. et al. Commercial Probiotic Products: A Call for Improved Quality Control. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology & Nutrition, 65, n. 1, p. 117-124, 2017. KONINKX, J. F. J. G.; TOOTEN, P. C. J.; MALAGO, J. J. Probiotic bacteria induced improvement of the mucosal integrity of enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis 857. Journal of Functional Foods, 2, n. 3, p. 225-234, 2010/07/01/ 2010. LABOISSE, C.; JARRY, A.; BRANKA, J. E.; MERLIN, D. et al. Recent aspects of the regulation of intestinal mucus secretion. Proceedings of the Nutrition Society, 55, n. 1, p. 259-264, 1996. Article. LIÉVIN-LE MOAL, V.; SERVIN, A. L.; COCONNIER-POLTER, M.-H. The increase in mucin exocytosis and the upregulation of MUC genes encoding for membrane-bound mucins induced by the thiol-activated exotoxin listeriolysin O is a host cell defence response that inhibits the cell-entry of Listeria monocytogenes. Cellular Microbiology, 7, n. 7, p. 1035-1048, 2005. LIU, S.-n.; HAN, Y.; ZHOU, Z.-j. Lactic acid bacteria in traditional fermented Chinese foods. Food Research International, 44, n. 3, p. 643-651, 2011/04/01/ 2011. LÓPEZ, P.; GONZÁLEZ-RODRÍGUEZ, I.; SÁNCHEZ, B.; RUAS-MADIEDO, P. et al. Interaction of Bifidobacterium bifidum LMG13195 with HT29 Cells Influences Regulatory-T-Cell-Associated Chemokine Receptor Expression. 78, n. 8, p. 2850-2857, 2012. LÓPEZ, P.; GUEIMONDE, M.; MARGOLLES, A.; SUÁREZ, A. Distinct Bifidobacterium strains drive different immune responses in vitro. International Journal of Food Microbiology, 138, n. 1, p. 157-165, 2010/03/31/ 2010. LY, D.; MAYRHOFER, S.; DOMIG, K. J. Significance of traditional fermented foods in the lower Mekong subregion: A focus on lactic acid bacteria. Food Bioscience, 26, p. 113-125, 2018/12/01/ 2018. MADIGAN, M. T.; MARTINKO, J. M. Prokaryotic diversity: the bacteria. Prentice Hall, Upper Saddle River, NJ.: 2006. (Brock: biology of microorganisms. MARTINS, A. A.; SANTOS-JUNIOR, V. A.; FILHO, E. R. T.; SILVA, H. L. A. et al. Probiotic Prato cheese consumption attenuates development of renal calculi in animal model of urolithiasis. Journal of Functional Foods, 49, p. 378-383, 2018/10/01/ 2018. MASHAK, Z. Antimicrobial Activity of Lactobacillus Isolated From Kashk-e Zard and Tarkhineh, Two Iranian Traditional Fermented Foods. 4, n. 2, p. 7-34692, 2016/5/1 %J Int J Enteric Pathog 2016. MATSUO, K.; OTA, H.; AKAMATSU, T.; SUGIYAMA, A. et al. Histochemistry of the surface mucous gel layer of the human colon. Gut, 40, n. 6, p. 782-789, 1997. Article. MENEZES, A. G. T.; MELO, D. d. S.; RAMOS, C. L.; MOREIRA, S. I. et al. Yeasts isolated from Brazilian fermented foods in the protection against infection by pathogenic food bacteria. Microbial Pathogenesis, 140, p. 103969, 2020/03/01/ 2020. MESSAOUDI, S.; MANAI, M.; KERGOURLAY, G.; PRÉVOST, H. et al. Lactobacillus salivarius: Bacteriocin and probiotic activity. Food Microbiology, 36, n. 2, p. 296-304, 2013/12/01/ 2013. MOHANTY, D.; PANDA, S.; KUMAR, S.; RAY, P. In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microbial Pathogenesis, 126, p. 212-217, 2019/01/01/ 2019. NAMPOOTHIRI, K. M.; BEENA, D. J.; VASANTHAKUMARI, D. S.; ISMAIL, B. Chapter 3 - Health Benefits of Exopolysaccharides in Fermented Foods. In: FRIAS, J.;MARTINEZ-VILLALUENGA, C., et al (Ed.). Fermented Foods in Health and Disease Prevention. Boston: Academic Press, 2017. p. 49-62. NISHIYAMA, K.; SUGIYAMA, M.; MUKAI, T. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin. Microorganisms, 4, n. 3, p. 34, 2016. NURAIDA, L. