Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11264
Full metadata record
DC FieldValueLanguage
dc.creatorAlves, Ingrid Dal Cin
dc.date.accessioned2023-11-19T22:07:36Z-
dc.date.available2023-11-19T22:07:36Z-
dc.date.issued2019-08-27
dc.identifier.citationALVES, Ingrid Dal Cin. Obtenção de hidrolisado proteico de resíduo de Tira-Vira (Percophis brasiliensis). 67 f. Dissertação (Mestrado em Engenharia Química, Tecnologia Química) - Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11264-
dc.description.abstractHigh fish production rates, especially processed fish, have generated high amounts of wastethat has the potential to become added value co-products. Among the products that can beobtained from fish residues, there are hydrolysed proteins. In addition to being a source ofessential amino acids, this type of product may have technological and/or biologicalfunctionalities. In this context, this work objective was to develop a process, via enzymatichydrolysis, to obtain protein hydrolysate from Brazilian Flathead (Percophis brasiliensis) residue with antioxidant and emulsifying capacity. Brazilian Flathead paste was obtained from the residue from mechanically separated meat (MSM) extraction and characterized by its bromatological composition and amino acid content. Hydrolysis conditions with Alcalasewere defined from a 23 factorial design where pH (6 to 9), temperature (30 to 60 °C) and enzyme:substrate ratio (E:S, in the range of 2 to 15%) were independent variables and degree of hydrolysis, free aromatic amino acid content, antioxidant activity (ORAC) and emulsifying capacity were dependent variables. The highest degree of hydrolysis (45,24%) was observed under the conditions pH 6, 45 °C and E: S ratio 8.5% at 4 hours of reaction, remaining the same after 5 hours. Free aromatic amino acid content, which also indicates the progress of hydrolysis, on average, increased approximately fivefold in one minute of reaction, and after one hour the average increase was almost eightfold. Antioxidant activity of the obtained hydrolysates ranged from 397 to 2860 μmol Trolox/g after 5 hours of hydrolysis, with the maximum activity (2953 μmol Trolox/g) at pH 7,5, temperature 60 °C and E:S ratio 8,5% after 4 hours of hydrolysis.. The emulsifying properties studied were expressed as emulsifying activity index (EAI) and emulsion stability index (ESI). The maximum EAI (68.9 m2 / g) wasobtained at pH 7,5; 60 °C, E: S 8.5% after 4 hours of hydrolysis, and the maximum ESI (42 minutes) was obtained after 1 minute of process at pH 6, 45 °C and E: S 8.5. The condition inwhich the highest antioxidant activity and emulsifying activity index values were observed was 7.5; 60 ° C, E: S 8.5%, however the choice of hydrolysis conditions are dependent on thedesired product profile.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectResíduo de pescadopor
dc.subjectHidrólise enzimáticapor
dc.subjectAlcalasepor
dc.subjectAtividade antioxidantepor
dc.subjectAtividade emulsificantepor
dc.subjectEstabilidade de emulsãopor
dc.subjectFish residueeng
dc.subjectEnzymatic hydrolysiseng
dc.subjectAlcalaseeng
dc.subjectAntioxidant activityeng
dc.subjectEmulsifying activityeng
dc.subjectEmulsion stabilityeng
dc.titleObtenção de hidrolisado proteico de resíduo de Tira-Vira (Percophis brasiliensis)por
dc.title.alternativeObtainment of protein hydrolysate from Brazilian Flathead (Percophis brasiliensis) residueeng
dc.typeDissertaçãopor
dc.contributor.advisor1Brígida, Ana Iraidy Santa
dc.contributor.advisor1IDCPF: 847.843.343-00por
