Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11207
Full metadata record
DC FieldValueLanguage
dc.creatorMegale, Eliana Zaroni
dc.date.accessioned2023-11-19T22:06:20Z-
dc.date.available2023-11-19T22:06:20Z-
dc.date.issued2019-08-22
dc.identifier.citationMEGALE, Eliana Zaroni. Avaliação da casca da semente da seringueira como adsorvente no tratamento de efluentes aquosos: estudo cinético e termodinâmico. 2019. 85 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia. Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11207-
dc.description.abstractThe removal of dye present in industrial effluents has been a subject of great interest in recent years, due to the irreversible environmental damage caused by its improper disposal in aqueous streams. Among the diversity of processes that can be applied to treat these streams, the adsorption technique has been studied because of the high efficiency and low cost. Moreover, the motivation is the possibility to use as adsorbents many biochars. Therefore, in this work, it was decided to study the adsorption potential of the rubber seed shell (Hevea brasiliensis), in four forms (in nature, calcinated, acid activated carbon and basic activated carbon) for the removal of the methyl orange dye. All the four adsorbents were evaluated, and it was observed that the in nature material did not have adsorption potential. On the other hand, the application of calcination, acid activation and basic activation provided higher adsorption capacities, but the acid activated carbon was more efficient due to the increase of the porosity employed by the pre-treatment, favoring the adsorption process. As a result, the activated carbon was used to evaluate the effects of the solution initial concentration (25-150 mg/L), temperature (25, 35 and 45 ºC), and the contact time (0-360 min), as well as to study the kinetics (pseudo-first order, pseudo-second order and intraparticle diffusion), the equilibrium isotherms (Freundlich, Langmuir, Temkin and Dubinin-Radushkevich) and the thermodynamic variables (∆H, ∆S e ∆G) of the adsorption process. The increase of the initial concentration and temperature resulted in improvements in the adsorbed amount, indicating the endothermic nature of the process. The kinetic and isotherm models that best fitted to the experimental data were the pseudo-second order and Freundlich models, respectively. The thermodynamic study indicated that the adsorption process is endothermic, only spontaneous for the initial solution concentration of 25 mg/L, and indicated a good affinity between adsorbent and adsorbate.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectbioadsorventepor
dc.subjectisoterma de equilíbriopor
dc.subjectcinéticapor
dc.subjectMEVpor
dc.subjectbioadsorbenteng
dc.subjectisothermeng
dc.subjectkineticseng
dc.subjectSEMeng
dc.titleAvaliação da casca da semente da seringueira como adsorvente no tratamento de efluentes aquosos: estudo cinético e termodinâmicopor
dc.title.alternativeEvaluation of rubber seed shell in the treatment of aqueous effluents: kinetic and thermodynamic studyeng
dc.typeDissertaçãopor
dc.contributor.advisor1Mendes, Marisa Fernandes
dc.contributor.advisor1IDCPF: 023.918.187-50por
dc.contributor.advisor-co1Catunda Júnior, Francisco Eduardo Aragão
dc.contributor.advisor-co1IDCPF: 760.304.153-87por
dc.contributor.referee1Cunha, Fabíola Oliveira da
dc.contributor.referee2Pereira, Cristiane de Souza Siqueira
dc.creator.IDCPF: 123.847.736-40por
dc.creator.Latteshttp://lattes.cnpq.br/9018815808109440por
