Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11394
Full metadata record
DC FieldValueLanguage
dc.creatorMotta, Joyce Fagundes Gomes
dc.date.accessioned2023-11-19T22:13:29Z-
dc.date.available2023-11-19T22:13:29Z-
dc.date.issued2020-02-03
dc.identifier.citationMOTTA, Joyce Fagundes Gomes. Desenvolvimento de filmes ativos antimicrobianos a base de amidos não iônico, catiônico e aniônicos incorporados com o surfactante catiônico LAE (N-lauril-l-arginina etil éster monoclorohidrato). 2020. 81 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11394-
dc.description.abstractActive packaging can contribute positively to the environment, being able to be produced from renewable sources, and offering consumers safe food, when activated by the incorporation of antimicrobial agents in the polymer matrix. Among these package, the films can be based on starches, which can still be modified and consequently obtain films with different characteristics and among the antimicrobial agents considered GRAS by the FDA and which can be used in food and consequently incorporated into the films, there is the cationic surfactant LAE (Nα-lauroyl-L-arginine ethyl ester monohydrochloride, which presents a wide spectrum of performance. The aim of this study was, firstly, to study the properties of native (NS), cationic (CS) and anionic starches (AShc and ASs) about amylose and moisture content, granule morphology, paste properties and chemical structure (FT-IR) and later to produce films based on these starches incorporated with LAE. The films were produced by the casting method and characterized with thickness, solubility and swelling content, water vapor transmission rate (WVTR), mechanical and antimicrobial properties, chemical structure (FT-IR), surface (SEM) and optical properties (L*a*b* and opacity). Although the starches studied were obtained from different botanical sources and were modified, they did not show a difference in chemical structure and moisture content (p>0,05). However, differences were observed regarding the amylose content, granule morphology, and paste properties that may be associated not only with the botanical source, but also with the modification processes that the starches underwent. Regarding the formed films, the FT-IR did not detect differences between the chemical structures of films with and without LAE. The SEM detected the presence of some points that may be dirt or “ghosts” and an increase in irregularities with the presence of LAE according to the methodology used. It was also observed that the films had different characteristics and the addition of LAE was responsible for promoting in most films an increase in thickness and in all films an increase in flexibility and a decrease in stiffness. In addition, LAE significantly increased the swelling content of AShc film and the solubility content of AShc and CS films. The ASs – based film is highly soluble both with and without the insertion of the surfactant, which was also responsible for increasing the WVTR of all films, except for these ASs. As for the color, the films presented a clear aspect and few opaque and the LAE was responsible for decreasing (p<0.05) the clarity and increasing the opacity of the films based on NS and CS. Finally, LAE made the packaging active, inhibiting the development of the gram-positive bacteria Staphylococcus aureus (more sensitive), gram-negative Escherichia coli and the fungus Penicillium sp. Thus, these films have the potential to be used by the food packaging industry and since the four starches generated films with different characteristics, the application of these packages can be used for various food products. Also, the incorporation of LAE tends to prolong the validity of the packaged products.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMeio-ambientepor
dc.subjectalimentos segurospor
dc.subjectembalagens ativaspor
dc.subjectamidos modificadospor
dc.subjectEnvironmenteng
dc.subjectsafe foodseng
dc.subjectactive packagingeng
dc.subjectmodified starcheseng
dc.titleDesenvolvimento de filmes ativos antimicrobianos a base de amidos não iônico, catiônico e aniônicos incorporados com o surfactante catiônico LAE (N-lauril-l-arginina etil éster monoclorohidrato)por
dc.title.alternativeDevelopment of active antimicrobial films based on nonionic, cationic and anionic starches incorporated with the cationic surfactant LAE (N−lauryl-l-arginine ethyl ester monohydrochloride)eng
dc.typeDissertaçãopor
dc.contributor.advisor1Melo, Nathália Ramos de
dc.contributor.advisor1ID102.064.957-73por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1836355123449583por
dc.contributor.advisor-co1Vitorazi, Letícia
dc.contributor.referee1Melo, Nathália Ramos de
dc.contributor.referee2Moreira, Francys Kley Vieira
dc.contributor.referee3Silva, Otniel Freitas
dc.creator.ID116.983.586-44por
dc.creator.IDhttps://orcid.org/0000-0001-8591-7472por
dc.creator.Latteshttp://lattes.cnpq.br/5373287724417477por