dc.contributor.advisor-co1Furtado, Angela Aparecida Lemos
dc.contributor.advisor-co1IDCPF: 878.390.327-53por
dc.creator.IDCPF: 121.917.507-23por
dc.description.resumoElevadas taxas de produção de pescado, em especial o pescado beneficiado, vem gerando maiores quantidades de resíduos que tem potencial de se transformar em coprodutos com valor agregado. Dentre os produtos possíveis de se obter a partir de resíduos de pescado, temse as proteínas hidrolisadas. Além de ser fonte de aminoácidos essenciais, esse tipo de produto pode apresentar funcionalidades tecnológicas e/ou biológicas. Nesse contexto, o objetivo deste trabalho foi desenvolver um processo, via hidrólise enzimática, para obtenção de hidrolisado proteico a partir de resíduo de Tira-Vira (Percophis brasiliensis) com capacidade antioxidante e emulsificante. A pasta de Tira-Vira foi obtida a partir do resíduo oriundo da extração de carne mecanicamente separada (CMS) e caracterizada quanto à composição bromatológica e teor de aminoácidos. As condições de hidrólise com Alcalase foram definidas a partir de um planejamento fatorial 23 onde pH (6 a 9), temperatura (30 a 60 °C) e razão enzima:substrato (E:S, na faixa de 2 a 15%) foram as variáveis independentes e grau de hidrólise, teor de aminoácidos aromáticos livres, atividade antioxidante (ORAC) e capacidade emulsificante foram as variáveis dependentes. O maior grau de hidrólise (45,24%) foi observado sob as condições de pH 6, 45°C e razão E:S 8,5% em 4 horas de reação, permanecendo o mesmo ao final de 5 horas. O teor de aminoácidos aromáticos livres, que também indica o avanço da hidrólise, aumentou em média aproximadamente 5 vezes em um minuto de reação, e após uma hora o aumento médio foi de quase 8 vezes. A atividade antioxidante dos hidrolisados obtidos apresentou valores que variaram de uma faixa de 397 a 2860 μmol Trolox/g após 5 horas de hidrólise, sendo a atividade máxima obtida (2953 μmol Trolox/g) a pH 7,5, temperatura 60 °C e razão E:S 8,5% após 4 horas de hidrólise. As propriedades emulsificantes estudadas foram expressas em índice de atividade emulsificante (EAI – emulsifying activity index) e índice de estabilidade da emulsão (ESI – emulsion stability index). O EAI máximo (68,9 m2 /g) foi obtido em pH 7,5; 60 °C, E:S 8,5% após 4 horas de hidrólise, e o ESI máximo (42 minutos) foi obtido após 1 minuto de processo em pH 6, 45 °C e E:S 8,5%. A condição em que foram observados os maiores valores de atividade antioxidante e de índice de atividade emulsificante foi 7,5; 60 °C, E:S 8,5%, porém a escolha das condições de hidrólise são dependentes do perfil de produto desejado.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesADLER-NISSEN, J. Limited enzymic degradation of proteins: A new approach in the industrial application of hydrolases. Journal of Chemical Technology and Biotechnology, v. 32, n. 1, p. 138-156, 1982. ADLER-NISSEN, Jens. Proteases. In: Enzymes in Food Processing. Academic Press, p. 159-203, 1993. ALUKO, R. E. Amino acids, peptides, and proteins as antioxidants for food preservation. In: Handbook of antioxidants for food preservation. Woodhead Publishing, p. 105-140, 2015. ANANEY-OBIRI, D.; MATTHEWS, L. G.; TAHERGORABI, R. Proteins From Fish Processing By-Products. In: Proteins: Sustainable Source, Processing and Applications. Academic Press, p. 163-191, 2019. ANTUNES, A. B. et al. Capacidade hidrolítica de alcalase versus novo pro D na hidrólise de CMS de tilápia. In: Embrapa Agroindústria de Alimentos-Artigo em anais de congresso (ALICE). In: CONGRESSO BRASILEIRO DE