dc.description.resumoA remoção de corantes presentes em efluentes industriais tem recebido grande atenção nos últimos anos, devido aos danos ambientais que são causados pelo descarte indevido em corpos hídricos. Dentre os vários processos que podem ser aplicados, a técnica da adsorção, aliada à aplicação de adsorventes derivados de biomassa, tem se mostrado bastante interessante neste tratamento. Por isso, decidiu-se estudar neste trabalho o potencial adsorvente da casca da semente da seringueira (Hevea brasiliensis) em quatro formas (in natura, calcinado, carvão ativado com ácido e carvão ativado com base) na remoção do corante alaranjado de metila. Os quatro adsorventes foram avaliados e foi possível observar que o material in natura não foi capaz de promover a remoção do corante. Já os processos de calcinação e a ativação ácida e básica conseguiram proporcionar ao material uma maior capacidade de adsorção, sendo o carvão ativado com ácido o mais eficiente visto que o pré-tratamento empregado aumentou a porosidade do material, favorecendo o processo de adsorção. Devido a este melhor desempenho, o carvão foi utilizado para avaliar o efeito da concentração inicial da solução (25-150 mg/L), temperatura (25, 35 e 45 °C) e tempo de contato (0-360 min), e para estudar a cinética (pseudo-primeira ordem, pseudo-segunda ordem e difusão intrapartícula), as isotermas de equilíbrio (Freundlich, Langmuir, Temkin e Dubinin-Radushkevich) e as grandezas termodinâmicas (∆H, ∆S e ∆G) do processo de adsorção. Foram observados aumentos na quantidade adsorvida com o aumento da concentração inicial, assim como com o aumento da temperatura, este sendo também um indicativo da natureza endotérmica do processo. Os modelos cinéticos e de isoterma que melhor se ajustaram aos dados experimentais foram, respectivamente, o modelo de pseudo-segunda ordem e o modelo de Freundlich. O estudo termodinâmico indicou que o processo de adsorção é espontâneo apenas para concentração inicial de 25 mg/L, endotérmico e que existe uma boa afinidade entre o adsorvente e o adsorvato.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesABID, M. F.; ZABLOUK, M. A.; ABID-ALAMEER, A. M. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iranian Journal of Environmental Health Science & Engineering, Dez 2012. ABIT. Associação Brasileira da Indústria Têxtil e de Confecção, 2018. Disponivel em: <http://www.abit.org.br/cont/perfil-do-setor>. Acesso em: 23 Jan 2019. ABUKHADRA, M. R.; BAKRY, B. M.; ADLII, A.; YAKOUT, S. M.; EL-ZAIDY, M. E. Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water. Journal of Hazardous Materials, v. 374, p. 296-308, Jul 2019. AHMAD, A.; MOHD-SETAPAR, S. H.; CHUONG, C. S.; KHATOON, A.; WANI, W. A.; KUMAR, R.; RAFATULLAH, M. Recent advances in new generation dye removal technologies - novel search for approaches to reprocess wastewater. RSC Advances, p. 30801-30818, 2015. AKAR, T.; ARSLAN, S.; AKAR, S. T. Utilization of Thamnidium elegans fungal culture in environmental cleanup: A reactive dye biosorption study. Ecological Engineering, v. 58, p. 363-370, Set 2013. AKAR, T.; KULCU, A.; AKAR, S. T. Effective decolorization potential of Thamnidium elegans: Biosorption optimization, modelling, characterization and application studies. Chemical Engineering Journal, v. 221, p. 461-468, Abr 2013. AKSU, Z.; ERTUGRUL, S.; DONMEZ, G. Methylene Blue biosorption by Rhizopus arrhizus: Effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chemical Engineering Journal, v. 158, n. 3, p. 474-481, Abr 2010. ALI, H. Biodegradation of Synthetic Dyes - A Review. Water, Air, & Soil Pollution, s.l., v. 213, n. 1-4, p. 251-273, 30 mar 2010. ALSHAMERI, A.; HE, H.; ZHU, J.; XI, Y.; ZHU, R.; MA, L.; TAO, Q. Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms. Applied Clay Science, v. 159, p. 83-93, Jun 2018. ANASTOPOULOS, I.; KYZAS, G. Z. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? Journal of Molecular Liquids, v. 218, p. 174-185, Jun 2016. ASGHAR, A.; RAMAN, A. A. A.; DAUD, W. M. A. W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal Of Cleaner Production, v. 87, p. 826-838, Jan 2015. BANAERJEE, M.; BASU, R. K.; DAS, S. K. Cr(VI) adsorption by a green adsorbent walnut shell: Adsorptionstudies, regeneration studies, scale-up design and economic feasibility. Process Safety and Environmental Protection, v. 116, p. 693-702, Mar 2018. BHATNAGAR, A.; SILLANPAA, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chemical Engineering Journal, v. 157, n. 2 e 3, p. 277-296, Mar 2010. BONELII, P. R.; DELLA ROCCA, P. A.; CERRELLA, E. G.; CUKIERMAN, A. L. E€ect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil Nut shells. Bioresource Technology, v. 76, p. 15-22, Jan 2001. BORHAN, A.; ABDULLAH, N. A.; RASHIDI, N. A.; TAHA, M. F. Removal of Cu2+ and Zn2+ from Single Metal Aqueous Solution Using Rubber-Seed Shell Bases Activated Carbon. Procedia Engineering - 4th International Conference on Process Engineering and Advanced Materials, v. 148, p. 694-701, 2016. BOUDECHICHE, N.; FARES, M.; OUYAHIA, S.; YAZID, H.; TRARI, M.; SADAOUI, Z. Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones. Microchemical Journal, v. 146, p. 1010-1018, Fev 2019. CHAARI, I.; FAKHFAKH, E.; MEDHIOUB, M.; JAMOUSSI, F. Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. Journal of Molecular Structure, v. 1179, p. 672-677, Mar 2019. CHAIKUL, P.; LOURITH, N.; KANLAYAVATTANAKUL, M. Antimelanogenesis and cellular antioxidant activities of rubber (Hevea brasiliensis) seed oil for cosmetics. Industrial Crops and Products, v. 108, p. 56-62, Jun 2017. CHAUKURA, N.; GWENZI, W.; TAVENGWA, N.; MANYUCHI, M. M. Biosorbents for the removal of synthetic organics and emerging pollutants: Opportunities and challenges for developing countries. Environmental Development, v. 19, p. 84-89, Jul 2016. CHEN, S.; QIN, C.; WANG, T.; CHEN, F.; LI, H.; HOU, H.; ZHOU, M. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. Journal of Molecular Liquids, v. 298, p. 62-74, Jul 2019. COLOUR INDEX. Colour Index, 2019. Disponivel em: <https://colour-index.com/about>. Acesso em: 9 Jan 2019. CONSELHO NACIONAL DO MEIO AMBIENTE. RESOLUÇÃO nº. 357, de 17 de março de 2005. CONAMA, 2005. Disponivel em: <http://pnqa.ana.gov.br/Publicacao/RESOLUCAO_CONAMA_n_357.pdf>. Acesso em: 09 JAN 2019. COONEY, D. O. Adsorption design for wastewater treatment. [S.l.]: Lewis Publishers, 1998. CORDERO, H. T.; AGUILAR, J. L. G.; CASTILLO, D. I. M.; MONTOYA, V. H.; PETRICIOLET, A. B.; MORÁN, M. A. M. Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Industrial Crops and Products, v. 42, p. 315-323, Mai 2013. CORNILLA, I. G.; BARRERA, L. M.; URBINA, E. C. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. Journal of Environmental Management, v. 152, p. 99-108, Abr 2015. DARWISH, A. A. A.; RASHAD, M.; AL-AOH, H. A. Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics. Dyes and Pigments, v. 160, p. 563-571, jan 2019. DEGERMENCI, G. D.; DEGERMENCI, N.; AYVAOGLU, V.; DURMAZ, E.; ÇAKIR, D.; AKAN, E. Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies. Journal of Cleaner Production, v. 225, p. 1220-1229, Jul 2019. DONOHUE, M. D.; ARANOVICH, G. L. Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science, v. 76-77, n. 1, p. 137-152, Jul 1998. DOUD, M.; BENTURKI, O.; GIRODS, P.; DONNOT, A.; FONTANA, S. Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater. Microchemical Journal, v. 148, p. 493-502, Jul 2019. DUBININ, M. M.; RADUSHKEVICH, L. V. The equation of the characteristic curve of the activated charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect., v. 55, p. 331-337, 1947. EBEWELE, R. O.; IYAYI, A. F.; HYMORE, F. K. Considerations of the extraction process and potential technical applications of Nigerian rubber seed oil. International Journal of Physical Sciences, v. 5, n. 6, p. 826-831, 2010. EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária, 2019. Disponivel em: <https://www.embrapa.br/agrossilvipastoril/sitio-tecnologico/trilha-ecologica/especies/seringueira>. Acesso em: Jan 2019. FEIZI, M.; JALALI, M. Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues. Journal of the Taiwan Institute of Chemical Engineers, v. 54, p. 125-136, Abr 2015. FERNANDEZ, M.E.; NUNELL, G.V.; BONELLI, P.R.; CUKIERMAN, A.L. Batch and dynamic biosorption of basic dyes from binary solutions. Bioresource Technology, v. 106, p. 55-62, Fev 2012. FREUNDLICH, H. M. F. Über die adsorption in lösungen, zeitschrift für physikalische chemie. Zeitschrift für Phys. Chemie, v. 57, p. 385-470, 1906. GAO, H.; SONG, Z.; ZHANG, W.; YANG, X.; WANG, D. Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove Methyl Orange from aqueous solution. Journal of Environmental Sciences, v. 53, p. 68-77, Mar 2017. GARG, U.; KAUR, M. P.; JAWA, G. K.; SUD, D.; GARG, V. K. Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. Journal of Hazardous Materials, v. 154, p. 1149-1157, 2008. GEANKOPLIS, C. J. Transport Processes and Separation Process Principles: Includes. 3. ed. New Jersey: Prentice-Hall International, 1993. GISI, S. DE; LOFRANO, G.; GRASSI, M.; NOTARNICOLA, M. Characteristics and adsorption capacities of low-cost sorbents for. Sustainable Materials and Technologies, v. 9, p. 10-40, Jun 2016. GONZÁLEZ, A. M. H.; VILLALOBOS, M. C.; CID, A. A. P. Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite. Journal of Environmental Management, v. 234, p. 237-244, Mar 2019. GUO, J.; LI, B.; LIU, L.; LV, K. Removal of methylene blue from aqueous solutions by chemically. Chemosphere, v. 111, p. 225-231, Set 2014. GUO, X.; WANG, J. A general kinetic model for adsorption: Theoretical analysis. Journal of Molecular Liquids, v. 288, p. 111100, Ago 2019. HABIBA, U.; SIDDIQUE, T. A.; LEE, J. J.; JOO, T. C.; ANG, B. C.; AFIFI, A. M. Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane. Carbohydrate Polymers, v. 191, p. 79-85, Jul 2018. HALLER, M. Tratamento de efluentes, Textila. 7. ed. São Paulo: Brasil Têxtil Ltda., 1993. HAMMED, B. H.; DAUD, F. B. M. Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chemical Engineering Journal, v. 139, p. 48-55, Jul 2008. HANAFIAH, M. A. K. M.; NGAH, W. S. W.; ZOLKAFLY, S. H.; TEONG, L. C.; MAJID, Z. A. A.. Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis. Journal Of Environmental Sciences, v. 24, n. 2, p. 261-268, Fev 2012. HASAN, M.; RASHID, M. M.; HOSSAIN, M. M.; MESFER, M. K. A.; ARSHAD, M.; DANISH, M.; LEE, M.; JERY, A. E.; KUMAR, N.. Fabrication of polyaniline/activated carbon composite and its testing for methyl orange removal: Optimization, equilibrium, isotherm and kinetic study. Polymer Testing, v. 77, p. 105909, Ago 2019. HASSANI, A. H. et al. Nanofiltration process on dye removal from simulated textile wastewater. International Journal of Environmental Science & Technology, v. 5, n. 3, p. 401-408, Jun 2008. HO, Y. S.; MCKAY, G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, v. 70, n. 2, p. 115-124, Jun 1998. HOLKAR, C. R.; JADHAV, A. J.; PINJARI, D. V.; MAHAMUNI, N. M. A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, v. 182, p. 351-366, Nov 2016. HU, Q.; ZHANG, Z. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. Journal of Molecular Liquids, v. 277, p. 646-648, Mar 2019. HUNGER, K. Industrial dyes. [S.l.]: Wiley-VHC, 2007. HUSSAIN, T.; WAHA, A. A critical review of the current water conservation practices in textile. Journal of Cleaner Production, v. 198, n. 8, p. 806-819, Jul 2018. IEMI - INSTITUTO DE ESTUDOS E MARKETING INDUSTRIAL. Relatório Setorial da Insdustria Têxtil Brasileira - Brasil Têxtil 2014. 