Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11260
Full metadata record
DC FieldValueLanguage
dc.creatorBessa, Matheus Vidal
dc.date.accessioned2023-11-19T22:07:32Z-
dc.date.available2023-11-19T22:07:32Z-
dc.date.issued2018-08-15
dc.identifier.citationBESSA, Matheus Vidal. Avaliação da composição do óleo da semente da seringueira (Hevea brasiliensis): Extração com CO2 supercrítico e modelagem matemática. 2018. 73 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11260-
dc.description.abstractThe rubber tree is a tree from the Amazon Basin, known for its latex extraction. This product is the main commercial interest of the plant, and the by-products of latex extraction, such as wood and tree seed, are usually wasted. However, the seeds present an oil that contains several characteristics and compounds (linoleic and a-linolenic acids) that makes it ideal for food, pharmaceutical, cosmetic and resin industries. Different methods have been studied for oil extraction, including rubber seed oil, such as Soxhlet, cold pressing, maceration and others. Another technique, supercritical fluid extraction, has been studied as an alternative one for oil extraction. This is due to the great solvation power of the solvent, being selective for the extraction of certain compounds. Thus, the objective of this work was to extract the rubber tree oil using supercritical fluid under different conditions of temperature and pressure, performing a modeling of the kinetics and solubility of these extractions. The experiments were done adding 10 g of ground and dried rubber seed to a 42 mL extractor, coupled to a CO2 line, which contains a high pressure pump and a CO2 cylinder, and a thermostated bath. The sampling occurred by depressuring through a micrometer valve. The pressures (200-500 bar) and temperatures (40-80 °C) of the experiments were defined by an experimental design. The experimental condition with the highest yield (1.06%) was at 500 bar and 60 °C. From the chromatographic analysis of the extracts, the presence of linoleic and linolenic acids was identified, with the highest selectivity, respectively, in the conditions at 500 bar - 60 ºC and 456 bar - 46 ºC. Another important component, squalene was also identified in most of the oils extracted by supercritical fluid, with the highest selectivity at 244 bar - 46 ºC. Among the kinetics model, the Sovová model (1994) presented the best fit, representing the extraction curves, with a mean relative deviation lower than 10%. Only the solubility model of Gordillo et al. (1999) had the same experimental behavior, with a relative deviation of 1.23%.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectseringueirapor
dc.subjectsolubilidadepor
dc.subjectácidos graxospor
dc.subjectrubber treeeng
dc.subjectsolubilityeng
dc.subjectfatty acidseng
dc.titleAvaliação da composição do óleo da semente da seringueira (Hevea brasiliensis): Extração com CO2 supercrítico e modelagem matemáticapor
dc.title.alternativeEvaluation of the composition of the rubber (Hevea brasiliensis) seed oil: extraction with supercritical CO2 and mathematical modeling.eng
dc.typeDissertaçãopor
dc.contributor.advisor1Mendes, Marisa Fernandes
dc.contributor.advisor1ID02391818-50por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3233683706295801por
