Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11142
Full metadata record
DC FieldValueLanguage
dc.creatorFerreira, David Tavares
dc.date.accessioned2023-11-19T22:05:12Z-
dc.date.available2023-11-19T22:05:12Z-
dc.date.issued2020-12-10
dc.identifier.citationFERREIRA, David Tavares. Determinação dos coeficientes de difusão e propriedades termodinâmicas de misturas binárias de metano e dióxido de carbono e de misturas ternárias de metano, dióxido de carbono e água confinadas em poros de calcita utilizando a dinâmica molecular. 2020. 152 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11142-
dc.description.abstractThe exploration of unconventional reservoirs, mainly gas reservoirs, has shown great potential in the production of natural gas for the next decades. Thus, understanding the behavior of fluids under confinement is one of the most important steps in the development of techniques for improving the recovery of oil components. The confinement effect on a nanoscale modifies the behavior of fluids, both in structural and transport properties, which do not behave in an isotropic manner as observed in bulk condition. The objective of this dissertation was to obtain structural properties and the diffusion coefficients of binary methane and carbon dioxide and ternary mixtures containing methane, carbon dioxide and water confined in calcite slit pores. For this purpose, equilibrium molecular dynamics was used to determine structural and transport properties of mixtures subjected to temperatures found in reservoirs. First, the average density of the mixtures of interest was determined by simulation in bulk condition in the NPT ensemble at 300 K and 30 MPa. Then, to study the confinement effect, the resulting mixtures were confined in slit-like calcite (1014) pores with 20 Å and 50 Å openings. The molar fractions of the binary systems varied between 0 to 1 and in the ternary mixtures the total molar fraction of water in the pore varied between 0.1 to 0.9 while the methane/carbon dioxide ratio was kept constant between 0.2 and 0.8. The structural property studied was the density profile, where in binary mixtures a preferential adsorption was observed to the carbon dioxide wall and in ternary mixtures, water showed a greater affinity with calcite. Regarding the transport property, the self-diffusion coefficient was studied, showing a great dependence on the opening of the pore, on the fluid molecules involved and on the density inside the pore. It can be concluded that the use of both water and carbon dioxide can help in the recovery of gas in reservoirs with a predominance of calcite in its rocky matrix.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectReservatórios não convencionaispor
dc.subjectDinâmica Molecularpor
dc.subjectCoeficiente de difusãopor
dc.subjectPerfil de densidadepor
dc.subjectUnconventional reservoirseng
dc.subjectmolecular dynamicseng
dc.subjectdiffusion coefficientseng
dc.subjectdensity profileseng
dc.titleDeterminação dos coeficientes de difusão e propriedades termodinâmicas de misturas binárias de metano e dióxido de carbono e de misturas ternárias de metano, dióxido de carbono e água confinadas em poros de calcita utilizando a dinâmica molecularpor
dc.title.alternativeDetermination of diffusion coefficients and thermodynamic properties of binary mixtures of methane and carbon dioxide and ternary mixtures of methane, carbon dioxide and water confined in calcite pores using molecular dynamicseng
dc.typeDissertaçãopor
dc.contributor.advisor1Furtado, Filipe Arantes
dc.contributor.advisor1ID120.997.237-96por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1582599762724324por
dc.contributor.referee1Furtado, Filipe Arantes
dc.contributor.referee2Tavares, Frederico Wanderley
