Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11226
Full metadata record
DC FieldValueLanguage
dc.creatorRaymundo Filho, Carlos
dc.date.accessioned2023-11-19T22:06:48Z-
dc.date.available2023-11-19T22:06:48Z-
dc.date.issued2011-10-13
dc.identifier.citationRAYMUNDO FILHO, Carlos. Obtenção de Zeólita Mesoporosa por Síntese Direta. 2011. 77 f. Dissertação (Programa de Pós-Graduação em Engenharia Química) - Universidade Federal Rural do Rio de Janeiro, Seropédica.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11226-
dc.description.abstractMesoporous zeolite samples were obtaining through direct synthesis by using mesoporous carbon molecular sieve CMK-3, activated charcoal and carbon black as templates for mesoporosity. In order to evaluate the effect of these templates, samples of zeolite presenting SiO2/Al2O3 molar ratios equal to 25, 60 and 90 were prepared following procedures described in the literature and adding different amounts of these templates to the synthesis gel. The zeolite samples obtained were characterized by X-ray diffraction (XRD), by X-ray fluorescence (XRF), by N2 adsorption/desorption, by temperature programmed desorption of ammonia (NH3-TPD) and by scanning electron microscopy (SEM). An evaluation of some samples was carried out using the n-heptane cracking reaction at 350°C.For the zeolite samples having SiO2/Al2O3 molar ratio equal to 25 and 60 was observed a slight increase of the mesopore volume as the amount the activated charcoal was increased. All samples presented similar catalytic activity and selectivity, forming mainly C3 and C4 hydrocarbons in the n-heptane cracking reaction.eng
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectdirecionadores de carbonopor
dc.subjectzeólita mesoporosapor
dc.subjectcraqueamento catalíticopor
dc.subjectcarbon templateseng
dc.subjectmesoporous zeoliteseng
dc.subjectcatalytic crackingeng
dc.titleObtenção de zeólita mesoporosa por síntese diretapor
dc.title.alternativeMesoporous Zeolites were obtained by Direct Synthesis.eng
dc.typeDissertaçãopor
dc.contributor.advisor1Fernandes, Lindoval Domiciano
dc.contributor.advisor1ID837.359.957-15por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7921814684730923por
dc.contributor.referee1Pergher, Sibele Berenice Castellã
dc.contributor.referee2Morgado Junior, Edisson
dc.creator.ID002.149.847-45por
dc.description.resumoForam obtidas amostras de zeólita mesoporosa via síntese direta. utilizando o carbono mesoporoso CMK-3, o carvão ativo e o negro de fumo como direcionadores de mesoporosidade. Para avaliar o efeito desses direcionadores foram preparadas amostras de zeólita com razões molares SiO2/Al2O3 (SAR) iguais a 25, 60, 90 seguindo procedimentos descritos na literatura e adicionando quantidades diferentes desses direcionadores ao gel de síntese. As amostras preparadas foram caracterizadas por difração de raios X (DRX), fluorescência de raios X (FRX), adsorção de N2, dessorção de amônia a temperatura programada (TPD-NH3) e microscopia eletrônica de varredura (MEV). Foi realizada uma avaliação catalítica de algumas amostras utilizando a reação de craqueamento de n-heptano a 350°C. Para as amostras de zeólita com razões molares SiO2/Al2O3 (SAR) iguais a 25 e 60 foi observado ligeiro aumento do volume do mesoporos com aumento da quantidade de carvão ativo utilizado. Todas as amostras avaliadas cataliticamente apresentaram seletividades e atividades muito próximas, formando principalmente hidrocarbonetos C3 e C4.