CIÊNCIA E TECNOLOGIA DE ALIMENTOS, 25.; CIGR SESSION 6 INTERNATIONAL TECHNICAL SYMPOSIUM, 10., 2016, Gramado. Alimentação: árvore que sustenta a vida. Anais. Gramado: SBCTA Regional, 2016., 2016. AOAC. Association of Official Analytical Chemists. Official Methods of Analysis of the AOAC. Washington, methods 994.12, 2000. AOAC. Association of Official Analytical Chemists. Official Methods of Analysis of the AOAC. 18 ed., ver. 3, Gaithersburg, 2010. ARYEE, A. N. A.; AGYEI, D.; UDENIGWE, C. C. Impact of processing on the chemistry and functionality of food proteins. In: Proteins in Food Processing. Woodhead Publishing, p. 27-45, 2018. BARRETTO, A. C. et al. Age determination, validation, and growth of Brazilian flathead (Percophis brasiliensis) from the southwest Atlantic coastal waters (34º-41ºS). Submission article platform-Latin American Journal of Aquatic Research, v. 39, n. 2, 2011. BEAUBIER, S. et al. Simultaneous quantification of the degree of hydrolysis, protein conversion rate and mean molar weight of peptides released in the course of enzymatic proteolysis. Journal of Chromatography B, v. 1105, p. 1-9, 2019. BERNARDI, D. M. et al. Production of hydrolysate from processed Nile tilapia (Oreochromis niloticus) residues and assessment of its antioxidant activity. Food Science and Technology, v. 36, n. 4, p. 709-716, 2016. BETTELHEIM, F. A. et al. Enzymes. In: Introduction to Organic and Biochemistry. Cengage Learning, 2010, 7ª ed, p. 344-368. BLANCO, G.; BLANCO, A. Enzyme. In: Medical biochemistry. Academic Press, 2017, p. 153-175. BORGHESI, R. et al. Influência da nutrição sobre a qualidade do pescado: especial referência aos ácidos graxos. Corumbá: Embrapa Pantanal – MAPA, 2013. Disponível em: <http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/981590>. Acesso em: 30 de Setembro de 2019. BORGOGNO, M. et al. Technological and nutritional advantages of mechanical separation process applied to three European aquacultured species. LWT, v. 84, p. 298-305, 2017. BOYCE, S.; TIPTON, K. F. Enzyme classification and nomenclature. eLS, 2001. BRAICOVICH, P. E.; TIMI, J. T. Parasites as biological tags for stock discrimination of the Brazilian flathead Percophis brasiliensis in the south-west Atlantic. Journal of Fish Biology, v. 73, n. 3, p. 557-571, 2008. 63 BRASIL, Food Ingredients. Propriedades funcionais das proteínas do peixe. Revista-fi, v. 8, p. 23-32, 2009. BRENDA. 3D-Structure of 3.4.21.62 (1af4). Disponível em : <https://www.brendaenzymes.org/Mol/jsmol/index.php?pdb=1af4&ecno=3.4.21.62&selectedPos=undefined&colo rScheme=undefined>. Acessado em 02/07/2018. CHOBERT, J. M.; BERTRAND-HARB, C.; NICOLAS, M. G. Solubility and emulsifying properties of caseins and whey proteins modified enzymically by trypsin. Journal of Agricultural and Food Chemistry, v. 36, n. 5, p. 883-892, 1988. COSTA, J. F. et al. Biodiesel production using oil from fish canning industry wastes. Energy Conversion and Management, v. 74, p. 17-23, 2013. DE HOLANDA, H. D.; NETTO, F. M. Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. Journal of Food Science, v. 71, n. 5, p. C298-C303, 2006. DINIZ, F. M.; MARTIN, A. M. Use of response surface methodology to describe the combined effects of pH, temperature and E/S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle. International journal of food science & technology, v. 31, n. 5, p. 419- 426, 1996. DINIZ, G. S. et al. Gross chemical profile and calculation of nitrogen-to-protein conversion factors for nine species of fishes from coastal waters of Brazil. Latin American Journal of Aquatic Research, v. 41, n. 2, p. 254-264, 2013. DONG, S. et al. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food chemistry, v. 107, n. 4, p. 1485-1493, 2008. DOS SANTOS, S. D. et al. Evaluation of functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food and Bioprocess Technology, v. 4, n. 8, p. 1399-1406, 2011. DOS SANTOS AGUILAR, J. G.; SATO, H. H. Microbial proteases: production and application in obtaining protein hydrolysates. Food Research International, v. 103, p. 253- 262, 2018. ELAVARASAN, K.; NAVEEN KUMAR, V.; SHAMASUNDAR, B. A. Antioxidant and Functional Properties of Fish Protein Hydrolysates from Fresh Water Carp (Catla catla) as Influenced by the Nature of Enzyme. Journal of Food Processing and Preservation, v. 38, n. 3, p. 1207-1214, 2014. ELIAS, Ryan J.; KELLERBY, Sarah S.; DECKER, Eric A. Antioxidant activity of proteins and peptides. Critical reviews in food science and nutrition, v. 48, n. 5, p. 430-441, 2008. FAO. Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2016 - Contributing to food security and nutrition for all. Roma, 2016. FAO. Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Roma, 2018. FIPERJ. Fundação Instituto de Pesca do Estado do Rio de Janeiro. Relatório Anual 2016. Niterói, 180p, 2017. FIPERJ. Fundação Instituto de Pesca do Estado do Rio de Janeiro. Relatório Anual 2017. Niterói, 108p, 2018. FISCHER, J. D. et al. The structures and physicochemical properties of organic cofactors in biocatalysis. Journal of molecular biology, v. 403, n. 5, p. 803-824, 2010. FLIGNER, K. L.; MANGINO, M. E. Relationship of composition to protein functionality. In: Interactions of food proteins. ACS symposium series 1991, p. 1-12,1991. 64 FOH, M. B. K. et al. Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. International journal of molecular sciences, v. 11, n. 4, p. 1851-1869, 2010. FONSECA, R. A. S. et al. Enzymatic hydrolysis of cobia (Rachycentron canadum) meat and wastes using different microbial enzymes. International Food Research Journal, v. 23, n. 1, p. 152, 2016. FURTADO, M. A. M. et al. Propriedades funcionais de hidrolisados de proteína láctea coprecipitada. Ciência Agrotécnica, Lavras, v. 25, n. 3, p. 625-639, 2001. GALVÃO, J. A.; OETTERER, M. Qualidade e Processamento de Pescado. Elsevier Brasil, 2014. GARCÍA-MORENO, P. J. et al. Functional, bioactive and antigenicity properties of blue whiting protein hydrolysates: Effect of enzymatic treatment and degree of hydrolysis. Journal of the Science of Food and Agriculture, v. 97, n. 1, p. 299-308, 2016. GIMÉNEZ, B. et al. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chemistry, v. 114, n. 3, p. 976-983, 2009. GIRGIH, A. T. et al. Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food chemistry, v. 173, p. 652-659, 2015. GOODWIN, T. W.; MORTON, R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochemical Journal, v. 40, n. 5-6, p. 628, 1946. GONZÀLEZ-TELLO, P. et al. Enzymatic hydrolysis of whey proteins: I. Kinetic models. Biotechnology and Bioengineering, v. 44, n. 4, p. 523-528, 1994. GRAHAME, D. A. S.; BRYKSA, B. C.; YADA, R. Y. Factors affecting enzyme activity. In: Improving and Tailoring Enzymes for Food Quality and Functionality. Woodhead Publishing, p. 11-55, 2015. GUADIX, A.; GUADIX, E. M.; PRIETO, C. A. Protein hydrolysis with enzyme recycle by membrane ultrafiltration. In: New Food Engineering Research Trends. Nova Science Publisher, p. 169-194, 2008. GUERARD, F. et al. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. Journal of Molecular Catalysis B: Enzymatic, v. 11, n. 4-6, p. 1051-1059, 2001. GUIMARÃES, J. L. B.; CALIXTO, F. A. A.; MESQUITA, E. F. M. Produção e utilização da carne mecanicamente separada de pescado: uma revisão. Higiene alimentar, v. 31, n. 268/269, p. 31-35, 2017. GUIMARÃES, J. L. B. et al. Development of a low commercial value fish-sausage from the fish trawling “mix” category. Food Science and Technology, n. AHEAD, 2018a. GUIMARÃES, J. L. B. et al. Quality of mechanically separated meat (MSM) and surimi obtained from low commercial value fish. Boletim do Instituto de Pesca, v. 44, n. 2, 2018b. GURUMALLESH, P. et al. A systematic reconsideration on proteases. International journal of biological macromolecules, v. 128, p. 254-267, 2019. HALIM, N. R. A. et al. Antioxidant and anticancer activities of enzymatic eel (monopterus sp) protein hydrolysate as influenced by different molecular weight. Biocatalysis and agricultural biotechnology, v. 16, p. 10-16, 2018. HSIEH, C. C.; FERNÁNDEZ-TOMÉ, S.; HERNÁNDEZ-LEDESMA, B. Functionality of Soybean Compounds in the Oxidative Stress-Related Disorders. In: Gastrointestinal Tissue. Academic Press, p. 339-353, 2017. HSU, K. C; LI-CHAN, E. C.; JAO, C. L. Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chemistry, v. 126, n. 2, p. 617-622, 2011. HUANG, D.; WONG, I. C. Antioxidant evaluation and antioxidant activity mechanisms. In: Lipid Oxidation. AOCS Press, p. 323-343, 2013. 65 JAYASINGHE, Punyama; HAWBOLDT, Kelly. Biofuels from fish processing plant effluents–waste characterization and oil extraction and quality. Sustainable Energy Technologies and Assessments, v. 4, p. 36-44, 2013. JOST, R.; MONTI, J. C. Partial enzymatic hydrolysis of whey protein by trypsin. Journal of Dairy Science, v. 60, n. 9, p. 1387-1393, 1977. KLOMPONG, V. et al. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food chemistry, v. 102, n. 4, p. 1317-1327, 2007. KLOMPONG, V. et al. Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). Journal of food science, v. 74, n. 2, p. C126-C133, 2009. KRISTINSSON, H. G.; RASCO, B. A. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry, v. 48, n. 3, p. 657-666, 2000a. KRISTINSSON, H. G.; RASCO, B. A. Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, v. 40, n. 1, p. 43- 81, 2000b. KUDDUS, M. Introduction to Food Enzymes. In: Enzymes in Food Biotechnology. Academic Press, p. 1-18, 2019. LEE, C. Y.; DEMAN, J. M. Enzymes. In: Principles of Food Chemistry. Springer, Cham, p. 397-433, 2018. LI, Y. et al. The potential of papain and alcalase enzymes and process optimizations to reduce allergenic gliadins in wheat flour. Food chemistry, v. 196, p. 1338-1345, 2016. LITESCU, S. C. et al. The use of oxygen radical absorbance capacity (ORAC) and Trolox equivalent antioxidant capacity (TEAC) assays in the assessment of beverages’ antioxidant properties. In: Processing and impact on antioxidants in beverages. Academic press, p. 245-251, 2014. LIU, H. J.; CHANG, B. Y.; YAN, H. W.; YU, F. H.; LIU, X. X. Determination of AminoAcids in Food and Feed by Derivatization with 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate and Reversed-Phase Liquid-Chromatographic Separation. Journal of Aoac International, v. 78, n. 3, p. 736-744, 1995. LIU, Y. et al. Characterization of structural and functional properties of fish protein hydrolysates from surimi processing by-products. Food chemistry, v. 151, p. 459-465, 2014. MAY, T. Despolpamento de resíduo de filé de tilápia. Multimídia: Banco de Imagens – Embrapa, 2015. Disponível em: < https://www.embrapa.br/busca-de-imagens/- /midia/2598002/despolpamento-de-residuo-de-file-de-tilapia>. Acessado