dc.contributor.advisor-co1Catunda Junior, Francisco Eduardo Aragão
dc.contributor.referee1Mendes, Marisa Fernandes
dc.contributor.referee2Castelo Branco, Vanessa Naciuk
dc.contributor.referee3Suzart, Luciano Ramos
dc.creator.ID152174477-70por
dc.creator.Latteshttp://lattes.cnpq.br/4691969403037874por
dc.description.resumoA seringueira é uma árvore proveniente da Bacia Amazônica, conhecida por conta da extração do látex. Esse produto é o principal interesse comercial da planta, sendo os subprodutos da extração do látex, como a madeira e a semente da árvore, desperdiçados na maioria das vezes. No entanto, a semente apresenta um óleo que contém diversas características e substâncias (ácidos linoleico e a-linolênico) que o tornam próprio para uso em indústrias alimentícia, farmacêutica, cosmética e de resinas de tintas. Com isso, diferentes métodos de extração desse óleo da semente da seringueira têm sido utilizados, como Soxhlet, prensagem a frio, maceração, entre outros. Outra técnica, que tem despontado como alternativa é a extração usando CO2 supercrítico. Neste estado, o fluido passa a ter um grande poder de solvatação e capaz de ser seletivo na extração de determinados compostos. Desse modo, o objetivo desse trabalho foi extrair o óleo da semente da seringueira, utilizando o CO2 como fluido supercrítico, em diferentes condições de temperatura (40 – 80 oC) e pressão (200 – 500 bar), avaliando a composição do extrato, prevendo a solubilidade do mesmo, e realizando a modelagem matemática da cinética do processo. Os experimentos foram conduzidos, adicionando 10 g de semente moída e seca a um extrator, conectado a uma bomba de alta pressão e a um banho termostatizado. Por despressurização, o óleo foi coletado com o uso de uma válvula micrométrica. A partir de um planejamento de experimentos, a condição que forneceu o maior rendimento (1,06%) foi a 500 bar e 60 oC. A partir da análise cromatográfica dos extratos, identificou-se a presença dos ácidos linoleico e linolênico, com a maior seletividade para a extração de cada um sendo, respectivamente, nas condições a 500 bar – 60 ºC e 456 bar – 46 ºC. Além dos ácidos, o esqualeno também foi identificado na grande maioria dos óleos extraídos por fluido supercrítico, sendo a maior seletividade para a extração a 244 bar – 46 ºC. Quanto aos modelos cinéticos, o modelo de Sovová (1994) apresentou o melhor ajuste, representando a curva de extração, com um desvio relativo médio menor que 10%. Para os modelos de solubilidade, apenas o modelo de Gordillo et al. (1999) obteve o mesmo comportamento experimental, com desvio relativo de 1,23%.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesABDULKADIR, B. A.; UEMURA, Y.; RAMLI, A.; OSMAN, N. B.; KUSAKABE, K.; KAI, T. Production of Biodiesel from Rubber Seeds (Hevea Brasiliensis) by In Situ Transesterification Method. Journal of the Japan Institute of Energy, v. 94, p. 763–768, 2015. ADACHI, Y.; LU, B. C. Supercritical fluid extraction with carbon dioxide and ethylene. Fluid Phase Equilibria, v. 14, p. 147–156, 1983. AGOSTINI, D. L. S. Caracterização dos constituintes do látex e da borracha natural que estimulam a angiogênese. 2009. 