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Science and Human Wellness, 4, n. 2, p. 47-55, 2015/06/01/ 2015. OLEKSY, M.; KLEWICKA, E. Exopolysaccharides produced by Lactobacillus sp.: Biosynthesis and applications. Critical Reviews in Food Science and Nutrition, 58, n. 3, p. 450-462, 2018/02/11 2018. PATSOS, G.; CORFIELD, A. Management of the human mucosal defensive barrier: Evidence for glycan legislation. Biological Chemistry, 390, n. 7, p. 581-590, 2009. Review. PIDUTTI, P.; FEDERICI, F.; BRANDI, J.; MANNA, L. et al. Purification and characterization of ribosomal proteins L27 and L30 having antimicrobial activity produced by the Lactobacillus salivarius SGL 03. 124, n. 2, p. 398-407, 2018. PINTO, S. S.; FRITZEN-FREIRE, C. B.; DIAS, C. O.; AMBONI, R. D. M. C. A potential technological application of probiotic microcapsules in lactose-free Greek-style yoghurt. International Dairy Journal, 97, p. 131-138, 2019/10/01/ 2019. RAMA, G. R.; KUHN, D.; BEUX, S.; MACIEL, M. J. et al. Potential applications of dairy whey for the production of lactic acid bacteria cultures. International Dairy Journal, 98, p. 25-37, 2019/11/01/ 2019. RAMIAH, K.; VAN REENEN, C. A.; DICKS, L. M. T. Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis. Research in Microbiology, 159, n. 6, p. 470-475, 2008/07/01/ 2008. RESTA-LENERT, S.; BARRETT, K. E. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive <em>Escherichia coli</em> (EIEC). 52, n. 7, p. 988-997, 2003. RINKINEN, M.; WESTERMARCK, E.; SALMINEN, S.; OUWEHAND, A. C. Absence of host specificity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus. Veterinary Microbiology, 97, n. 1, p. 55-61, 2003/12/02/ 2003. ROUND, J. L.; MAZMANIAN, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences, 107, n. 27, p. 12204-12209, 2010. RUIZ-MOYANO, S.; GONÇALVES DOS SANTOS, M. T. P.; GALVÁN, A. I.; MERCHÁN, A. V. et al. Screening of autochthonous lactic acid bacteria strains from artisanal soft cheese: probiotic characteristics and prebiotic metabolism. LWT, 114, p. 108388, 2019/11/01/ 2019. SÁNCHEZ-TAPIA, M.; TOVAR, A. R.; TORRES, N. Diet as Regulator of Gut Microbiota and its Role in Health and Disease. Archives of Medical Research, 50, n. 5, p. 259-268, 2019/07/01/ 2019. SARIKAYA, H.; ASLIM, B.; YUKSEKDAG, Z. Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (l-EPSs) from Lactobacilli strains. International Journal of Food Properties, 20, n. 2, p. 362-371, 2017/02/01 2017. SERVIN, A. L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. 28, n. 4, p. 405-440, 2004. SHINDE, T.; VEMURI, R.; SHASTRI, M. D.; PERERA, A. P. et al. Probiotic Bacillus coagulans MTCC 5856 spores exhibit excellent in-vitro functional efficacy in simulated gastric survival, mucosal adhesion and immunomodulation. Journal of Functional Foods, 52, p. 100-108, 2019/01/01/ 2019. SLOVER, C. M.; DANZIGER, L. Lactobacillus: a Review. Clinical Microbiology Newsletter, 30, n. 4, p. 23-27, 2008/02/15/ 2008. TARRAH, A.; DA SILVA DUARTE, V.; DE CASTILHOS, J.; PAKROO, S. et al. Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. Journal of Functional Foods, 54, p. 489-497, 2019/03/01/ 2019. TASNIM, N.; ABULIZI, N.; PITHER, J.; HART, M. M. et al. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live? Frontiers in Microbiology, 8, n. 1935, 2017-October-06 2017. Perspective. TODOROV, S. D.; BOTES, M.; GUIGAS, C.; SCHILLINGER, U. et al. Boza, a natural source of probiotic lactic acid bacteria. Journal of Applied Microbiology, 104, n. 2, p. 465-477, 2008/02/01 2008. TUO, Y.; SONG, X.; SONG, Y.; LIU, W. et al. Screening probiotics from Lactobacillus strains according to their abilities to inhibit pathogen adhesion and induction of pro-inflammatory cytokine IL-8. Journal of Dairy Science, 101, n. 6, p. 4822-4829, 2018/06/01/ 2018. VASCONCELOS, F. M.; SILVA, H. L. A.; POSO, S. M. V.; BARROSO, M. V. et al. Probiotic Prato cheese attenuates cigarette smoke-induced injuries in mice. Food Research International, 123, p. 697-703, 2019/09/01/ 2019. VASIEE, A.; MORTAZAVI, S. A.; SANKIAN, M.; YAZDI, F. T. et al. Antagonistic activity of recombinant Lactococcus lactis NZ1330 on the adhesion properties of Escherichia coli causing urinary tract infection. Microbial Pathogenesis, 133, p. 103547, 2019/08/01/ 2019. VIEIRA, M. A.; GUERRA, A. F.; LUCHESE, R. H. Mechanisms Of Pathogens Biofilm Reduction By Probiotic Bacteria. Revista Higiene Alimentar, Edição Especial, 2015. WANG, B.; LI, J.; CHEN, J.; HUANG, Q. et al. Effect of live Lactobacillus plantarum L2 on TNF-α-induced MCP-1 production in Caco-2 cells. International Journal of Food Microbiology, 142, n. 1, p. 237-241, 2010/08/15/ 2010. WANG, J.; ZHANG, H.; DU, H.; WANG, F. et al. Identification and characterization of Diutina rugosa SD-17 for potential use as a probiotic. LWT, 109, p. 283-288, 2019/07/01/ 2019. WOLTERS, M.; AHRENS, J.; ROMANÍ-PÉREZ, M.; WATKINS, C. et al. Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clinical Nutrition, 38, n. 6, p. 2504-2520, 2019/12/01/ 2019. WU, M.-H.; PAN, T.-M.; WU, Y.-J.; CHANG, S.-J. et al. Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. International Journal of Food Microbiology, 144, n. 1, p. 104-110, 2010/11/15/ 2010. XU, X.; BAO, Y.; WU, B.; LAO, F. et al. Chemical analysis and flavor properties of blended orange, carrot, apple and Chinese jujube juice fermented by selenium-enriched probiotics. Food Chemistry, 289, p. 250-258, 2019/08/15/ 2019. XU, Y.; ZHOU, T.; TANG, H.; LI, X. et al. Probiotic potential and amylolytic properties of lactic acid bacteria isolated from Chinese fermented cereal foods. Food Control, 111, p. 107057, 2020/05/01/ 2020. ZHANG, W.; WANG, H.; LIU, J.; ZHAO, Y. et al. Adhesive ability means inhibition activities for lactobacillus against pathogens and S-layer protein plays an important role in adhesion. Anaerobe, 22, p. 97-103, 2013/08/01/ 2013. ZHANG, Y.-C.; ZHANG, L.-W.; TUO, Y.-F.; GUO, C.-F. et al. Inhibition of Shigella sonnei adherence to HT-29 cells by lactobacilli from Chinese fermented food and preliminary characterization of S-layer protein involvement. Research in Microbiology, 161, n. 8, p. 667-672, 2010/10/01/ 2010. ZHANG, Z.; TAO, X.; SHAH, N. P.; WEI, H. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens. Journal of Dairy Science, 99, n. 4, p. 2666-2674, 2016/04/01/ 2016. ZHENG, J.; WITTOUCK, S.; SALVETTI, E.; FRANZ, C. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70, 04/15 2020. | por |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/72023/2020%20-%20Matheus%20Rodrigues%20Silva%20do%20Carmo.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6293 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-01-30T18:52:43Z No. of bitstreams: 1 2020 - Matheus Rodrigues Silva do Carmo.pdf: 1972522 bytes, checksum: ad00c59b497b3faf56ab2fda9d9889e9 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-01-30T18:52:43Z (GMT). No. of bitstreams: 1 2020 - Matheus Rodrigues Silva do Carmo.pdf: 1972522 bytes, checksum: ad00c59b497b3faf56ab2fda9d9889e9 (MD5) Previous issue date: 2020-06-16 | eng |
Appears in Collections: | Mestrado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2020 - Matheus Rodrigues Silva do Carmo.pdf | 1.93 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.