em 05/08/2018. MELLINGER-SILVA, C. et al. Dual function peptides from pepsin hydrolysates of whey protein isolate. International dairy journal, v. 48, p. 73-79, 2015. MILITELLI, M. I.; MACCHI, G. J. Reproducción del pez palo (Percophis brasiliensis) en aguas costeras de la provincia de Buenos Aires. Revista de Investigación y Desarrollo Pesquero, v. 14, p. 5-21, 2001. MIRA, N. V. M.; LANFER-MARQUEZ, U. M.. Avaliação da composição centesimal, aminoácidos e mercúrio contaminante de surimi. Ciência e Tecnologia de Alimentos, v. 25, n. 4, p. 665-671, 2005. MO, W. Y.; MAN, Y. B.; WONG, M. H.. Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge. Science of the Total Environment, v. 613, p. 635-643, 2018. MORALES-MEDINA, R. et al. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food chemistry, v. 194, p. 1208-1216, 2016. 66 MORIMURA, S. et al. Development of an effective process for utilization of collagen from livestock and fish waste. Process Biochemistry, v. 37, n. 12, p. 1403-1412, 2002. NAJAFPOUR, Ghasem. Enzyme Technology. Biochemical engineering and biotechnology, p. 19-49, 2015. NASRI, M. Protein hydrolysates and biopeptides: Production, biological activities, and applications in foods and health Benefits. A review. In: Advances in food and nutrition research. Academic Press, p. 109-159, 2017. NEVES, Adriana C. et al. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food chemistry, v. 218, p. 396-405, 2017. NIMALARATNE, C. et al. Free aromatic amino acids in egg yolk show antioxidant properties. Food Chemistry, v. 129, n. 1, p. 155-161, 2011. NOMAN, A. et al. Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry, v. 67, p. 19-28, 2018. OLIVEIRA, W.; NEVES, D. A.; BALLUS, C. A. Mature chemical analysis methods for food chemical properties evaluation. In: Evaluation Technologies for Food Quality. Woodhead Publishing p. 63-90, 2019. ÖZOGUL, F. et al. Crustacean By-products. Encyclopedia of Food Chemistry, p. 33-38, 2019. PACHECO-AGUILAR, R.; MAZORRA-MANZANO, M. A.; RAMÍREZ-SUÁREZ, J. C. Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chemistry, v. 109, n. 4, p. 782- 789, 2008. PANYAM, D.; KILARA, A. Enhancing the functionality of food proteins by enzymatic modification. Trends in food science & technology, v. 7, n. 4, p. 120-125, 1996. PARKIN, KIRK L. Environmental effects on enzyme activity. In: Enzymes in Food Processing. Academic Press: San Diego, CA, p. 39-70, 1993. PEARCE, K. N.; KINSELLA, J. E. Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, v. 26, n. 3, p. 716- 723, 1978. PERROTTA, R. G.; FERNÁNDEZ GIMÉNEZ, A. Estudio preliminar sobre la edad y el crecimiento del pez palo (Percophis brasiliensis Quoy et Gaimard 1824). INIDEP Informe Técnico, v. 10, p. 25-36, 1996. PISOSCHI, A. M.; POP, A. The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, v. 97, p. 55-74, 2015. QUIRINO-DUARTE, G. et al. Composição quali-quantitativa da categoria" mistura" na pesca de arrasto duplo de portas médio desembarcada nos Municípios de Santos e Guarujá, São Paulo, Brasil. Boletim do Instituto de Pesca, v. 35, n. 3, p. 461-474, 2009. SAIDI, S. et al. Production of interesting peptide fractions by enzymatic hydrolysis of tuna dark muscle by-product using alcalase. Journal of Aquatic Food Product Technology, v. 25, n. 2, p. 251-264, 2016. SÁNCHEZ PASCUA, G. L.; CASALES, M. R.; YEANNES, M. I. Psychophysical estimation of acid intensity and determination of sweet-acid interaction in a fish paste containing glycerol. Food Science and Technology, v. 30, p. 260-263, 2010. SANTOS, Carlos Eduardo et al. Oil from the acid silage of Nile tilapia waste: Physicochemical characteristics for its application as biofuel. Renewable energy, v. 80, p. 331-337, 2015. 