87p. Dissertação (Mestrado em Ciência e Tecnologia de Materiais) - Universidade Estadual Paulista - UNESP, Presidente Prudente, 2009. ANTONIO, V.; NEPOMUCENO, P. Análise De Diferentes De Substratos No Crescimento De Mudas De Seringueira. Revista Científica Eletrônica De Engenharia Florestal, v. 14, n. 3, p. 8–17, 2009. ASBAHANI, A. EL; MILADI, K.; BADRI, W.; SALA, M.; ADDI, E. H. A.; CASABIANCA, H.; MOUSADIK, A. E; HARTMANN, D.; JILALE, A.; RENAUD, F. N.R.; ELAISSARI, A. Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, v. 483, p. 220-243, 2015. ASUQUO, J. E.; ANUSIEM, A. C. I.; ETIM, E. E. Extraction and Characterization of Rubber Seed Oil. International Journal of Modern Chemistry, v. 1, n. 3, p. 109–115, 2012. AYDIN, R. Conjugated Linoleic Acid: Chemical Structure, Sources and Biological Properties. Turkish Journal of Veterinary and Animal Science, v. 29, p. 189 – 195, 2005. BALDINO, L.; DELLA PORTA, G.; OSSEO, L. S.; REVERCHON, E.; ADAMI, R. Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2assisted extraction. Journal of Supercritical Fluids, v. 133, p. 65-69, 2018. BARCELÓ-COBLIJN, G.; MURPHY, E. J. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: Benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Progress in Lipid Research, v. 48, n. 6, p. 355-374, 2009. BELLO, E. I.; OTU, F.; RAO, S. S. Physicochemical Properties of Rubber (Hevea brasiliensis) Seed Oil, Its Biodiesel and Blends with Diesel. British Journal of Applied Science & Technology, v. 6, n. 3, p. 261–275, 2015. BENITO-ROMÁN, O.; RODRÍGUEZ-PERRINO, M.; SANZ, M. T.; MELGOSA, R.; BELTRÁN, S. Supercritical carbon dioxide extraction of quinoa oil: Study of the influence of process parameters on the extraction yield and oil quality. Journal of Supercritical Fluids, v. 139, p. 62 – 71, 2018. BERGER, T. A. Chromatography: supercritical fluid. Historical Development. Encyclopedia of Separation Science, p. 1-6, 2007. 55 BRUNNER, G. Mass transfer from solid material in gas extraction. Berichte der Bunsengesellschaft für physikalische Chemie, v. 88, p. 887-891, 1984. CAMEL, V.; TAMBUTÉ, A.; CAUDE, M. Analytical-scale supercritical fluid extraction: a promising technique for the determination of pollutants in environmental matrices. Journal of Chromatography, v. 642, p. 263 – 281, 1993. CARRILHO, E.; TAVARES, M.C.H.; LANÇAS, F.M. Supercritical fluid in analytical chemistry. I. Supercritical fluid chromatography: Thermodynamic definitions. Quimica Nova, v. 24, n. 4, p. 509 – 515, 2001. CHAIKUL, P.; LOURITH, N.; KANLAYAVATTANAKUL, M. Antimelanogenesis and cellular antioxidant activities of rubber ( Hevea brasiliensis ) seed oil for cosmetics. Industrial Crops and Products, v. 108, p. 56–62, 2017. CHAN, Y. H.; YUSUP, S.; QUITAIN, A. T.; CHAI, Y. H.; UEMURA, Y.; LOH, S. K. Extraction of palm kernel shell derived pyrolysis oil by supercritical carbon dioxide: Evaluation and modeling of phenol solubility. Biomass and Bioenergy, v. 116, p. 106 – 112, 2018. CHEMICALBOOK. Disponível em: < http://www.chemicalbook.com/ChemicalProductProperty_EN_CB2112323.htm>. Acesso em: jun. 2018. CHRASTIL, J. Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry,v. 86, p. 3016-3021, 1982. CORNISH, K. Similarities and differences in rubber biochemistry among plant species. Phytochemistry, v. 57, n. 7, p. 1123–1134, 2001. CORSO, M. P.; FAGUNDES-KLEN, M. R.; SILVA, E. A.; CARDOZO FILHO, L.; SANTOS, J. N.; FREITAS, L. S.; DARIVA, C., Extraction of sesame seed (Sesamun indicum L.) oil using compressed propane and supercritical carbon dioxide. Journal of Supercritical Fluids, v. 52, n. 1, p. 56-61, 2010. CRAMPON, C.; NIKITINE, C.; ZAIER, M.; LÉPINE, O.; TANZI, C. D.; VIAN, M. A.; CHEMAT, F.; BADENS, E. Oil extraction from enriched Spirulina platensis microalgae using supercritical carbon dioxide. Journal of Supercritical Fluids, v. 119, p. 289-296, 2017. DANIELSKI, L.; MICHIELIN, E. M.Z.; FERREIRA, S. R.S. Horsetail (Equisetum giganteum L.) oleoresin and supercritical CO2: Experimental solubility and empirical data correlation. Journal of Food Engineering, v. 78, n. 3, p. 1054 – 1059, 2007. DEL VALLE, J. M.; AGUILERA, J. M. An Improved Equation for Predicting the Solubility of Vegetable Oils in Supercritical CO2. Industrial & Engineering Chemistry Research, v. 27, p. 1551-1553, 1988. 56 EBEWELE, R. O.; IYAYI, A. F.; HYMORE, F. K. Considerations of the extraction process and potential technical applications of Nigerian rubber seed oil. International Journal of Physical Sciences, v. 5, n. 6, p. 826–831, 2010. EKA, H. D.; TAJUL ARIS, Y.; WAN NADIAH, W. A. Potential use of Malaysian rubber (Hevea brasiliensis) seed as food, feed and biofuel. International Food Research Journal, v. 17, n. 3, p. 527-534, 2010. EKINCI, M. S.; GÜRÜ, M. Extraction of oil and β-sitosterol from peach (Prunus persica) seeds using supercritical carbon dioxide. Journal of Supercritical Fluids, v. 92, p. 319-323, 2014. GIMBUN, J.; ALI, S.; KANWAL, C. C. S. C.; SHAH, L. A.; GHAZALI, N. H. M.; CHENG, C. K.; NURDIN, S. Biodiesel Production from Rubber Seed Oil Using A Limestone Based Catalyst. Advances in Materials Physics and Chemistry, v. 2, n. 4, p. 138–141, 2012. GMINSIGHTS. Disponível em: <https://www.gminsights.com/industryanalysis/ squalene-market >. Acesso em: jun. 2018. GORDILLO, M. D.; BLANCO, M. A.; MOLERO, A.; MARTINEZ DE LA OSSA, E. Solubility of the antibiotic penicillin G in supercritical carbon dioxide. The Journal of Supercritical Fluids, v. 15, n. 3, p. 183–189, 1999. GUEDES, A. R.; DE SOUZA, A. R. C.; ZANOELO, E. F.; CORAZZA, M. L. Extraction of citronella grass solutes with supercritical CO2, compressed propane and ethanol as cosolvent: Kinetics modeling and total phenolic assessment. Journal of Supercritical Fluids, v. 137, p. 16 – 22, 2018. GUIDUCCI, E. P. Sistemas de produção de porta-enxertos de seringueira. 2014. 48p. Dissertação (Mestrado em agronomia) - Universidade Estadual - UNESP, Jaboticabal, 2014. GUZZO, C. D.; CARVALHO, L. B. D. E.; GIANCOTTI, P. R. F. Impact of the timing and duration of weed control on the establishment of a rubber tree plantation. Anais da Academia Brasileira de Ciências, v. 86, p. 495–504, 2014. HALOUI, I.; MENIAI, A. H. Supercritical CO2 extraction of essential oil from Algerian Argan (Argania spinosa L.) seeds and yield optimization. International Journal of Hydrogen Energy, v. 42, n. 17, p. 12912-12919, 2017. HUANG, Z.; YANG, M. J.; LIU, S. F.; MA, Q. Supercritical carbon dioxide extraction of Baizhu: Experiments and modeling. Journal of Supercritical Fluids, v. 58, p. 31 – 39, 2011. IAPAR. O Cultivo da seringueira (Hevea spp.). 