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesARENDS, I. W. C. E.; SHELDON, R. A.; WALLAU, M.; SCHUCHARDT, U.; Oxidative Transformations of Organic Compounds Mediated by Redox Molecular Sieves, Angew. Chem. Int. Ed. Engl., v.36, p.1144, 1997. BARRET, E. P.; JOYNER, L. G.; HALENDA, P. P.; J. Amer. Chem. Soc., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, v.73, p.373, 1951. Apud GOWOREK, J. et al., Porosity of Ordered Silica Materials by Nitrogen Adsorption and Positronium Annihilation Lifetime Spectroscopy, Journal of Colloid and Interface Science, v.243, n.2, p.427-432, 2001. BEKKUM, H. V.; FLANIGEN, E. M.; JANSEN, J. C.; Introduction to Zeolite Science and Practice. Studies in Surface Science and Catalysis, Advisory Editors: B. Delmon and J. T. Yates, v.58, 1991. BHATIA, S., Zeolite Catalysis: Principles and Applications, CRC Press, Florida; Pure and Applied Chemistry, v.73, p.381–394, 1990. BOND, G. C.; Heterogeneous Catalysis: Principles and Applications, 2nd ed., Clarendon, Oxford, 1987. BRECK, D. W.; Zeolite Molecular Sieves, Wiley, Nova Iorque, 1974. BRUNAUER. S.; EMMET, P. H and TELLER, E.; Adsorption of Gases in Multimolecular Layers, J. Amer. Chem. Soc., v.60, p.309, 1938. CAMBLOR, M. A.; MIFSUD, A.; PÉREZ-PARIENTE, J.; Influence of the Synthesis Conditions on the Crystallization of Zeolite Beta, ZEOLITES, v.11, n.8, p.792-797, 1991. CAMBLOR, M. A.; CORMA, A.; VALENCIA, S.; Spontaneous Nucleation and Growth of Pure Silica Zeolite- Free of Connectivity Defects, J. Chem. Commun., p. 2365-2366, 1996. 70 CEJKA, Jirí et al Eds.; Introduction to zeolite science and practice, Elsievers Sc. Publishers Co. New York v. 168, 1991. CHEN, N. Y.; GARWOOD, W. E.; DWYER, F. G.; Shape Selective Catalysis in Industrial Applications, 2ª ed., Marcel Dekker, New York, 1996. CLIFTON, R. A.; Natural and synthetic zeolites, Washington: Bureau of Mines, 1987. 21p. (Information Circular; 9140). CORMA, A.; Inorganic Solid Acids and Their Use Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev., v.95, p.559 – 614, 1995. CORMA, A.; GRACIA, H.; Lewis Acids: From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis, Chem. Rev., v.103, p.4307, 2003. CRONSTEDT, A. F.; RÖN och BESKRIFNING Om en oberkant barg art, som kallas Zeolites, Akad. Handl. Stockholm, v.18, p.120-130, 1756. Apud COLELLAA, C.; GUALTIERI, A. F.; Cronstedt’s zeolite, Micropor. Mesopor. Mater., v.105, n.3, p.213-221, 2007. CUNDY. C. S.; COX, P. A.; The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time, Chem. Rev., v.103, p. 663, 2003. DAVIS, S.; INOGUCHI, Y.; Zeolites, CEH Product Review. In: Chemical Economic Handbook. Stanford: SRI, 2008. DRZAT.B et al.; Zeolites: Synthesis, Struture, Technology and Application, Elsiever Sc. Publishers Co. New York, v. 24, 1985. DUNNE, S. R.; Zeolites in Industrial Separation and Catalysis, Edited by Kulprathipanja, WILEY-VCH Verlag GmbH & Co., 2010. 71 EGEBLAD, K.; CHRISTENSEN, C.H.; ZHU, K.; KUSTOVA, M. and CHRISTENSEN, C. H.; Mesoporous zeolite and zeotype single crystals synthesized in fluoride media. Micropor. Mesopor. Mater., v.101 p.214–223, 2007. EGEBLAD, K.; CHRISTENSEN, C.H.; KUSTOVA, M. and CHRISTENSEN, C. H.; Templating Mesoporous Zeolites, Chem. Mater., v.20, n.3, p.946–966, 2008. FAN. J.; LEI, J.; WANG, L.; YU, C.; TU, B. and ZHAO, D.; Rapid and High-Capacity Immobilization of Enzymes Based on Mesoporous Silicas with Controlled Morphologies, Chem. Commun., p.2140, 2003. GABRIENKO A. Anton.; Micropor. Mesopor. Mater., v.131, p.210–216, 2010. GALLEZOT, P.; LECLERCQ, C.; GUISNET, M. and MAGNOUX, P.; Coking, Aging and Regeneration of Zeolites, J. Catal., v.114, p.100-111, 1988. GIANETTO, G.; Zeolitas: Caracteristicas, Propriedades y Aplicaciones Industriales. Ed. Caracas, 1990. GREGG, S. J.; SING, K. S. W.; Adsorption, Surface Area and Porosity, 2°ed, Academic Press, New York, p.287, 1982. GROEN, J. C.; MOULIJN, J. A.; PÉREZ-RAMÍREZ, J.; Desilication: on the Controlled Generation of Mesoporosity in MFI Zeolites, J. Mater. Chem., v.16, p. 2121 – 2131, 2006. GUISNET M.; RIBEIRO, F. R.; Zeolitos: Um Nanomundo ao Serviço da Catálise; Fundação Calouste Gulbenkian, Lisboa, 2004. HAN. S.; SOHN, K. and HYEON, T.; Fabrication of New Nanoporous Carbons Through Silica Templates and Their Application to the Adsorption of Bulky Dyes; Chem. Mater., v.12, n.11, p.3337–3341, 2000. JACOBS, P. A.; MARTENS, J. A.; Synthesis of High Silica Aluminosilicate Zeolites, Stud. Surf. Sci.Catal. Elsevier, Amsterdam, v.33, p.80, 1987. 