dc.contributor.referee3Calçada, Luís Américo
dc.creator.ID127.205.147-13por
dc.creator.IDhttps://orcid.org/0000-0002-7756-2541por
dc.creator.Latteshttp://lattes.cnpq.br/3944257356120500por
dc.description.resumoA exploração de reservatórios não convencionais, principalmente reservatórios de gás, tem mostrado grande potencial na produção de gás natural. Entender o comportamento dos fluidos sob efeito de confinamento é um dos passos mais importantes no desenvolvimento de técnicas de melhoramento de recuperação de componentes de petróleo. O efeito de confinamento em escala nanométrica induz uma modificação no comportamento dos fluidos, tanto em propriedades estruturais quanto em propriedades de transporte, que passam a não se comportar de maneira isotrópica como observado em condição bulk. O objetivo deste trabalho é obter propriedades estruturais e os coeficientes de difusão de misturas binárias de metano e dióxido de carbono e ternárias contendo metano, dióxido de carbono e água, confinadas em poros do tipo fenda, utilizando a calcita como meio confinante. Simulações por dinâmica molecular em equilíbrio foram utilizadas para determinar propriedades estruturais e de transporte das misturas submetidas a temperaturas encontradas em reservatórios. Primeiramente determinou-se a densidade média das misturas de interesse por simulação em condição bulk no ensemble NPT a uma temperatura de 300 K e pressão de 30 MPa. A partir desses resultados, para estudar o efeito de confinamento, as misturas resultantes foram confinadas em poros de calcita (1014) do tipo fenda com aberturas de 20 Å e 50 Å. As frações molares dos sistemas binários variaram entre 0 a 1 e nas misturas ternárias variou-se a fração molar total de água no poro entre 0,1 a 0,9 enquanto mantinha-se constante a relação metano/dióxido de carbono entre 0,2 e 0,8. A propriedade estrutural estudada foi o perfil de densidade, onde em misturas binárias observou-se uma adsorção preferencial à parede do dióxido de carbono e nas misturas ternárias a água apresentou uma afinidade maior com a calcita. Em relação à propriedade de transporte, o coeficiente de autodifusão foi estudado, mostrando ter grande dependência da abertura do poro, das moléculas de fluido envolvidas e da densidade dentro do poro. Pode-se concluir que a utilização tanto de água, quanto de dióxido de carbono podem ajudar na recuperação de gás em reservatórios com predominância de calcita em sua matriz rochosa.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesABASCAL, J. L. F.; SANZ, E.; GARCÍA FERNÁNDEZ, R.; VEGA, C. A potential model for the study of ices and amorphous water: TIP4P/Ice. The Journal of Chemical Physics, v. 122, n. 23, p. 234511, 15 jun. 2005. ABASCAL, J. L. F.; VEGA, C. A general purpose model for the condensed phases of water: TIP4P/2005. Journal of Chemical Physics, v. 123, n. 23, p. 1–12, 2005. ABREU, C. R. A. Playmol, 2018. Disponível em: <https://github.com/atoms-ufrj/playmol> AIMOLI, C. G. Thermodynamic and transport properties of methane and carbon dioxide a molecular simulation study. [s.l.] Universidade Estadual de Campinas, 2015. AIMOLI, C. G.; MAGINN, E. J.; ABREU, C. R. A. Force field comparison and thermodynamic property calculation of supercritical CO2 and CH4 using molecular dynamics simulations. Fluid Phase Equilibria, v. 368, p. 80–90, 2014a. AIMOLI, C. G.; MAGINN, E. J.; ABREU, C. R. A. Transport properties of carbon dioxide and methane from molecular dynamics simulations. Journal of Chemical Physics, v. 141, n. 13, 2014b. ALEXANDER, J. S.; MAXWELL, C.; PENCER, J.; SAOUDI, M. EQUILIBRIUM MOLECULAR DYNAMICS CALCULATIONS OF THERMAL CONDUCTIVITY: A “HOW-TO” FOR THE BEGINNERS. Canadian Nuclear Laboratories Nuclear Review, v. 9, n. 1, p. 11–25, 1 dez. 2020. ALLEN, M. P.; TILDESLEY, D. J. Computer Simulation of Liquids. 