67 SARANYA, R. et al. Purification, characterization, molecular modeling and docking study of fish waste protease. International journal of biological macromolecules, v. 118, p. 569- 583, 2018. SHEPHERD, C. J.; JACKSON, A. J. Global fishmeal and fish-oil supply: inputs, outputs and marketsa. Journal of fish biology, v. 83, n. 4, p. 1046-1066, 2013. SILVA, C. M.; DA FONSECA, R. A. S.; PRENTICE, C. Comparing the hydrolysis degree of industrialization byproducts of Withemout croaker (Micropogonias furnieri) using microbial enzymes. International Food Research Journal, v. 21, n. 5, p. 1757, 2014. SPERANZA, P.; LOPES, D. B.; MARTINS, I. M. Development of Functional Food From Enzyme Technology: A Review. In: Enzymes in Food Biotechnology. Academic Press, p. 263-286, 2019. UNIVERSIDAD DE BARCELONA. Enzyme with industrial applications characterized. ScienceDaily. Disponível em: <www.sciencedaily.com/releases/2010/02/100211090757.htm>. Acesso em: 19 de julho de 2018. TALENS-PERALES, D.; MARÍN-NAVARRO, J.; POLAINA, J. Enzymes: Functions and Characteristics. Encyclopedia of Food and Health, p. 532-538, 2016. TAN, Y.; CHANG, S. K.; MENG, S. Comparing the kinetics of the hydrolysis of by-product from channel catfish (Ictalurus punctatus) fillet processing by eight proteases. LWT, v. 111, p. 809-820, 2019. THIANSILAKUL, Y.; BENJAKUL, S.; SHAHIDI, F. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food chemistry, v. 103, n. 4, p. 1385-1394, 2007. TIPTON, K. Translocases (EC 7): A new EC Class. Enzyme Nomenclature News, 2018. Disponível em: < https://iubmb.org/wp-content/uploads/sites/2790/2018/10/Translocases-EC- 7.pdf>. Acesso em: 16 de maio de 2019. TRIPATHI, G. Catalytic molecules in cell. In: Cellular and Biochemical Science. IK International Pvt Ltd, p. 95-124, 2010. VIDOTTI, R. M.; GONÇALVES, G. S. Produção e caracterização de silagem, farinha e óleo de tilápia e sua utilização na alimentação animal. Instituto de Pesca, 2006. WASSWA, J. et al. Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chemistry, v. 104, n. 4, p. 1698-1704, 2007. XU, H. et al. Application of different types of protein hydrolysate in high plant protein diets for juvenile turbot (Scophthalmus maximus). Aquaculture research, v. 48, n. 6, p. 2945- 2953, 2017. ZAMORA-SILLERO, J.; GHARSALLAOUI, A.; PRENTICE, C. Peptides from fish byproduct protein hydrolysates and its functional properties: an overview. Marine biotechnology, v. 20, n. 2, p. 118-130, 2018. ZULUETA, Ana; ESTEVE, Maria J.; FRÍGOLA, Ana. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry, v. 114, n. 1, p. 310- 316, 2009.por
dc.subject.cnpqEngenhariaspor
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67775/2019%20-%20Ingrid%20Dal%20Cin%20Alves.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5293
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2021-12-09T15:06:56Z No. of bitstreams: 1 2019 - Ingrid Dal Cin Alves.pdf: 3135389 bytes, checksum: f83335b4f9de2ba2c3d82a2856ca9dd7 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-12-09T15:06:56Z (GMT). No. of bitstreams: 1 2019 - Ingrid Dal Cin Alves.pdf: 3135389 bytes, checksum: f83335b4f9de2ba2c3d82a2856ca9dd7 (MD5) Previous issue date: 2019-08-27eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Ingrid Dal Cin Alves.pdf2019 - Ingrid Dal Cin Alves3.06 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.