72 JACOBSEN, C. J. H.; MADSEN, C.; HOUZVICKA, J.; SCHMIDT, I.; CARLSSON, A.; Mesoporous Zeolite Crystals; J. Am. Chem. Soc., v.122 n.29, 7116–7117, 2000. KATIYAR, A. and PINTO, N. G.; Visualization of Size-Selective Protein Separations on Spherical Mesoporous Silicates, Small, v.2, p.644, 2006. KIM, S.; SHAH, J.; PINNAVAIA, J. T.; Colloid-Imprinted Carbons as Templates for the Nanocasting Synthesis of Mesoporous ZSM-5 Zeolite; Chem. Mater., v.15, p.1664-1668, 2003. KESGE, C. T.; LEONORWICZ, M. E.; ROTH, W.J.; VARTULI, J.C and BECK, J. S.; Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism, Nature, v.359, p.710-712, 1992. MARTÍNEZA, J. G.; D. Cazorla AMORÓSA, C. D.; SOLANOA, L. A.; LIN, Y.S., Synthesis and Characterisation of MFI-type Zeolites Supported on Carbon Materials, Micropor. Mesopor. Mater., v.42, n.2-3, p.255-268, 2001. MASIKA, E.; MOKAYA, R.; Mesoporous Aluminosilicates from a Zeolite BEA Recipe, Chem. Mater.; v.23, n.9, p.2491-2498, 2011. MATSUKATA, M. et al.; Quantitative Analyses for TEA+ and Na+ Contents in Zeolite Beta with a Wide Range of Si/2Al Ratio, Micropor. Mesopor. Mater., v.48, p.23-29, 2001. MATSUKATA, M.; OSAKI, T.; OGURA, M.; KIKUCHI, E.; Crystallization Behavior of Zeolite Beta During Steam-Assisted Crystallization of Dry Gel, Micropor. Mesopor. Mater., n.1, v.56, p.1-10, 2002. MEHRABAN, Z. and FARZANEH, F.; MCM - 41 as Selective Separator of Chlorophyll – a From -Carotene and Chlorophyll - a Mixture, Micropor. Mesopor. Mater., v.84, p.88, 2006. 73 MEIER, W. M.; OLSON, D. H.; Atlas of Zeolite Structure Types, 3a. ed., Butterworth- Heinemann, Londres, 1992. MEIER, W. M.; OLSON, D. H.; Atlas of Zeolites Structure Types; 2.ed. rev. London, Butterworths; Heinemann, 1987. MEYNEN, V., COOL, P.; VANSANT, E. F.; Verified Syntheses of Mesoporous Materials, Micropor. Mesopor. Mater., v.125, p.170–171, 2009. MOUSHEY, D. L.; WANG, F.; SMIRNIOTIS, P. G.; Synthesis and Characterization of Mesoporous Structures Using Carbon Particles, 4th International FEZA Conference, Paris, 2008. MOUSHEY, D. L.; SMIRNIOTIS, P. G.; n-Heptane Hydroisomerization over Mesoporous Zeolites made by Utilizing Carbon Particles as the Template for Mesoporosity, Catalysis Letters, v.129, p.20-25, 2009. NAGY, J. B.; BODART, P.; HANNUS, I.; KIRICSI, I.; Synthesis, characterization and use of zeolitic microporous materials; DecaGen Ltd., Hungary, 1998. NEWSAM. J. M.; TREACY, M. M. J.; KOETSIER, W. T. and DE GRUYTE, C. B. Proc. R. Soc. Lond., A, v.420, p.375-405, 1988. PIRES, J.; CARVALHO, A. and CARVALHO, M. B.; Template synthesis and characterization of mesoporous zeolites, Micropor. Mesopor. Mater., v.43, p. 277, 2001. RAO, P. R. H. P. et al.; Synthesis of BEA by Dry Gel Conversion and its Characterization. Micropor. Mesopor. Mater, v. 21, p. 305-313, 1998. ROLAND, E.; KLEINSCHMIT, P.; Ullmann’s Encyclopedia of Industrial Chemistry, 5a. ed., vol. A28 (B. Elvers e S.Hawkins, eds.) VCH, Weinheim, p.476, 1996. RUTHVEN, D. M.; POST, M. F. M.; Stud. Surf. Sci.Catal., v.137, p. 525 – 577, 2001. 