2a edição ed. Oxford, UK: Oxford University Press, 2017. ARAÚJO, A. P.; GOMES, C. R. C.; MELO, H. S. M.; LIMA, H. T. S.; ARCANJO, J. N. DA S.; LIMA, S. F. Diferentes Tipos de Reservatórios e as Melhores Características de Exploração em Alagoas. Cadernos de Graduação - Ciências Exatas e Tecnológicas, 2015. BADMOS, S. B.; BUI, T.; STRIOLO, A.; COLE, D. R. Factors Governing the Enhancement of Hydrocarbon Recovery via H2S and/or CO2 Injection: Insights from a Molecular Dynamics Study in Dry Nanopores. Journal of Physical Chemistry C, v. 123, n. 39, 2019. BALAJI, S. P.; SCHNELL, S. K.; VLUGT, T. J. H. Calculating Thermodynamic Factors of Ternary and Multicomponent Mixtures Using the Permuted Widom Test Particle Insertion Method. Theoretical Chemistry Accounts, 2013. BAPTISTA, J. P. M. M. DOS S. Caracterização de Formações da Bacia Lusitaniana (zona emersa) para a produção de gás natural (não convencional). [s.l.] Universidade Técnica de Lisboa, 2011. BARBOSA, G. D.; TRAVALLONI, L.; CASTIER, M.; TAVARES, F. W. Pore size distributions from extended Peng-Robinson equations of state for fluids confined in cylindrical and slit pores. Fluid Phase Equilibria, 2019. BARCARO, G.; MONTI, S. Modeling generation and growth of iron oxide nanoparticles from representative precursors through ReaxFF molecular dynamics. Nanoscale, v. 12, n. 5, p. 3103–3111, 2020. BARNOUD, J.; MONTICELLI, L. Coarse-Grained Force Fields for Molecular Simulations. In: KUKOL, A. (Ed.). . Molecular Modeling of Proteins. New York, United States: Humana Press, 2015. v. 1215p. 125–149. BERENDSEN, H. J. C.; GRIGERA, J. R.; STRAATSMA, T. P. The missing term in effective pair potentials. Journal of Physical Chemistry, v. 91, n. 24, p. 6269–6271, 1987. BROOKS, B. R.; BRUCCOLERI, R. E.; OLAFSON, B. D.; STATES, D. J.; SWAMINATHAN, S.; KARPLUS, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 1983. BRUCE, A. D.; WILDING, N. B. Critical-point finite-size scaling in the microcanonical ensemble. Physical Review E, v. 60, n. 4, p. 3748–3760, 1 out. 1999. BUI, T.; PHAN, A.; COLE, D. R.; STRIOLO, A. Transport Mechanism of Guest Methane in Water-Filled Nanopores. The Journal of Physical Chemistry C, v. 121, n. 29, p. 15675–15686, 27 jul. 2017. CELEBI, A. T.; JAMALI, S. H.; BARDOW, A.; VLUGT, T. J. H.; MOULTOS, O. A. Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far. Molecular Simulation, v. 0, n. 0, p. 1–15, 2020. CICCOTTI, G.; KAPRAL, R.; SERGI, A. Non-Equilibrium Molecular Dynamics. In: YIP, S. (Ed.). . Handbook of Materials Modeling: Methods. 1a edição ed. Dordrecht: Springer Netherlands, 2005. p. 745–761. COLE, D.; STRIOLO, A. The Influence of Nanoporosity on the Behavior of Carbon-Bearing Fluids. In: ORCUTT;, B. N.; DANIEL;, I.; DASGUPTA, R. (Eds.). . Deep Carbon. Cambridge, UK: Cambridge University Press, 2019. p. 358–387. CUI, X.; YANG, E.; SONG, K.; HUANG, J.; KILLOUGH, J.; DONG, C.; LIU, Y.; WANG, K. Phase Equilibrium of Hydrocarbons Confined in Nanopores from a Modified Peng-Robinson Equation of State. SPE Annual Technical Conference and Exhibition. Anais...Society of Petroleum Engineers, 24 set. 2018Disponível em: <http://www.onepetro.org/doi/10.2118/191547-MS> CYGAN, R. T.; LIANG, J. J.; KALINICHEV, A. G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, v. 108, n. 4, p. 1255–1266, 2004. CYGAN, R. T.; ROMANOV, V. N.; MYSHAKIN, E. M. Molecular simulation of carbon dioxide capture by montmorillonite using an accurate and flexible force field. Journal of Physical Chemistry C, v. 116, n. 24, p. 13079–13091, 2012. DANS, P. D.; ZEIDA, A.; MACHADO, M. R.; PANTANO, S. A coarse grained model for atomic-detailed DNA simulations with explicit electrostatics. Journal of Chemical Theory and Computation, 2010. DAS, S. K.; FISHER, M. E.; SENGERS, J. V.; HORBACH, J.; BINDER, K. Critical Dynamics in a Binary Fluid: Simulations and Finite-Size Scaling. Physical Review Letters, v. 97, n. 2, p. 025702, 11 jul. 2006. DE GROOT, S. R.; MAZUR, P. Non-equilibrium Thermodynamics. 