dc.description.resumoAs embalagens ativas podem contribuir positivamente com o meio-ambiente podendo ser produzidas a partir de fontes renováveis, e oferecer aos consumidores alimentos seguros, quando ativadas pela incorporação na matriz polimérica de agentes antimicrobianos. Dentre estas embalagens, os filmes podem ter por base amidos, os quais ainda podem ser modificados e consequentemente obter filmes com características diferentes e dentre os agentes antimicrobianos considerados GRAS pela FDA e que podem ser usados em alimentos e consequentemente incorporados aos filmes, tem-se o surfactante catiônico LAE (N-lauril-l-arginina etil éster monoclorohidrato), o qual apresenta um amplo espectro de ação. Este trabalho teve como objetivo, primeiramente, estudar as propriedades de amidos nativo (AN), catiônico (AC) e aniônicos (AAhc e AAs) em relação ao teor de amilose, umidade, morfologia dos grânulos, propriedades de pasta e estrutura química (FT-IR) e posteriormente desenvolver filmes a base destes amidos incorporados com LAE. Os filmes foram produzidos pelo método casting e caracterizados em relação à espessura, teor de solubilidade e inchamento, taxa de permeabilidade ao vapor d’água (TPVA), propriedades mecânicas e antimicrobianas, estrutura química (FT-IR), superfície (MEV) e propriedades ópticas (L*a*b* e opacidade). Apesar dos amidos estudados terem sido obtidos de diferentes fontes botânicas e terem sido modificados, eles não apresentaram diferença em relação à estrutura química e teor de umidade (p>0,05). Contudo, foram observadas diferenças em relação ao teor de amilose, morfologia dos grânulos e propriedades de pasta que podem estar associadas não somente à fonte botânica, mas também aos processos de modificação que os amidos foram submetidos. Em se tratando dos filmes formados, o FT-IR não detectou diferenças entre as estruturas químicas dos filmes com e sem LAE. O MEV detectou a presença de algumas partículas que podem ser sujidades ou “fantasmas” e aumento de irregularidades com a presença do LAE de acordo com a metodologia usada. Foi observado também que os filmes apresentaram características distintas e a adição do LAE foi responsável por promover na maioria dos filmes aumento de espessura e em todos os filmes aumento de flexibilidade e diminuição da rigidez. Além disso, o LAE promoveu aumento significativo no teor de inchamento do filme AAhc e no teor de solubilidade dos filmes AAhc e AC. O filme a base de AAs é altamente solúvel tanto com quanto sem a inserção do surfactante, o qual também foi responsável por aumentar a TPVA de todos os filmes, exceto deste AAs. Quanto à coloração, os filmes apresentaram aspecto claro e pouco opaco e o LAE foi responsável por diminuir (p<0,05) a claridade e aumentar a opacidade dos filmes a base de AN e AC. Por fim, o LAE tornou as embalagens ativas, inibindo o desenvolvimento da bactéria gram-positiva Staphylococcus aureus (mais sensível), gram-negativa Escherichia coli e do fungo Penicillium sp. Desse modo, estes filmes têm potencial para serem usados pela indústria de embalagens alimentícias e como os 4 amidos geraram filmes com características diferentes, a aplicação destas embalagens pode ser destinada à diversos produtos alimentícios, além disso, a incorporação do LAE, tende a prolongar a validade dos produtos acondicionados.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesABDELGHANY, A. M. et al. Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles. Journal of Alloys and Compounds, v. 646, p. 326– 332, 2015. ABRE. Estudo macroeconômico da embalagem ABRE/FGV. Disponível em: <https://www.abre.org.br/dados-do-setor/ano2017/>. Acesso em: 13 fev. 2020. AHVENAINEN, R. Novel food packaging techniques. 1 ed. Boca Raton: CRC Press, 2003. 590 p. AI, Y.; JANE, J. Gelatinization and rheological properties of starch. Starch‐Stärke, v. 67, n. 3–4, p. 213–224, 2015. AL-NEMR, T. M. et al. Influence of nisin and lauryl arginine ester against some foodborne pathogens in recombined feta and processed spread cheese. Journal of Food Safety, v. 36, n. 2, p. 172–179, 2016. ALMEIDA, D. M. et al. Propriedades físicas, químicas e de barreira em filme formados por blenda de celulose bacteriana e fécula de batata. Polímeros: Ciência e Tecnologia, v. 23, n. 4, p. 538–546, 2013. AMINZARE, M. et al. Antibacterial activity of corn starch films incorporated with Zataria multiflora and Bonium persicum essential oils. Annual Research and Review in Biology, v. 19, n. 1, 2017. ANDRADE, I. H. P. et al. Documentos de patentes relacionados à produção de filmes biodegradáveis comestíveis. Cadernos de Prospecção, v. 11, n. 1, p. 183-197, 2018. ANTONIO, C. B. Estudo termodinâmico de associação de surfatantes zwitteriônicos e sua interação com polímeros através de titulação calorimétrica. 2011. 124 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade de Campinas, Campinas. ANVISA. Módulo 5 - Teste de Sensibilidade aos Antimicrobianos. 2008. Disponível em: < http://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/boas_praticas/modulo5 /interpretacao.htm>. Acesso em: 09 dez. 2019. APICELLA, A. et al. Antimicrobial biodegradable coatings based on LAE for food packaging applications. AIP Conference Proceedings, v. 1981, 2018. ASKER, D.; WEISS, J.; MCCLEMENTS, D. J. Analysis of the interactions of a cationic surfactant (Lauric arginate) with an anionic biopolymer (Pectin): Isothermal titration calorimetry, light scattering, and microelectrophoresis. Langmuir, v. 25, n. 1, p. 116– 122, 2009. ASKER, D.; WEISS, J.; MCCLEMENTS, D. J. Formation and stabilization of antimicrobial delivery systems based on electrostatic complexes of cationic-non-ionic mixed micelles and anionic polysaccharides. Journal of Agricultural and Food Chemistry, v. 59, n. 3, p. 1041–1049, 2011. ASTM - American Society for Testing Materials. ASTM D 882-12 - Standard Test Method for Tensile Properties of Thin Plastic Sheeting. In: Annual Book of ASTM, 2012. ASTM - American Society for Testing Materials. ASTM D 1746-15 - Standard Test Method for Transparency of Plastic Sheeting. In: Annual Book of ASTM, 2015. AWOKOYA, K. N. et al. Pasting, morphological and functional properties of breadfruit (Artocarpus altilis) starch cross-linked with ethylene glycol dimethacrylate. African Journal of Food Science and Technology, v. 9, n. 1, p. 8-18, 2018. BABU, A. S. et al. A comparative study on dual modification of banana (Musa paradisiaca) starch by microwave irradiation and cross-linking. Journal of Food Measurement and Characterization, v. 12, n. 3, p. 2209–2217, 2018. BANDEIRA, E. I.; MARQUES, P. T. Síntese e caracterização de micropartículas de amido solúvel e fécula de mandioca