74 RYOO, R.; JOO, S.H. and JUN, S.; Synthesis of highly ordered carbon molecular sieves via template-modified structural transformation, J. Phys. Chem. B, p.103, n.37, p.7743–7746, 1999. SANTOS, C.; Estudos de Adsorção sobre Materiais Porosos e Preparação de Carvões Mesoporosos Usando como Matriz Argilas Porosas Heteroestruturadas. Tese de Mestrado. Lisboa, ISEL, 2008. SCHMIDT, I.; MADSEN, C. and JOCOBSEN, C. J. H.; Confined space synthesis. A novel route to nanosized zeolites; Inorg. Chem., v.39, n.11, p.2279–2283, 2000. SHELDON, R. A.; Homogeneous and Heterogeneous Catalytic Oxidations with Peroxide Reagents, Top. Curr. Chem., v.164, p.21, 1993. SMART, L.; MOORE, E.; Solid State Chemistry, An Introduction, Chapman & Hall, Londres, 1992. SMITH, J. V.; Topochemistry of Zeolites and Related Materials. 1. Topology and geometry Chem. Rev., v.88, p.149, 1988. SNIART.; Zeolites, CEH Product Review. In: Chemical Economic Handbook. Stanford: SRI, 1988. SUZUKI, T.; OKUHARA, T.; Change in Pore Structure of MFI Zeolite by Treatment with NaOH Aqueous Solution, Micropor. Mesopor. Mater, v.43, p.83-89, 2001. TANEV, P. T.; CHIBWE, M. and PINNAVAIA, T. J.; Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds, Nature, v.368, p.321, 1994. TAO, Y.; KANOH, H.; ABRAMS, L.; KANEKO, K.; Mesopore-Modified Zeolites: Preparation, Characterization, and Applications, Chem. Rev., v.106, p.896-910, 2006. 75 TAO, Y.; KANOH, H.; KANEKO, K.; Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating, J. Phys. Chem. B, v.107, p.10974, 2003. TAO, Y.; KANOH, H.; KANEKO, K.; ZSM-5 Monolith of Uniform Mesoporous Channels, J. Am. Chem. Soc., v.125, p.6044, 2003. THOMAS, J. M.; Turning Points in Catalysis, Angew. Chem. Int. Ed. Engl., v.33, p.913, 1994. TRIANTAFÍLLIDS, C. S.; VLESSIDIS, A. G.; NALBANDIAN, L.; EVMIRIDIS, N. P.; Effect of the Degree and Type of the Dealumination Method on the Structural, Composicional and Acidic Characteristics of H-ZSM-5 Zeolites, Micropor. Mesopor. Mater., v.47, p.369- 388, 2001. TUEL, A.; CALDARELLI, S.; MEDEN, A.; MCCUSKER, L.B.; BAERLOCHER, C.; RISTIC, A.; RAJIC, N.; MALI, G.; KAUCIC, V.; NMR Characterization and Rietveld Refinement of the Structure of Rehydrated AlPO4-34, J. Phys. Chem. B, v.104, p.5697, 2000. van DONK, S.; BROERSMA, A.; GIJZEMAN, O. L. J.; van BOKHOVEN, J. A.; BITTER, J. H.; JONG, K. P.; Combined Diffusion, Adsorption, and Reaction Studies of n-Hexane Hydroisomerization over Pt/H–Mordenite in an Oscillating Microbalance, J. Catal., v.204, p.272, 2001. van DONK, S.; JANSSEN, A. H.; BITTER, J. H.; DE JONG, K. P., Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts, Catal. Rev.Sci. Eng., v. 45, p.297–319, 2003. ZHANG, Y.; OKUBO, T.; and OGURA, M.; Synthesis of Mesoporous Aluminosilicate with Zeolitic Characteristics, Chem. Comm., p.2719–2720, 2005. ZHAO. D.; FENG, J.; HUO, Q.; MELOSH, N.; FREDRICKSON, G. H.; CHMELKA, B. F. and STUCKY, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, v.279, p.548, 1998. 76 ZHDANOV et al., J. Am. Chem. Soc., v.9, n.16, p.1783-1784, 1975. ZHU, H.; LIU, Z.; KONG, D.; WANG, Y. and XIE, Z.; Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent, J. Phys. Chem. C., v.112, n.44, p.17257–17264, 2008. ZHU, K.; EGEBLAD, K.; CHRISTENSENA, C. H.; Tailoring the Porosity of Hierarchical Zeolites by Carbon-Templating; 4th International FEZA Conference, Paris, 2008.por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/62111/2011%20-%20Carlos%20Raymundo%20Filho.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3931
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-09-23T23:46:25Z No. of bitstreams: 1 2011 - Carlos Raymundo Filho.pdf: 3349809 bytes, checksum: c1ee078023ce95c3bc97f8703948617b (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-09-23T23:46:25Z (GMT). No. of bitstreams: 1 2011 - Carlos Raymundo Filho.pdf: 3349809 bytes, checksum: c1ee078023ce95c3bc97f8703948617b (MD5) Previous issue date: 2011-10-13eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2011 - Carlos Raymundo Filho.pdf2011 - Carlos Raymundo Filho3.27 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.