1a edição ed. New York: Dover Publications, 1984. DE LEEUW, N. H.; PARKER, S. C. Surface Structure and Morphology of Calcium Carbonate Polymorphs Calcite, Aragonite, and Vaterite: An Atomistic Approach. The Journal of Physical Chemistry B, v. 102, n. 16, p. 2914–2922, 1 abr. 1998. DE MELO, M. M. R.; SAPATINHA, M.; PINHEIRO, J.; LEMOS, M. F. L.; BANDARRA, N. M.; BATISTA, I.; PAULO, M. C.; COUTINHO, J.; SARAIVA, J. A.; PORTUGAL, I.; SILVA, C. M. Supercritical CO2 extraction of Aurantiochytrium sp. biomass for the enhanced recovery of omega-3 fatty acids and phenolic compounds. Journal of CO2 Utilization, 2020. DEROUANE, E. G. On the physical state of molecules in microporous solids. Microporous and Mesoporous Materials, v. 104, n. 1–3, p. 46–51, ago. 2007. DEWITT, K. J.; THODOS, G. Viscosities of binary mixtures in the dense gaseous state: The methane-carbon dioxide system. The Canadian Journal of Chemical Engineering, v. 44, n. 3, p. 148–151, jun. 1966. DOS SANTOS, T. J. P. Calculation of Mass Transport Coefficients of Hydrocarbons/CO2 Mixtures via Molecular Dynamics. [s.l.] Universidade Federal do Rio de Janeiro, 2019. DOS SANTOS, T. J. P.; ABREU, C. R. A.; HORTA, B. A. C.; TAVARES, F. W. Self-diffusion coefficients of methane/n-hexane mixtures at high pressures: An evaluation of the finite-size effect and a comparison of force fields. Journal of Supercritical Fluids, v. 155, p. 104639, 2020. DUAN, S.; GU, M.; DU, X.; XIAN, X. Adsorption Equilibrium of CO2 and CH4 and Their Mixture on Sichuan Basin Shale. Energy and Fuels, 2016. DÜNWEG, B.; KREMER, K. Molecular dynamics simulation of a polymer chain in solution. The Journal of Chemical Physics, v. 99, n. 9, p. 6983–6997, nov. 1993. EIA. Glossary. Disponível em: <https://www.eia.gov/tools/glossary/>. Acesso em: 25 ago. 2020. EIA. Annual Energy Outlook. Washington: [s.n.]. Disponível em: <https://www.eia.gov/outlooks/archive/aeo13/index.php>. EIA. Annual Energy Outlook. Washington: [s.n.]. Disponível em: <https://www.eia.gov/aeo%0D>. ESENE, C.; ZENDEHBOUDI, S.; ABORIG, A.; SHIRI, H. A modeling strategy to investigate carbonated water injection for EOR and CO2 sequestration. Fuel, 2019. ESPÓSITO, R. O.; ALIJÓ, P. H. R.; SCILIPOTI, J. A.; TAVARES, F. W. Oil and Gas Reservoirs Compositional Grading in Oil and Gas Reservoirs. 1a edição ed. [s.l.] Gulf Professional Publishing, 2017. EVANS, D. J.; MORRISS, G. Statistical Mechanics of Nonequilibrium Liquids. 2a edição ed. Cambridge, UK: Cambridge University Press, 2008. FANOURGAKIS, G. S.; MEDINA, J. S.; PROSMITI, R. Determining the bulk viscosity of rigid water models. Journal of Physical Chemistry A, v. 116, n. 10, p. 2564–2570, 2012. FENGHOUR, A.; WAKEHAM, W. A.; VESOVIC, V. The Viscosity of Carbon Dioxide. Journal of Physical and Chemical Reference Data, v. 27, n. 1, p. 31–44, jan. 1998. FERNÁNDEZ, G. A.; VRABEC, J.; HASSE, H. A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids. Fluid Phase Equilibria, v. 221, n. 1–2, p. 157–163, 2004. FRANCO, L. F. M.; CASTIER, M.; ECONOMOU, I. G. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study. Journal of Chemical Physics, v. 145, n. 8, 2016. FRENKEL, D.; SMIT, B. Understanding molecular simulation : from algorithms to applications. 