14ª. ed. São Paulo: [s.n.], 2014. JAWAD, A. H. Carbonization of rubber (Hevea brasiliensis) seed shell by one-step liquid phase activation with H2SO4 for methylene blue adsorption. Desalination And Water Treatment, v. 129, p. 279-288, Out 2018. KATHERESAN, V.; KANSEDO, J.; LAU, S. Y. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, v. 6, n. 4, p. 4676-4697, Ago 2018. KHANDAKER, S.; KUBA, T.; KAMIDA, S.; UCHIKAWA, Y. Adsorption of cesium from aqueous solution by raw and concentrated nitric acid–modified bamboo charcoal. Journal of Environmental Chemical Engineering, v. 5, p. 1456-1464, Abr 2017. KIM, Y.; KIM, J. Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. The Journal Of Chemical Thermodynamics, v. 130, p. 104-113, Jan 2019. KUSRINI, E.; WICAKSONO, W.; GUNAWAN, C.; DAUD, N. Z. A.; USMAN, A. Kinetics, mechanism, and thermodynamics of lanthanum adsorption on pectin extracted from durian rind. Journal Of Environmental Chemical Engineering, v. 6, n. 5, p. 6580-6588, Out 2018. LAGERGREN, S. About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakad. Handl, v. 24, p. 1-39, 1898. LANGMUIR, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., v. 40, p. 1361-1403, 1918. LI, B.; LI, K. Effect of nitric acid pre-oxidation concentration on pore structure and nitrogen/oxygen active decoration sites of ethylenediamine -modified biochar for mercury(II) adsorption and the possible mechanism. Chemosphere, v. 220, p. 28-39, Jan 2019. LI, M.; MA, S.; ZHU, X. Preparation of Activated Carbon from Pyrolyzed Rice Husk by Leaching out Ash Content after CO2 Activation. Bioresources, v. 11, n. 2, p. 3384-3396, Fev 2016. LI, W.; MU, B.; YANG, Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, v. 277, p. 157-170, Abr 2019. LI, X.; WANG, Z.; NING, J.; GAO, M.; JIANG, W.; ZHOU, Z.; LI, G. Preparation and characterization of a novel polyethyleneimine cationmodified persimmon tannin bioadsorbent for anionic dye adsorption. Journal of Environmental Management, v. 217, p. 305-314, Abr 2018. LIU, M.; LI, X.; DU, Y.; HAN, R. Adsorption of methyl blue from solution using walnut shell and reuse in a secondary adsorption for Congo red. Bioresource Technology Reports, v. 5, p. 238-242, Jan 2019. LONAPPAN, L.; ROUISSI, T.; BRAR, S. K.; VERMA, M.; SURAMPALLI, R. Y. An insight into the adsorption of diclofenac on different biochars: Mechanisms, surface chemistry, and thermodynamics. Bioresource Technology, v. 249, p. 386-394, fev 2018. LUCATO, W. C.; COSTA, E. M.; NETO, G. C. O. The environmental performance of SMEs in the Brazilian textile industry and the relationship with their financial performance. Journal of Environmental Management, v. 203, n. 1, p. 550-556, Dez 2017. MAGRIOTIS, Z. M.; CARVALHO, M. Z.; SALES, P. F. DE; ALVES, F. C.; RESENDE, R. F.; SACZK, A. A. Castor bean (Ricinus communis L.) presscake from biodiesel production: An efficient low cost adsorbent for removal of textile dyes. Journal of Environmental Chemical Engineering, v. 2, p. 1731-1740, Jul 2014. MAHMOODI, N. M.; GHEZELBASH, M; SHABANIAN, M.; ARYANASAB, F.; SAEB, M. R. Efficient removal of cationic dyes from colored wastewaters by dithiocarbamate-functionalized graphene oxide nanosheets: From synthesis to detailed kinetics studies. Journal of the Taiwan Institute of Chemical Engineers, v. 81, p. 239-246, Dez 2017. MAIA, G. S.; ANDRADE, J. R.; SILVA, M. G. C.; VIEIRA, M. G. A. Adsorption of diclofenac sodium onto commercial organoclay: Kinetic, equilibrium and thermodynamic study. Powder Technology, v. 345, p. 140-150, Mar 2019. MARTINI, B. K.; DANIEL, T. G.; CORAZZA, M. Z.; CARVALHO, A. E. Methyl orange and tartrazine yellow adsorption on activated carbon prepared from boiler residue: Kinetics, isotherms, thermodynamics studies and material characterization. Journal of Environmental Chemical Engineering, v. 6, p. 6669-6679, Out 2018. MCCABE, W. L.; SMITH, J. C.; HARRIOTT, P. Unit Operations of Chemical Engineering. 