reticuladas com tripolifosfato de sódio. Blucher Chemical Engineering Proceedings, v. 2, n. 1, p. 105–113, 2015. BASIAK, E.; LENART, A.; DEBEAUFORT, F. Effect of starch type on the physicochemical properties of edible films. International Journal of Biological Macromolecules, v. 98, p. 348–356, 2017. BASIAK, E.; LENART, A.; DEBEAUFORT, F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, v. 10, n. 4, p. 1-18, 2018. BECERRIL, R. et al. Antimicrobial activity of Lauroyl Arginate Ethyl (LAE), against selected food-borne bacteria. Food Control, v. 32, n. 2, p. 404–408, 2013. BERNARDO, A. S. Di; BERNARDO, L. Di. Uso de amido de mandioca cationico como auxiliar de floculação. In: Congreso Interamericano de Ingeniería Sanitaria y Ambiental, 27., 2000, Porto Alegre. Anais...Rio de Janeiro: ABES, p. 1-11. BERSANETI, G. T. et al. Evaluation of the prebiotic activities of edible starch films with the addition of nystose from Bacillus subtilis natto. LWT, v. 116, p.1-6, 2019. BERTUZZI, M. A.; ARMADA, M.; GOTTIFREDI, J. C. Physicochemical characterization of starch based films. Journal of Food Engineering, v. 82, n. 1, p. 17– 25, 2007. BIDUSKI, B. et al. Physicochemical properties of nanocomposite films made from sorghum-oxidized starch and nanoclay. Starch/Staerke, v. 69, n. 11–12, p. 1-27, 2017. BONNAUD, M.; WEISS, J.; MCCLEMENTS, D. J. Interaction of a food-grade cationic surfactant (Lauric Arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan). Journal of Agricultural and Food Chemistry, v. 58, n. 17, p. 9770–9777, 2010. BRAGA, L. R.; PERES, L. Novas tendências em embalagens para alimentos: revisão. Boletim Centro de Pesquisa de Processamento de Alimentos, v. 28, p. 69-84, 2010. BRAGA, L. R.; SILVA, F. M. Embalagens ativas: uma nova abordagem para embalagens alimentícias. Brazilian Journal of Food Research, v. 8, n. 4, p. 170-186, 2017. BUSTILLOS-RODRÍGUEZ, J. C. et al. Physicochemical, Thermal and Rheological Properties of Native and Oxidized Starch from Corn Landraces and Hybrids. Food Biophysics, v. 14, n. 2, p. 182–192, 2019. CAETANO, K. et al. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, v. 16, p. 138–147, 2018. CALVINI, P.; GORASSINI, A. FTIR–deconvolution spectra of paper documents. Restaurator, v. 23, n. 1, p. 48–66, 2002. CANEVAROLO JR, S. V. Ciência dos polímeros - Um texto básico para tecnólogos e engenheiros. 1 ed. São Paulo: Artliber, 2002. 280 p. DOCSITY. O estado sólido em polímeros. 2013. Disponível em: <https://www.docsity.com/pt/estado-solido-em-polimeros-apostilas-processos-depolimerizacao/ 332728/>. Acesso em 06 jan. 2020. CAETANO, K. et al. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, v. 16, p. 138–147, 2018. CARDOSO, T. Avaliação da Spirulina platensis na produção de biofilmes de derivados de mandioca e gelatina com aplicação em pimenta cambuci (Capsicum sp.). 2017. 106 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Estadual de Ponta Grossa, Ponta Grossa. CARVALHO, D. de M. et al. Filme ativo de acetato de celulose incorporado com nanosuspensão de curcumina. Polímeros, v. 27, p. 70–76, 2017. CHANG, S.-Y.; LAI, H.-M. Effect of trisodium citrate on swelling property and structure of cationic starch thin film. Food Hydrocolloids, v. 56, p. 254–265, 2016. CHEN, P. et al. Phase transition of starch granules observed by microscope under shearless and shear conditions. Carbohydrate Polymers, v. 68, n. 3, p. 495–501, 2007. CHEN, Q. et al. Recent progress in chemical modification of starch and its applications. RSC Advances, v. 5, n. 83, p. 67459–67474, 2015. CHENG, J. et al. An active packaging film based on yam starch with eugenol and its application for pork preservation. Food Hydrocolloids, v. 96, p. 546–554, 2019. CORISECTELMO. Espaço de cor Lab. 2011. Disponível em: <http://corisectelmo.blogspot.com/2011/01/aula-21-espaco-de-cor-lab.html>. Acesso em: 23 Jan. 2020. DALTIN, D. Tensoativos: química, propriedades e aplicações. 1 ed. São Paulo: Blucher, 2011. 330 p. DAYRIT, F. M. The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists’ Society, v. 92, n. 1, p. 1–15, 2015. DEMIATE, I. M. et al. Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydrate Polymers, v. 42, n. 2, p. 149–158, 2000. DIAS-MARTINS, A. M. et al. Impacts of ohmic heating on decorticated and whole pearl millet grains compared to open-pan cooking. Journal of cereal science, v. 85, p. 120– 129, 2019. DIAS, A. R. G. et al. Pasting, expansion and textural properties of fermented cassava starch oxidised with sodium hypochlorite. Carbohydrate Polymers, v. 84, n. 1, p. 268– 275, 2011. DOBRUCKA, R.; PRZEKOP, R. New perspectives in active and intelligent food packaging. Journal of Food Processing and Preservation, v. 43, n. 11, p. 1-9, 2019. DOMENE-LÓPEZ, D. et al. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, v. 11, n. 7, p. 1-7, 2019. EFSA. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food on a request from the commission related to an application on the use of ethyl lauroyl arginate as a food additive question number EFSA-Q-2006-035. 2007. Disponível em: <https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2007.511/>. Acesso em 09 Dez 2019. EL HALAL, S. L. M. et al. Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, v. 133, p. 644–653, 2015. EL HALAL, S. L. M. et al. Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. Journal of the Science of Food and Agriculture, v. 97, n. 2, p. 411–419, 2017. EVANGELHO, J. A. et al. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydrate Polymers, v. 222, p. 114981, 2019. FAIT, M. E. et al. Prodcción de un agente antimicrobiano con potencial actividad tensioativa mediante el empleo de tecnologias amigables con el medio ambiente. AUGMDOMUS, v. 4, p. 49-61, 2012. FAKHOURI, F. M. et al. Filmes e coberturas comestíveis compostas à base de amidos nativose gelatina na conservação e aceitação sensorial de uvas Crimson. Ciência e Tecnologia de Alimentos, v. 27, n. 2, p. 369–375, 2007. FALGUERA, V. et al. Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, v. 22, p. 292-303, 2011. FANGFANG, Z. et al. Effects of virgin coconut oil on the physicochemical, morphological and antibacterial properties of potato starch-based biodegradable films. International Journal of Food Science & Technology, v. 55, n. 1, p. 192–200, 2020. FELIPE, L. de O.; DIAS, S. de C. Surfactantes sintéticos e biossurfactantes: vantagens e desvantagens. Química nova escola, v. 39, n. 3, p. 228–236, 2017. FENNEMA, O. R.; DAMODARAN, S.; PARKIN, K. L. Química de alimentos de Fennema. 4 ed. Porto Alegre: Artmed, 2010. 900 p. FONSECA, L. M. et al. Fabrication and Characterization of Native and Oxidized Potato Starch Biodegradable Films. Food Biophysics, v. 13, n. 2, p. 163–174, 2018. GAIKWAD, K. K. et al. Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, v. 11, n. 4, p. 1706–1716, 2017. GAŁKOWSKA, D.; JUSZCZAK, L. Effects of amino acids on gelatinization, pasting and rheological properties of modified potato starches. Food Hydrocolloids, v. 92, p. 143–154, 2019. GALLOTO, M. J.; GUARDA, A.; DICASTILLO, C. L. D. Antimicrobial active polymers in food packaging. In: CIRILLO, G.; SPIZZIRRI, U. G.; IEMMA, F. Functional Polymers in Food Science: From Technology to Biology. Beverly: Scrivener Publishing, 2015. c. 10. GAMARRA-MONTES, A. et al. Antibacterial films made of ionic complexes of Poly(γ- glutamic acid) and ethyl lauroyl arginate. Polymers, v. 10, n. 1, p. 1-14, 2017. GAMARRA, A. et al. Ionic coupling of hyaluronic acid with ethyl N-lauroyl l-arginate (LAE): Structure, properties and biocide activity of complexes. Carbohydrate polymers, v. 197, p. 109–116, 2018. GE, X. et al. Improved mechanical and barrier properties of starch film with reduced graphene oxide modified by SDBS. Journal of Applied Polymer Science, v. 134, n. 22, p. 1-8, 2017. GOESAERT, H. et al. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in food science & technology, v. 16, n. 1–3, p. 12– 30, 2005. GONÇALVES, S. M. Caracterização das propriedades funcionais de filmes ativos antimicrobianos aditivados com óleos essenciais e plastificante. 2016. 84 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Programa de Pósgraduação em Ciência e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica. GONÇALVES, S. M. et al. Structure and functional properties of cellulose acetate films incorporated with glycerol. Carbohydrate polymers, v. 209, p. 190–197, 2019a. GONÇALVES, S. S. et al. Efeito do glicerol nas propriedades mecânicas de filmes a base de quitosana. DESAFIOS-Revista Interdisciplinar Da Universidade Federal Do Tocantins, v. 6, n. Especial, p. 110–117, 2019b. GONTARD, N. et al. Food packaging applications of biopolymer‐based films. In: PLACKETT, D. Biopolymers–New Materials for Sustainable Films and Coatings. 1 ed. New Jersey: Wiley, 2011. p. 211–232. GUIMARÃES, M. et al. High moisture strength of cassava starch/polyvinyl alcoholcompatible blends for the packaging and agricultural sectors. Journal of Polymer Research, v. 22, n. 10, p. 1-18, 2015. GUO, M.; YADAV, M. P.; JIN, T. Z. Antimicrobial edible coatings and films from microemulsions and their food applications. International Journal of Food Microbiology, v. 263, p. 9-16, 2017. GUZMÁN, E. et al. Polymer–surfactant systems in bulk and at fluid interfaces. Advances in colloid and interface science, v. 233, p. 38–64, 2016. HADIAN, M. et al. Encapsulation of Rosmarinus officinalis essential oils chitosanbenzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT - Food Science and Technology, v. 84, p. 394-401, 2017. HAGHIGHI, H. et al. Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, v. 19, p. 31–39, 2019. HAGHIGHI, H. et al. Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloids, v. 100, n. 105419, p. 1-35, 2020. HAN, H. et al. Insight on the changes of cassava and potato starch granules during gelatinization. International Journal of Biological Macromolecules, v. 126, p. 37–43, 2019. HAN, J. H. Innovations in Food Packaging. 1. ed. London: Academic Press, 2005. 503 p. HARI, P. K.; GARG, S.; GARG, S. K. Gelatinization of starch and modified starch. Starch‐Stärke, v. 41, n. 3, p. 88–91, 1989. HASHEMI, S. M. B.; MOUSAVI KHANEGHAH, A. Characterization of novel basil59 seed gum active edible films and coatings containing oregano essential oil. Progress in Organic Coatings, v. 110, p. 35–41, 2017. HE, H. et al. Improved stability and controlled release of CLA with spray-dried microcapsules of OSA-modified starch and xanthan gum. Carbohydrate Polymers, v. 147, p. 243–250, 2016. HENRIQUE, C. M.; CEREDA, M. P.; SARMENTO, S. B. S. Características físicas de filmes biodegradáveis produzidos a partir de amidos modificados de mandioca. Ciência e Tecnologia de Alimentos, v. 28, n. 1, p. 231–240, 2008. HERNANDEZ, D.; CARDELL, E.; ZARATE, V. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin‐like substance produced by Lactobacillus plantarum TF711. Journal of applied microbiology, v. 99, n. 1, p. 77–84, 2005. HIGUERAS, L. et al. Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-l-arginate) and its application to fresh chicken. International Journal of Food Microbiology, v. 165, n. 3, p. 339–345, 2013. HOOVER, R. et al. Composition, molecular structure, properties, and modification of pulse starches: A review. Food research international, v. 43, n. 2, p. 399–413, 2010. HORIMOTO, L. K.; CABELLO, C. Parâmetros para a produção de amidos catiônicos de fécula de mandioca e de batata-doce. Revista Raízes e Amidos Tropicais, v. 1, n. 1, p. 69–75, 2005. HORNUNG, P. S. et al. Investigation of the photo-oxidation of cassava starch granules. Journal of Thermal Analysis and Calorimetry, v. 123, n. 3, p. 2129–2137, 2016. IMRAN, M. et al. Synthesis of highly stable γ-Fe 2 O 3 ferrofluid dispersed in liquid paraffin, motor oil and sunflower oil for heat transfer applications. RSC advances, v. 8, n. 25, p. 13970–13975, 2018. INSTITUTO ADOLFO LUTZ. Métodos físico-químicos para análise de alimentos. 