2000. JAHONGIR, H.; MIANSONG, Z.; AMANKELDI, I.; YU, Z.; CHANGHENG, L. The influence of particle size on supercritical extraction of dog rose (Rosa canina) seed oil. Journal of King Saud University - Engineering Sciences, 2018. 57 JOHNER, J. C.F.; HATAMI, T.; MEIRELES, M. A. A. Developing a supercritical fluid extraction method assisted by cold pressing for extraction of pequi (Caryocar brasiliense). Journal of Supercritical Fluids, v. 137, p. 34-39, 2018. KANDIAH, M.; SPIRO, M. Extraction of Ginger rhizome: kinetic studies with supercritical carbon dioxide. International Journal of Food Science and Technology, v. 25, p. 328-338, 1990. KITTIGOWITTANA, K.; WONGSAKUL, S.; KRISDAPHONG, P.; JIMTAISONG, A.; SAEWAN, N. Fatty acid composition and biological activities of seed oil from rubber (Hevea brasiliensis) cultivar RRIM 600. International Journal of Applied Research in Natural Products, v. 6, n. 2, p. 1–7, 2013. KRAUJALIS, P.; VENSKUTONIS, P. R. Optimisation of supercritical carbon dioxide extraction of amaranth seeds by response surface methodology and characterization of extracts isolated from different plant cultivars. Journal of Supercritical Fluids, v. 73, p. 80- 86, 2013. LAGE, P. Relações das características morfo-anatômicas da casca, estado nutricional e variações climáticas sazonais com a produção de látex em clones de seringueira, em Napumoceno,MG. 2013. 100p. Dissertação (Mestrado em agronomia) - Universidade Federal de Lavras - UFLA, Lavras 2013. LEE, W. J.; TAN, C. P.; SULAIMAN, R.; CHONG, G. H. Solubility of red palm oil in supercritical carbon dioxide: Measurement and modelling. Chinese Journal of Chemical Engineering, v.26, n. 5, p. 964 – 969, 2018. LIN, C. H.; LIN, H. W.; WU, J. Y.; HOUNG, J. Y.; WAN, H. P.; YANG, T. Y.; LIANG, M. T. Extraction of lignans from the seed of Schisandra chinensis by supercritical fluid extraction and subsequent separation by supercritical fluid simulated moving bed. Journal of Supercritical Fluids, v. 98, p. 17 – 24, 2015. MARAN, J. P.; PRIYA, B. Supercritical fluid extraction of oil from muskmelon (Cucumis melo) seeds. Journal of the Taiwan Institute of Chemical Engineers, v. 47, p. 71-78, 2015. MAUL, A.A.; WASICKY, R.; BACCHI, E. M. Extração por fluido supercrítico. Revista Brasileira de Farmacognosia, v. 5, n. 2, p. 185-200, 1996. MOHD-SETAPAR, S. H.; LEE, Y.; SHARIF, N. S. M.; AHMED, A.; KHATOON, A.; AZIZI, C. Y. M.; IDA-IDAYU, M. Extraction of rubber (hevea brasiliensis) seeds oil using supercritical carbon dioxide. Journal of Biobased Materials and Bioenergy, v. 6, p. 1 – 6, 2012. MOHD-SETAPAR, S. H.; NIAN-YIAN, L.; PENG, W. L.; DHAM, Z.; YUNUS, M. A. C.; MUHAMADB, I. I. Application of rubber (hevea brasiliensis) seeds oil extracted using supercritical carbon dioxide in cosmetics. Jurnal Teknologi (Sciences and Engineering), v. 69, n. 4, p. 55 – 59, 2014. 58 MOHD-SETAPAR, S.H.; NIAN-YIAN, L.; SHARIF, N.; AHMAD, A.; KHATOON, A.; YUNUS, M. A. C.; MUHAMAD, I. I. Extraction of rubber (hevea brasiliensis) seeds oil using supercritical carbon dioxide. Research Journal of Chemistry and Environment, v. 17, n. 10, p. 46 – 52, 2013 MUSTAPA, A. N.; MARTIN, Á.; MATO, R. B.; COCERO, M. J. Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwaveassisted extraction and supercritical carbon dioxide extraction. Industrial Crops and Products, v. 74, p. 83 – 94, 2015. NASCIMENTO, A. D. P.; SOARES, L. A. L.; STRAGEVITCH, L.; DANIELSKI, L. Extraction of Acrocomia intumescens Drude oil with supercritical carbon dioxide: Process modeling and comparison with organic solvent extractions. Journal of Supercritical Fluids, v. 111, p. 1 – 7, 2016. ONOJI, S.E.; IYUKE, S.E.; IGBAFE, A.I. Hevea brasiliensis (Rubber Seed) Oil: Extraction, Characterization, and Kinetics of Thermo-oxidative Degradation Using Classical Chemical Methods. Energy and Fuels, v. 30, n. 12, 2016. PAVLIĆ, B.; BERA, O.; VIDOVIĆ, S.; ILIĆ, L.; ZEKOVIĆ, Z. Extraction kinetics and ANN simulation of supercritical fluid extraction of sage herbal dust. Journal of Supercritical Fluids, v. 130, p. 327 – 336, 2017. PEDERSSETTI, M. M.; PALÚ, F.; DA SILVA, E. A. ROHLING, J. H.; CARDOZOFILHO, L.; DARIVA, C. Extraction of canola seed (Brassica napus) oil using compressed propane and supercritical carbon dioxide. Journal of Food Engineering, v. 102, n. 2, p. 189- 196, 2011. PEREIRA, C. S. S.; PESSOA, F. L. P.; MENDONCA, S.; RIBEIRO, J. A. A.; MENDES, M. F. Technical and Economic Evaluation of Phorbol Esters Extraction from Jatropha curcas Seed Cake using Supercritical Carbon Dioxide. Journal of Advanced Chemical Engineering, v. 5, n. 3, p. 1 – 7, 2015. PINTO, G. M. F.; PINTO, J. F.; JARDIM, I. C. S. F. Extração com Fluido Supercrítico. Disponivel em: <http://chemkeys.com/br/wpcontent/ themes/chemkeysbr/articleI.php?u=ZXh0cmFjYW8tY29tLWZsdWlkby1zdXBlcmNy aXRpY28=>. Acesso em 1 mai. 2018. PIVA, G. S.; WESCHENFELDER, T. A.; FRANCESCHI, E.; PAROUL, N.; STEFFENS, C. Extraction and modeling of flaxseed (Linnum usitatissimum) oil using subcritical propane. Journal of Food Engineering, v. 228, p. 50 – 56, 2018. PRIYADARSHAN, P. M. Biology of Hevea rubber, Springer, India, 2017. RAI, A.; MOHANTY, B.; BHARGAVA, R. Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chemistry, v. 192, p. 647-659, 2016. RAMSEY, E. D.; GUO, W.; LIU, J. Y.; WU, X. H. Supercritical Fluids. Comprehensive Biotechnology, v. 2, p. 1007-1026, 2011. 59 RESHAD, A. S.; TIWARI, P.; GOUD, V. V. Extraction of oil from rubber seeds for biodiesel application: Optimization of parameters. Fuel, v. 150, p. 636–644, 2015. SABARISH, C.S.; SEBASTIAN, J.; MURALEEDHARAN, C. Extraction of Oil from Rubber Seed through Hydraulic Press and Kinetic Study of Acid Esterification of Rubber Seed Oil. Procedia Technology, v. 25, n. Raerest, p. 1006–1013, 2016. SANTOS, K. A.; FROHLICH, P. C.; HOSCHEID, J.; TIUMAN, T. S.; GONÇALVES, J. E.; CARDOZO-FILHO, L.; DA SILVA, E. A. Candeia (Eremanthus erythroppapus) oil extraction using supercritical CO2with ethanol and ethyl acetate cosolvents. Journal of Supercritical Fluids, v. 128, p. 323 – 330, 2017 SATREPS, J. Hevea brasiliensis. Plants of the world online, v. 60, n. 2, p. 3639– 3640, 2011. SEMENTESDOXINGÚ. Disponível em: <http://sementesdoxingu.org.br/site/sementes/seringueira/>. Acesso em: jun. 2018/ SHANLEY, P.; MEDINA, G. Frutíferas e Plantas Úteis na Vida Amazônica Frutíferas e Plantas Úteis na Vida Amazônica. CIFOR & Imazon, 2005. SILVA, D. C. M. N.; BRESCIANI, L. F. V.; DALAGNOL, R. L.; DANIELSKI, L.; YUNES, R. A.; FERREIRA, S. R. S. Supercritical fluid extraction of carqueja (Baccharis trimera) oil: Process parameters and composition