4ª. ed. Nova York: McGraw-Hill, 1985. MERCK. Merckmilipore. Disponivel em: <http://www.merckmillipore.com/BR/pt/product/Methyl-orange-C.I.-13025,MDA_CHEM-101322>. Acesso em: 09 Mar 2019. NAGALAKSHMI, T. V.; EMMANUEL, K. A.; BHAVANI, P. Adsorption of disperse blue 14 onto activated carbon prepared from Jackfruit-PPI-I waste. Materials Today: Proceedings, p. -, Jul 2019. NAGHIPOUR, D.; HOSEINZADEH, L.; TAGHAVI, K.; JAAFARI, J. Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree. Data In Brief, v. 18, p. 1082-1087, Jun 2018. NAIR, K. P. P. Rubber (Hevea brasiliensis). The Agronomy And Economy Of Important Tree Crops Of The Developing World, p. 237-273, 2010. OLADOJA, N. A.; ASIA, I. O.; ABOLUWOYE, C.O.; OLADIMEJI, Y. B.; ASHOGOBON, A. O. Studies on the Sorption of Basic Dye by Rubber (Hevea brasiliensis) Seed Shell. Turkish J. Eng. Env. Sci., v. 32, p. 143-152, 2008. OLADOJA, N. A.; ASIA, I. O.; ADEMOROTI, C. M. A.; OGBEWE, O. A. Removal of methylene blue from aqueous solution by rubber (Hevea brasiliensis) seed shell in a fixed-bed column. ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, v. 3, p. 320-332, 2008. OLIVEIRA, M. F.; SILVA, M. G. C.; VIEIRA, M. G. A. Equilibrium and kinetic studies of caffeine adsorption from aqueous solutions on thermally modified Verde-lodo bentonite. Applied Clay Science, v. 168, p. 366-373, Fev 2019. ONOJI, S. E.; IYUKE, S. E.; IGBAFE, A. I. Hevea brasiliensis (Rubber Seed) Oil: Extraction, Characterization, and Kinetics of Thermo-oxidative Degradation Using Classical Chemical Methods. Energy & Fuels, v. 30, n. 12, 2016. PAZ, A.; CARBALLO, J.; PÉREZ, M. J.; DOMÍNGUEZ, J.M. Biological treatment of model dyes and textile wastewaters. Chemosphere, v. 181, p. 168-177, Ago 2017. PRABHU, S. M.; KHAN, A.; FARZANA, M.H.; HWANG, G. C.; LEE, W.; LEE, G. Synthesis and characterization of graphene oxide-doped nano-hydroxyapatite and its adsorption performance of toxic diazo dyes from aqueous solution. Journal of Molecular Liquids, v. 269, p. 746-754, Nov 2018. QUE, W.; JIANG, L.; WANG, C.; LIU, Y.; ZENG, Z.; WANG, X.; NING, Q.; LIU, S.; ZHANG, P.; LIU, S. Influence of sodium dodecyl sulfate coating on adsorption of methylene blue by biochar from aqueous solution. Journal Of Environmental Sciences, v. 70, p. 166-174, Ago 2018. RAGHAV, S.; NEHRA, S.; KUMAR, D. Biopolymer scaffold of pectin and alginate for the application of health hazardous fluoride removal studies by equilibrium adsorption, kinetics and thermodynamics. Journal Of Molecular Liquids, v. 284, p. 203-214, Jun 2019. RANGABHASHIYAM, S.; ANU, N.; SELVARAJU, N. Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering, v. 1, n. 4, p. 629-641, dez 2013. RATTANAPAN, S.; SRIKRAM, J.; KONGSUNE, P. Adsorption of Methyl Orange on Coffee grounds Activated Carbon. Energy Procedia, v. 138, p. 949-954, 2017. RAUF, M. A.; ASHRAF, S. S. Survey of recent trends in biochemically assisted degradation of dyes. Chemical Engineering Journal, v. 209, p. 520-530, Dez 2012. RAZMI, F. A.; NGADI, N.; WONG, S.; INUWA, I. M.; OPOTU, L. A. Kinetics, thermodynamics, isotherm and regeneration analysis of chitosan modified pandan adsorbent. Journal of Cleaner Production, v. 231, p. 98-109, Mai 2019. REDLICH, O.; PETERSON, D. L. A Useful Adsorption Isotherm. J. Phys. Chem, v. 63, n. 6, p. 1024-1026, Jun 1959. RENGARAJ, S.; MOON, S. H.; SIVANALAN, R.; ARABINDOO, B.; MURUGESAN, V. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat. Journal of Hazardus Materials, v. 89, p. 185-196, 2002. RESHAD, A. S.; TIWARI, P.; GOUD, V. V. Thermo-chemical conversion of waste rubber seed shell to produce fuel and value-added chemicals. Journal of the Energy Institute, v. 91, n. 6, p. 940-950, Dez 2018. RESHAD, A. S.; TIWARI, P.; GOUD, V. V. Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production. Journal of Analytical and Applied Pyrolysis, v. 139, p. 333-343, Mai 2019. RODRIGUES, V. A.; COSTA, P. N. ANÁLISE DE DIFERENTES DE SUBSTRATOS NO. REVISTA CIENTÍFICA ELETRÔNICA DE ENGENHARIA FLORESTAL, n. 14, Ago 2009. ROUQUEROL, L.; ROUQUEROL, F.; SING, K. S. W. Adsorption by powders & porous solids: Principles, methodology and applications. Marselha: Academic Press, 1999. RUTHVEN, D. M. Principles od Adsorption and Adsorption Process. New York: John Wiley e Sons, 1984. 433 p. SAAVEDRA, L. N. M.; BAETA, B. E. L.; PEREIRA, M. C.; OLIVEIRA, L. C. A.; SILVA, A. C. Thermodinamic study of a magnetic molecular imprinted polymer for removal of nitrogenous pollutant from gasoline. Fuel, v. 210, p. 380-389, Dez 2017. SEADER, D.; HENLEY, E. J.; ROPER, D. K. Separation Process Principles - Chemical and Biochemical Operations. 3. ed. [S.l.]: John Wiley & Sons , v. 1, 2011. SHIN, H. S.; KIM, J. otherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Diaion HP-20. Process Biochemistry, v. 51, n. 7, p. 917-924, Jun 2016. SING, K. S. W.; EVERETT, D. H.; HAUL, R. A. W.; MOSCOU, L.; PIEROTTI, R. T. Reporting Physisorption Data for Gas/Solid Systems. With special reference to the determination of seurface area and porosity. Pure and Applied Chem., v. 57, n. 4, p. 603-619, 1985. SOLÍS, M.; SOLÍS, A.; PÉREZ, H. I.; MANJARREZB, N.; FLORES, M. Microbial decolouration of azo dyes: A review. Process Biochemistry, v. 47, n. 12, p. 1723-1748, Dez 2012. STAVRINOU, A.; AGGELOPOULOS, C. A.; TSAKIROGLOU, C. D. Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool. Journal of Environmental Chemical Engineering, v. 6, n. 6, p. 6958-6970, Dez 2018. SUMALINOG, D. A. G.; CAPAREDA, S. C.; LUNA, M. D. G. Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes. Journal of Environmental Management, v. 210, p. 255-262, Mar 2018. SUN, K.; JIANG, C. J. Preparation and characterization of activated carbon from. Biomass and Bioenergy, n. 34, p. 539-544, 2010. TEHRANI-BAGHA, A. R.; MAHMOOD, N. M.; MENGE, F. M. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination, v. 260, p. 34-38, Jun 2010. TEMKIN, M. I.; PYZHEV, V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim., v. 12, p. 327-356, 1940. TOMUL, F.; ARSLAN, T.; BASOGLU, F. T.; BABUÇCUOGLU, Y.; TRAN, H. N. Efficient removal of anti-inflammatory from solution by Fe-containing. Journal of Environmental Management activated carbon: Adsorption kinetics, isotherms, and thermodynamics, v. 238, p. 296-306, Fev 2019. TOTH, J. State Equations of the Solid-gas Interface Layers. Acta Chem. Acad. Hung., v. 69, p. 311-317, 1971. TOUMI, K.; BERGAOUI, M.; KHALFAOUI, M.; BENGUERBA, Y.; ERTO, A.; DOTTO, G. L.; AMRANE, A.; NACEF, S.; ERNST, B. Computational study of acid blue 80 dye adsorption on low cost agricultural Algerian olive cake waste: Statistical mechanics and molecular dynamic simulations. Journal of Molecular Liquids, v. 271, p. 40-50, Dez 2018. UTHUP, T. K.; RAVINDRAN, M.; BINI, K.; THAKURDAS, S. Divergent DNA Methylation Patterns Associated with Abiotic Stress in Hevea brasiliensis. Molecular Plant, v. 4, n. 6, p. 996-1013, Nov 2011. VERMA, A. K.; DASH, R. R.; BHUNIA, P. A review on chemical coagulation/flocculation technologies for removal of colour. Journal of Environmental Management, v. 93, n. 1, p. 154-168, Jan 2012. VIEIRA, S. S.; MAGRIOTIS, Z. M.; SANTOS, N. A. V.; CARDOSO, M. G.; SACZK, A. A. Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes. Chemical Engineering Journal, v. 183, p. 152-161, Fev 2012. WANG, N.; ZHENG, T.; ZHANG, G.; WANG, P. A review on Fenton-like processes for organic wastewater treatment. Journal Of Environmental Chemical Engineering, v. 4, n. 1, p. 762-787, mar 2016. WANG, Z.; LIU, G.; ZHENG, H.; LI, F.; NGO, H. H.; GUO, W.; LIU, C.; CHEN, L.; XING, B. Investigating the mechanisms of biochar’s removal of lead from solution. Bioresource Technology, v. 177, p. 308-317, Fev 2015. WEBER, T. W.; CHAKRAVORTI, R. K. Pore and solid diffusion models for fixed‐bed adsorbers. AlChe Journal, v. 20, n. 2, p. 228-238, Mar 1974. WEBER, W. J.; MORRIS, J. C. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, v. 89, n. 2, p. 31-60, 1963. WORCH, E. Adsorption Technology in Water Treatment - Fundamentals, processes and modeling. Berlim : De Gruyter, 2012. WU, Y.; SU, M.; CHEN, J.; XU, Z.; TANG, J.; CHANG, X.; CHEN, D. Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dyes and Pigments, v. 170, Mai 2019. XU, D.; CAO, J.; LI, Y.; HOWARD, A.; YU, K. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Management, v. 87, p. 652-660, Mar 2019. YAN, K. Z.; ZAINI, M. A. A.; ARSAD, A.; NASRI, N. S. Rubber Seed Shell Based Activated Carbon by Physical Activation for Phenol Removal. CHEMICAL ENGINEERING TRANSACTIONS, v. 72, p. 151-156, Jan 2019. YANG, Q.; GAO, M.; LUO, Z.; YANG, S. Enhanced removal of bisphenol A from aqueous solution by organo-montmorillonites modified with novel Gemini pyridinium surfactants containing long alkyl chain. Chemical Engineering Journal, v. 285, p. 27-38, Fev 2016. YELETSKY, P. M.; YAKOVLEV, V. A; MEL'GUNOVE, M. S.; PARMON, V. N. Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk. Microporous Mesoporous Material, v. 121, p. 34-40, 2009. ZAHEER, Z.; AL-ASFAR, A.; AAZAM, E. S. Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent: Isotherms, kinetics and mechanisms. Journal Of Molecular Liquids, v. 283, p. 287-298, Jun 2019. ZAINI, M. A. A.; ZAKARIA, M.; SETAPAR S.H. M.; YUNUS, M. A. C. Sludge-adsorbents from palm oil mill effluent for methylene blue removal. Journal of Environmental Chemical Engineering, v. 1, p. 1091-1098, Ago 2013. ZAYED, A. M.; WAHED, M. S. M. A.; MOHAMED, E. A. M.; SILLANPAA, M. Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: Isotherm and kinetic studies. Applied Clay Science, v. 166, p. 49-60, Dez 2018. ZAZYCKI, M. A.; GODINHO, M.; PERONDI, D.; FOLETTO, E. L.; COLLAZZO, G. C.; DOTTO, G. L. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. Journal of Cleaner Production, v. 171, p. 57-65, jan 2018. ZHANG, P.; LI, Y.; CAO, Y.; HAN, L. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresource Technology, v. 285, p. 121348, Ago 2019. ZHOU, L.; ZHOU, H.; HU, Y.; YAN, S.; YANG, J. Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue. Journal of Environmental Management, v. 234, p. 245-252, Mar 2019.por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67716/2019%20-%20Eliana%20Zaroni%20Megale.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5278
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2021-11-30T18:59:44Z No. of bitstreams: 1 2019 - Eliana Zaroni Megale.pdf: 3767431 bytes, checksum: 4bdd1d48b390462ab5ff4510bcc1e048 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-11-30T18:59:45Z (GMT). No. of bitstreams: 1 2019 - Eliana Zaroni Megale.pdf: 3767431 bytes, checksum: 4bdd1d48b390462ab5ff4510bcc1e048 (MD5) Previous issue date: 2019-08-22eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Eliana Zaroni Megale.pdf3.68 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.