4 ed. São Paulo: Instituto Adolfo Lutz, 2008. 1020 p. JANJARASSKUL, T.; SUPPAKUL, P. Active and intelligent packaging: the indication of quality and safety. Food Science and Nutrition, v. 58, n. 5, p. 808-831, 2017. JANSEN, S. et al. Analysis of nitrite and nitrate in the corned beef and smoked beef by Using Visible Spectrophotometry method. In: IOP Conference Series: Earth and Environmental Science, 1, Anais...IOP Publishing, 2018. JAVADIAN, S.; KAKEMAM, J. Intermicellar interaction in surfactant solutions; a review study. Journal of Molecular Liquids, v. 242, p. 115–128, 2017. JIMÉNEZ, A. et al. Edible and biodegradable starch films: a review. Food and Bioprocess Technology, v. 5, n. 6, p. 2058–2076, 2012. KAHVAND, F.; FASIHI, M. Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, v. 140, p. 775-781, 2019. KAPPES, M. C. et al. Estudo das propriedades de pasta de diferentes genótipos de cevada. In: XXV Congresso Brasileiro de Ciência e Tecnologia de Alimentos, 25., 2016, Gramado. Anais...Gramado: sbCTA, 2016. p. 1-6. KASHIRI, M. et al. Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE). Food Hydrocolloids, v. 61, p. 547–554, 2016. KAUR, L.; SINGH, J. Starch: Modified Starches. In: CABALLERO, B.; FINGLAS, P. M.; TOLDRÁ, F. B. T.-E. OF F. AND H. Encyclopedia of Food and Health. London: Academic Press, 2016. p. 152–159. KAUR, M.; BHULLAR, G. K. Partial Characterization of Tamarind (Tamarindus indica L.) Kernel Starch Oxidized at Different Levels of Sodium Hypochlorite. International Journal of Food Properties, v. 19, n. 3, p. 605–617, 2016. KAUR, S. et al. Diversity in properties of seed and flour of kidney bean germplasm. Food Chemistry, v. 117, n. 2, p. 282–289, 2009. KAVOOSI, G.; DADFAR, S. M. M.; PURFARD, A. M. Mechanical, Physical, Antioxidant, and Antimicrobial Properties of Gelatin Films Incorporated with Thymol for Potential Use as Nano Wound Dressing. Journal of Food Science, v. 78, n. 2, p. 244– 250, 2013. KHANEGHAH, A. M.; HASHEMI, S. M. B.; LIMBO, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: na overview of approaches and interactions. Food and Bioproducts Processing, v. 111, p. 1-19, 2018. KONITA MINOLTA. Entendendo o espaço de Cor L*a*b*. 2019. Disponível em: < http://sensing.konicaminolta.com.br/2013/11/entendendo-o-espaco-de-cor-lab/>. Acesso em 09 dez. 2019. KRÓLIKOWSKA, K. et al. Relationship between sorption characteristic and selected functional properties of chemically modified waxy maize starches. Journal of Food Processing and Preservation, v. 43, p. 1-11, 2019. KUAKPETOON, D.; WANG, Y. Characterization of different starches oxidized by hypochlorite. Starch‐Stärke, v. 53, n. 5, p. 211–218, 2001. KUO, W.-Y.; LAI, H.-M. Changes of property and morphology of cationic corn starches. Carbohydrate Polymers, v. 69, n. 3, p. 544–553, 2007. LA FUENTE, C. I. A. et al. Ozonation of cassava starch to produce biodegradable films. International Journal of Biological Macromolecules, v. 141, p. 713–720, 2019. LANDIM, A. P. M. et al. Sustentabilidade quanto às embalagens de alimentos no Brasil. Polímeros, v. 26, p. 82-92, 2016. LAROTONDA, F. D. S. Desenvolvimento de biofilmes a partir da fécula de mandioca. 2002. 78 f. Dissertação (Mestrado em Engenharia de Alimentos) - Curso de Pós-Graduação em Engenharia de Alimentos, Universidade Federal de Santa Catarina. LAWAL, O. S. Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food chemistry, v. 87, n. 2, p. 205–218, 2004. LAWAL, O. S. et al. Oxidized and acid thinned starch derivatives of hybrid maize: functional characteristics, wide-angle X-ray diffractometry and thermal properties. International Journal of Biological Macromolecules, v. 35, n. 1–2, p. 71–79, 2005. LAZZAROTTO, S. R. da S. et al. Induced effects by oxidation with potassium permanganate on the thermal, morphological, colorimetric and pasting properties of corn starch. Ukrainian Food Journal, v. 6, n. 2, 197-210, 2017. LI, Z.; GALLUS, L. Surface configuration of sorbed hexadecyltrimethylammonium on kaolinite as indicated by surfactant and counterion sorption, cation desorption, and FTIR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 264, n. 1–3, p. 61–67, 2005. LIU, R. et al. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV–vis absorption spectroscopy and flow cytometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 73, n. 4, p. 601–607, 2009. LOEFFLER, M. et al. Electrostatic interactions of cationic lauric arginate with anionic polysaccharides affect antimicrobial activity against spoilage yeasts. Journal of applied microbiology, v. 117, n. 1, p. 28–39, 2014. LOPEZ-SILVA, M. et al. Effect of amylose content in morphological, functional and emulsification properties of OSA modified corn starch. Food Hydrocolloids, v. 97, p. 1- 8, 2019. LOURDIN, D. et al. Crystalline structure in starch. In: NAKAMURA, Y. Starch: Metabolism and structure. Japan: Springer, 2015. c. 3. LOUREIRO, A. C. et al. Estudo em alimentos cotidianos: Pesquisa de polissacarídeos através da reação com iodo. Brazilian Journal of Development, v. 5, n. 11, p. 24243- 24253, 2019. LUCAS, E. F.; SOARES, B. G.; MONTEIRO, E. E. C. Caracterização de polímeros: determinação de peso molecular e análise térmica. 1 ed. Rio de Janero: E-papers Serviços Editoriais, 2001. 366 p. LUCHESE, C. L. et al. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids, v. 82, p. 209– 218, 2018. LUCHESE, C. L. Desenvolvimento de embalagens biodegradáveis a partir de amido contendo subprodutos provenientes do processamento de alimentos. 2018. 