profiles. Food and Bioproducts Processing, v. 87, n. 4, p. 317 – 326, 2009. Silva, R. P.F.F.; Rocha-Santos, T. A.P.; Duarte, A. C. Supercritical fluid extraction of bioactive compounds. Trends in Analytical Chemistry, v. 76, p. 40 – 51, 2016. SOUSA, E. M. B. D.; MARTÍNEZ, J.; CHIAVONE-FILHO, O.; ROSA, P. T. V.; DOMINGOS, T.; MEIRELES, M. A. A. Extraction of volatile oil from Croton zehntneri Pax et Hoff with pressurized CO2: Solubility, composition and kinetics. Journal of Food Engineering, v. 69, n. 3, p. 325 – 333, 2005. SOUZA, A. L. B. Extração e Caracterização da Biomassa e Do Óleo Da Microalga Desmodesmus sp. Usando Dióxido De Carbono Supercrítico. 2015. 52p. Dissertação (Mestrado em Engenharia Química) – Universidade Rural do Rio de Janeiro - UFRRJ, Seropédica, 2015. SOUZA, A. R. C.; GUEDES, A. R; FOLADOR, J. M.; BOMBARDELLI, M. C. M.; CORAZZA, M. L. Extraction of Arctium Lappa Leaves using Supercritical CO2 + Ethanol: Kinetics, Chemical Composition, and Bioactivity Assessments. The Journal of Supercritical Fluids, v. 140, p.137 -146, 2018. TAHER, H.; AL-ZUHAIR, S.; AL-MARZOUQI, A. H.; HAIK, Y.; FARID, M. Mass transfer modeling of Scenedesmus sp. lipids extracted by supercritical CO2. Biomass and Bioenergy, v. 70, p. 530 – 541, 2014. 60 TAI, H. P.; KIM, K. P. T. Supercritical carbon dioxide extraction of Gac oil. Journal of Supercritical Fluids, v. 95, p. 567 – 571, 2014. TRINDADE, T.; DANIEL, A. L. S. Nanocomposite Particles for Bio-Applications : Materials. Pan Stanford, 2012. TOGHILL, K. E.; MÉNDEZ, M. A.; VOYAME, P. Electrochemistry in supercritical fluids: A mini review. Electrochemistry Communications, v. 44, p. 27-30, 2014. VLADIĆ, J.; ZEKOVIĆ, Z.; JOKIĆ, S.; SVILOVIĆ, S.; KOVAČEVIĆ, S.; VIDOVIĆ, S. Winter savory: Supercritical carbon dioxide extraction and mathematical modeling of extraction process. Journal of Supercritical Fluids, v. 117, p. 89 – 97, 2016. WEJNEROWSKA, G.; HEINRICH, P.; GACA, J. Separation of squalene and oil from Amaranthus seeds by supercritical carbon dioxide. Separation and Purification Technology, v. 110, p. 39 – 43, 2013. WILDAN, A.; INGRID A, D.; HARTATI, I. Oil Extraction Process from Solid Waste Rubber Seed by Soxhletation and Extraction Solvent by Stirring Methods. International Conference On Chemical and Material Engeneering 2012, p. 10–13, 2012. YOUSIF, E.; ABDULLAH, B.; IBRAHEEM, H.; SALIMON, J.; SALIH, N. Rubber Seed Oil Properties, Authentication and Quality Assessment Using (Chloroform: Methanol) as Solvent. Journal of Al-Nahrain University Science, v. 16, n. 1, p. 1–6, 2013.por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/66236/2018%20-%20Matheus%20Vidal%20Bessa.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4919
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-08-14T23:57:49Z No. of bitstreams: 1 2018 - Matheus Vidal Bessa.pdf: 2478128 bytes, checksum: 09ee8a5b5473ad4d748330df3a16a3a2 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-08-14T23:57:49Z (GMT). No. of bitstreams: 1 2018 - Matheus Vidal Bessa.pdf: 2478128 bytes, checksum: 09ee8a5b5473ad4d748330df3a16a3a2 (MD5) Previous issue date: 2018-08-15eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Matheus Vidal Bessa.pdf2018 - Matheus Vidal Bessa2.42 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.