226 f. Tese (Doutorado em Engenharia Química) - Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre. MA, Q.; ZHANG, Y.; ZHONG, Q. Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT - Food Science and Technology, v. 65, p. 173–179, 2016. MACHADO, T. F. et al. Atividade antimicrobiana do óleo essencial de manjericão contra patógenos e deterioradores de alimentos. Embrapa Agroindústria Tropical-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E), v. 67, n. 1679-6543, p. 1-16, 2012. MAJZOOBI, M. et al. Effects of L-Cysteine on some characteristics of wheat starch. Food chemistry, v. 124, n. 3, p. 795–800, 2011. MALANOVIC, N.; LOHNER, K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)- Biomembranes, v. 1858, n. 5, p. 936–946, 2016. MALHOTRA, B.; KESHWANI, A.; KHARKWAL, H. Antimicrobial food packaging: potential and pitfalls. Frontiers in Microbiology, v. 6, n. 611, p. 1-9, 2015. MALI, S.; GROSSMANN, M. V. E.; YAMASHITA, F. Filmes de amido: Produção, propriedades e potencial de utilização. Semina:Ciencias Agrarias, v. 31, n. 1, p. 137– 156, 2010. MALLAKPOUR, S.; EZHIEH, A. N. Effect of Starch- Valine Nanocomposite on the Optical, Morphological, Thermal, and Adsorption Properties of Chitosan. Journal of Polymers and the Environment, v. 25, n. 3, p. 875–883, 2017. MANIGLIA, B. C. Elaboração de filmes biodegradáveis a partir do resíduo da extração do pigmento de Cúrcuma. 2012. 144 f. Dissertação (Mestrado em Ciências) - Faculdade de Filosofia, Ciência e Letras, Universidade de São Paulo, Ribeirão Preto. MANIGLIA, B. C. et al. Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. Reactive and Functional Polymers, v. 144, p. 1- 33, 2019. MANO, E. B.; MENDES, L. C. Introdução a Polímeros. 2 ed. São Paulo: Blucher, 1999. 208 p. MAO, J. et al. A novel gemini viscoelastic surfactant (VES) for fracturing fluids with good temperature stability. RSC Advances, v. 6, n. 91, p. 88426–88432, 2016. MARENGO, V. A.; VERCELHESE, A. E. S.; MALI, S. Compósitos biodegradáveis de amido de mandioca e resíduos da agroindústria. Química Nova, v. 36, n. 5, 2013. MARTÍNEZ, C.; CUEVAS, F. Evaluación de la calidad culinaria y molinera del arroz. 3 ed. Cali: CIAT, 1989. 73 p. MARTÍNEZ, M. L. et al. Walnut (Juglans regia L.): genetic resources, chemistry, byproducts. Journal of the Science of Food and Agriculture, v. 90, n. 12, p. 1959–1967, 2010 MASINA, N. et al. A review of the chemical modification techniques of starch. Carbohydrate polymers, v. 157, p. 1226–1236, 2017. MLALILA, N. et al. Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends in Food Science & Technology, v. 74, p. 1–11, 2018. MORENO, O. et al. Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, v. 178, p. 147–158, 2017. MUCILLO, R. C. S. T. Caracterização e avaliação de amido nativo e modificado de pinhão mediante provas funcionais e térmicas. 2009. 156 f. Tese (Doutorado em Engenharia Química) - Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre. MURIEL-GALET, V. et al. Characterization of ethylene-vinyl alcohol copolymer containing lauril arginate (LAE) as material for active antimicrobial food packaging. Food packaging and shelf life, v. 1, n. 1, p. 10–18, 2014. MURIEL-GALET, V. et al. Ethyl Lauroyl Arginate (LAE): Usage and Potential in Antimicrobial Packaging. In: BARROS-VELÁSQUEZ, J. Antimicrobial Food Packaging. London: Academic Press, 2016. c. 24. MUZZARELLI, R. et al. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrobial agents and chemotherapy, v. 34, n. 10, p. 2019–2023, 1990. NAFCHI, A. M. et al. Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, v. 113, n. 4, p. 511–519, 2012. NAKASHIMA, A. Y.; CHEVALIER, R. C.; CORTEZ-VEGA, W. R. Desenvolvimento e caracterização de filmes de colágeno com adição de óleo essencial de cravo-da-índia. Journal of bioenergy and food science, v. 3, n. 1, p. 50-57, 2016. NAKNAEN, P.; TOBKAEW, W.; CHAICHALEOM, S. Properties of jackfruit seed starch oxidized with different levels of sodium hypochlorite. International Journal of Food Properties, v. 20, n. 5, p. 979–996, 2017. NASCIMENTO, S. M. S. do. Caracterização termo-óptica de surfactantes catiônicos. 2018. 64 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Universidade Federal de Alagoas, Maceió. NERIN, C. et al. Ethyl Lauroyl Arginate (LAE): Antimicrobial Activity and Applications in Food Systems. In: BARROS-VELÁSQUEZ, J. Antimicrobial Food Packaging. London: Academic Press, 2016. c. 23. NÜBLING, S. et al. Antimicrobial effect of lauroyl arginate ethyl on Escherichia coli O157:H7 and Listeria monocytogenes on red oak leaf lettuce. European Food Research and Technology, v. 243, n. 5, p. 1–9, 2017. ODIAN, G. Principles of polymerization. 4 ed. New Jersey: John Wiley & Sons. 2004. 848 p. OIRERE, E. K. et al. Phytochemical analysis of N-hexane leaf extract of Alpinia purpurata (Vieill.) K. Schum using Uv-Vis, FTIR and GC-MS. International Journal of Pharmacy and Pharmaceutical Sciences, v. 7, n. 8, p. 1-3, 2015. OLIVEIRA, A. S. B. de; MELO, N. R. de. Market and sustainability of food packaging: A review. Boletim Centro de Pesquisa de Processamento de Alimentos, v. 36, n. 1, p. 1-10, 2018. OLUWASINA, O. O. et al. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International Journal of Biological Macromolecules, v. 135, p. 282–293, 2019. ORDOÑEZ, J. A. et al. Tecnologia de alimentos: componentes dos alimentos e processos. v. 1. Porto Alegre: Artmed, 2005. 294 p. OSELIERO FILHO, P. L. Estudo estrutural e termodinâmico de sistemas autoorganizados: Micelas em solução. 2013. 132 f. Dissertação (Mestrado em Ciências) - Instituto de Física - Departamento de física experimental, Universidade de São Paulo, São Paulo. OCHOA, T. A. et al. Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food and bioprocess technology, v. 10, n. 1, p. 103–114, 2017. OTONI, C. G. et al. Trends in food antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, v. 83, p. 60-73, 2016. OYEYINKA, S. A. et al. Physicochemical properties of starches with variable amylose contents extracted from bambara groundnut genotypes. Carbohydrate polymers, v. 133, p. 171–178, 2015. OZDEMIR, M.; FLOROS, J. D. Active food packaging technologies. Food Science and Nutrition, v. 44, n. 3, p. 185-193, 2004. PAOLI, M. A. Degradação e estabilização de polímeros. 1 ed. São Paulo: Artliber, 2009. 286 p. PEREIRA, J. M. Oxidação do amido de milho com hipoclorito de sódio e peróxido de hidrogênio. 2014. 47 f. Trabalho de Conclusão de Curso (Graduação em Engenharia de Alimentos) - Coordenação de Tecnologia e Engenharia de Alimentos, Universidade Tecnológica Federal do Paraná, Campo Mourão. PEREIRA, J. M. et al. Crystallinity, thermal and gel properties of oat starch oxidized using hydrogen peroxide. International Food Research Journal, v. 24, n. 4, p. 1545- 1552, 2017. PICULELL, L.; LINDMAN, B. Association and segregation in aqueous polymer/polymer, polymer/surfactant, and surfactant/surfactant mixtures: similarities and differences. Advances in Colloid and Interface Science, v. 41, p. 149–178, 1992. PINHEIRO, A. et al. Utilização de revestimentos/filmes edíveis para aplicações alimentares. Boletim de Biotecnologia, v. 1, n. 85, p. 18-28, 2010. PONTES, B. R. B. Preparação e caracterização de termoplásticos a partir de amido de arroz. 2012. 98 f. Dissertação (Mestrado em Ciências) - Instituto de Química, Universidade de São Paulo, São Carlos. QUINTAVALLA, S.; VICINI, L. Antimicrobial food packaging in meat industry. Meat Science, v. 62, n. 3, p. 373-380, 2002. RADOSTA, S. et al. Properties of low‐substituted cationic starch derivatives prepared by different derivatisation processes. Starch‐Stärke, v. 56, n. 7, p. 277–287, 2004. RIBEIRO-SANTOS, R.; ANDRADE, M.; SANCHES-SILVA, A. Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science, v. 14, p. 78-84, 2017. RODRIGUES, M. O. et al. Impacts of plastic products used in daily life on the environment and human health: what is known? Environmental toxicology and pharmacology, v. 72, p.1-19, 2019. RODRÍGUEZ, E. et al. Cellular effects of monohydrochloride of L-arginine, Nα- lauroyl ethylester (LAE) on exposure to Salmonella typhimurium and Staphylococcus aureus. Journal of Applied Microbiology, v. 96, n. 5, p. 903–912, 2004. RODRÍGUEZ, M. et al. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, v. 39, n. 8, p. 840– 846, 2006. RUCKMAN, S. A. et al. Toxicological and metabolic investigations of the safety of N- α-Lauroyl-l-arginine ethyl ester monohydrochloride (LAE). Food and Chemical Toxicology, v. 42, n. 2, p. 245–259, 2004. SANDHU, K. S. et al. A comparison of native and oxidized normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT-Food Science and Technology, v. 41, n. 6, p. 1000–1010, 2008. SANYANG, M. et al. Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, v. 7, n. 6, p. 1106–1124, 2015. SCHIRMER, M.; JEKLE, M.; BECKER, T. Starch gelatinization and its complexity for analysis. Starch/Staerke, v. 67, n. 1–2, p. 30–41, 2015. ŞEN, F. et al. Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials. Carbohydrate Polymers, v. 170, p. 264–270, 2017. SHAIKH, M. et al. Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. International Journal of Biological Macromolecules, v. 124, p. 209–219, 2019. SHARMA, K. P. et al. Assembly of polyethyleneimine in the hexagonal mesophase of nonionic surfactant: Effect of pH and temperature. Journal of Physical Chemistry B, v. 115, n. 29, p. 9059–9069, 2011. SHARMA, R.; GHOSHAL, G. Emerging trends in food packaging. Nutrition and Food Science, v. 48, n. 5, p. 764–779, 2018. SILVA, O. A. et al. Synthesis and characterization of a low solubility edible film based on native cassava starch. International Journal of Biological Macromolecules, v. 128, p. 290–296, 2019. SILVA, R. M. et al. Características físico-químicas de amidos modificados com permanganato de potássio/ácido lático e hipoclorito de sódio/ácido lático. Ciência e Tecnologia de Alimentos, v. 28, n. 1, p. 66–77, 2008. SINGH, N. et al. Morphological, thermal and rheological properties of starches from different botanical sources. Food chemistry, v. 81, n. 2, p. 219–231, 2003. SOARES, N. de F. F. et al. Embalagem ativa na conservação de alimentos. In: AZEREDO, H. M. C. Fundamentos de estabilidade de alimentos. Brasília: Embrapa, 2012. c. 8. SOARES, N. de F. F. et al. Novos desenvolvimentos e aplicações em embalagens de alimentos. Ceres, v. 56, n. 4, p. 370-378, 2009. SOARES, R. M. D. et al. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering C, v. 92, p. 969–982, 2018. SOCIEDADE BRASILEIRA DE FARMACOGNOSIA. Amidos. 2009. Disponível em:< http://www.sbfgnosia.org.br/Ensino/amido.html>. Acesso em: 12 fev. 2020. SOFI, S. A. et al. A Comprehensive Review on Antimicrobial Packaging and its Use in Food Packaging. Current Nutrition & Food Science, v. 14, n. 4, p. 305–312, 2018. SOUZA, A. C. et al. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT - Food Science and Technology, v. 46, n. 1, p. 110-117, 2012. SUKHIJA, S.; SINGH, S.; RIAR, C. S. Physicochemical, crystalline, morphological, pasting and thermal properties of modified lotus rhizome (Nelumbo nucifera) starch. Food Hydrocolloids, v. 60, p. 50–58, 2016. SUKHIJA, S.; SINGH, S.; RIAR, C. S. Molecular characteristics of oxidized and crosslinked lotus (Nelumbo nucifera) rhizome starch. International Journal of Food Properties, v. 20, p. 1065–1081, 2017. SUN, Y. et al. Synergism Effect of Surfactant and Inorganic Salt on the Properties of Starch/Poly(Vinyl Alcohol) Film. Starch - Stärke, v. 70, n. 7–8, p. 1-6, 2018. SUN, H. et al. Mechanical, barrier and antimicrobial properties of corn distarch phosphate/nanocrystalline cellulose films incorporated with Nisin and ε-polylysine. International Journal of Biological Macromolecules, v. 136, p. 839–846, 2019. TAO, J. et al. A new methodology combining microscopy observation with Artificial Neural Networks for the study of starch gelatinization. Food Hydrocolloids, v. 74, p. 151–158, 2018. TÁPIA-BLÁCIDO, D. R.; SOBRAL, P. J. D. A.; MENEGALLI, F. C. Effect of drying conditions and plasticizer type on some physical and mechanical properties of amaranth flour films. LWT, v. 50, n. 2, p. 392-400, 2013. TARAJ, K. et al. Eco-extraction of albanian chamomile essential oils by liquid Co2 at different temperatures and characterisation by FTIR spectroscopy. J Environ Prot Ecol, v. 18, p. 117–124, 2017. TAVARES, L. Efeitos sinérgicos entre biopolímeros: aplicação a filmes e revestimentos edíveis para embalagem alimentar. 2015. 87 f. Dissertação (Mestrado Integrado em Bioengenharia) - Departamento de Química, Universidade do Porto, Porto. TAVASSOLI - KAFRANI, E.; SHEKARCHIZADEH, H.; MASOUDPOURBEHABADI, M. Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, v. 137, p. 360-374, 2016. TESTER, R. F.; KARKALAS, J.; QI, X. Starch—composition, fine structure and architecture. Journal of Cereal Science, v. 39, n. 2, p. 151–165, 2004. THARANATHAN, R. N. Starch—value addition by modification. Critical reviews in food science and nutrition, v. 45, n. 5, p. 371–384, 2005. THIRÉ, R. M. S. M. et al. Redução da hidrofilicidade de filmes biodegradáveis à base de amido por meio de polimerização por plasma. Polímeros: Ciência e Tecnologia, v. 14, n. 1, p. 57–62, 2004. USP. Cereais e massas. 2017. Disponível em: <https://edisciplinas.usp.br/pluginfile.php/4135326/mod_resource/content/1/Aula%20de %20TD%206%20-%20Cereais%20e%20Massas.pdf>. Acesso em: 12 fev. 2019. VANIER, N. L. et al. Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, v. 221, p. 1546–1559, 2017. VEDEQSA. Etil lauroil arginato E-243 (LAE®): Um nuervo conservante para la industria alimentaria. 2015. Disponível em: <http://media.firabcn.es/content/S051015/docs/presentaciones_IMP/VEDEQSAMIRENAT. pdf/>. Acesso em: 09 Dez 2019. VEDEQSA. Specialties for the food industry. 2018. Disponível em: <https://www.lamirsa.com/catalogo/ved2018eng/mobile/html5forpc.html/>. Acesso em: 09 Dez 2019. VERMEIREN, L. et al. Developments in the active packaging of foods. Trends in Food Science & Technology, v. 10, n. 3, p. 77-86, 1999. VERT, M. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)*. Pure Appl. Chem, v. 84, n. 2, p. 377-410, 2012. VILLADIEGO, A. M. et al. Filmes e revestimentos comestíveis na conservação de produtos alimentícios. Revista Ceres, v. 52, n. 300, p. 748-753, 2005. VILLALOBOS, R. et al. Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food hydrocolloids, v. 19, n. 1, p. 53–61, 2005. WANG, S. et al. Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, v. 14, n. 5, p. 568–585, 2015. WANG, Y.-J.; WANG, L. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers, v. 52, n. 3, p. 207–217, 2003. WESLEY, R. D. et al. Structure of polymer/surfactant complexes formed by poly (2- (dimethylamino) ethyl methacrylate) and sodium dodecyl sulfate. Langmuir, v. 18, n. 15, p. 5704–5707, 2002. XU, X.-H. et al. Mechanisms of N α-lauroyl arginate ethyl ester against Penicillium digitatum and Pectobacterium carotovorum subsp. carotovorum. Journal of food science and technology, v. 55, n. 9, p. 3675–3682, 2018. YILDRIM, S. et al. Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, v. 2017, n. 1, p. 165-199, 2018. YOUSUF, B. QADRI, O. S.; SRIVASTAVA, A. K. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT, v. 89, p. 198-209, 2017. ZAMUDIO-FLORES, P. B. et al. Effect of oxidation level on the dual modification of banana starch: The mechanical and barrier properties of its films. Journal of Applied Polymer Science, v. 112, n. 2, p. 822–829, 2009. ZAVAREZE, E. R. et al. Caracterização química e rendimento de extração de amido de arroz com diferentes teores de amilose. Brazilian Journal of Food Technology, v. 5, p. 24–30, 2009. ZHANG, L. L. et al. Effects of modified starches on the processing properties of heatresistant blueberry jam. LWT - Food Science and Technology, v. 72, p. 447–456, 2016. ZHANG, Y. et al. Characterization of Extruded Thermoplastic Starch Reinforced by Montmorillonite Nanoclay. Journal of Polymers and the Environment, v. 21, n. 1, p. 122–131, 2013. ZHONG, Y.; LI, Y. Effects of surfactants on the functional and structural properties of kudzu (Pueraria lobata) starch/ascorbic acid films. Carbohydrate polymers, v. 85, n. 3, p. 622–628, 2011. ZHOU, F. et al. Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. International Journal of Biological Macromolecules, v. 84, p. 410–417, 2016. ZHU, L. et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies. Bioresource Technology, v. 124, p. 455–459, 2012. ZHU, L. et al. Using RVA-full pattern fitting to develop rice viscosity fingerprints and improve type classification. Journal of Cereal Science, v. 81, p. 1–7, 2018. ZIA-UD-DIN; XIONG, H.; FEI, P. Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition, v. 57, n. 12, p. 2691–2705, 2017.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71627/2020%20-%20Joyce%20Fagundes%20Gomes%20Motta.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6195
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-01-10T20:52:58Z No. of bitstreams: 1 2020 - Joyce Fagundes Gomes Motta.pdf: 1649867 bytes, checksum: efb6bea5e97d9f256035703874c328d8 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-01-10T20:52:58Z (GMT). No. of bitstreams: 1 2020 - Joyce Fagundes Gomes Motta.pdf: 1649867 bytes, checksum: efb6bea5e97d9f256035703874c328d8 (MD5) Previous issue date: 2020-02-03eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Joyce Fagundes Gomes Motta.pdf1.61 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.