2nd ed. 1a edição ed. San Diego, USA: Academic Press, Inc., 1996. v. 50 FURTADO, F. A.; FIROOZABADI, A. Fickian and thermal diffusion coefficients of binary mixtures of isobutylbenzene and n -alkanes at different concentrations from the optical beam deflection technique. The Journal of Chemical Physics, v. 151, n. 2, p. 024202, 14 jul. 2019. GALLIÉRO, G.; MONTEL, F. Nonisothermal gravitational segregation by molecular dynamics simulations. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 78, n. 4, p. 1–10, 2008. GEET, A. L. VAN; ADAMSON, A. W. PREDICTION OF DIFFUSION COEFFICIENTS FOR LIQUID n-ALKANE MIXTURES. Industrial & Engineering Chemistry, v. 57, n. 7, p. 62–66, 1 jul. 1965. GENERALIC, E. Lennard-Jones Potencial. Disponível em: <https://glossary.periodni.com/>. Acesso em: 8 set. 2020. GHORAYEB, K.; FIROOZABADI, A.; ANRAKU, T. Interpretation of the unusual fluid distribution in the Yufutsu gas-condensate field. SPE Journal, v. 8, n. 2, p. 114–123, 2003. GONÇALVES, Y. M. H.; SENAC, C.; FUCHS, P. F. J.; HÜNENBERGER, P. H.; HORTA, B. A. C. Influence of the Treatment of Nonbonded Interactions on the Thermodynamic and Transport Properties of Pure Liquids Calculated Using the 2016H66 Force Field. Journal of Chemical Theory and Computation, v. 15, n. 3, p. 1806–1826, 12 mar. 2019. GONZÁLEZ, M. A.; ABASCAL, J. L. F. The shear viscosity of rigid water models. The Journal of Chemical Physics, v. 132, n. 9, p. 096101, 7 mar. 2010. GREEN, M. S. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. The Journal of Chemical Physics, 1954. GREINER‐SCHMID, A.; WAPPMANN, S.; HAS, M.; LÜDEMANN, H. D. Self‐diffusion in the compressed fluid lower alkanes: Methane, ethane, and propane. The Journal of Chemical Physics, v. 94, n. 8, p. 5643–5649, 15 abr. 1991. GROSS, T.; BUCHHAUSER, J.; LÜDEMANN, H. D. Self-diffusion in fluid carbon dioxide at high pressures. The Journal of Chemical Physics, v. 109, n. 11, p. 4518–4522, 15 set. 1998. GUEVARA-CARRION, G.; VRABEC, J.; HASSE, H. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. Journal of Chemical Physics, v. 134, n. 7, 2011. GUILLOT, B. A reappraisal of what we have learnt during three decades of computer simulations on water. Journal of Molecular Liquids, v. 101, n. 1–3, p. 219–260, nov. 2002. HAILE, J. M. Molecular Dynamics Simulation: Elementary Methods. 1a edição ed. USA: John Wiley & Sons, Inc., 1992. HANWELL, M. D.; CURTIS, D. E.; LONIE, D. C.; VANDERMEERSCHD, T.; ZUREK, E.; HUTCHISON, G. R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 2012. HARRIS, J. G.; YUNG, K. H. Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. Journal of Physical Chemistry, v. 99, n. 31, p. 12021–12024, 1995. HENDRIKS, E.; KONTOGEORGIS, G. M.; DOHRN, R.; DE HEMPTINNE, J. C.; ECONOMOU, I. G.; ẐILNIK, L. F.; VESOVIC, V. Industrial requirements for thermodynamics and transport properties. Industrial and Engineering Chemistry Research, 2010. HIGGODA, U. A.; HELLMANN, R.; KOLLER, T. M.; FRÖBA, A. P. Self-diffusion coefficient and viscosity of methane and carbon dioxide via molecular dynamics simulations based on new ab initio-derived force fields. Fluid Phase Equilibria, v. 481, n. January 2019, p. 15–27, fev. 2019. HO, L. N.; SCHUURMAN, Y.; FARRUSSENG, D.; COASNE, B. Solubility of Gases in Water Confined in Nanoporous Materials: ZSM-5, MCM-41, and MIL-100. The Journal of Physical Chemistry C, v. 119, n. 37, p. 21547–21554, 17 set. 2015. HOCKNEY, R. W.; EASTWOOD, J. W. Computer Simulation Using Particles. 1a edição ed. Philadelphia - USA: Taylor & Francis, Inc., 1988. HØIER, L.; WHITSON, C. H. Compositional grading-theory and practice. SPE Reservoir Evaluation and Engineering, v. 4, n. 6, p. 525–535, 2001. HUBER, M. L.; PERKINS, R. A.; LAESECKE, A.; FRIEND, D. G.; SENGERS, J. V; ASSAEL, M. J.; METAXA, I. N.; VOGEL, E.; MAREŠ, R.; MIYAGAWA, K. New International Formulation for the Viscosity of H2O. Journal of Physical and Chemical Reference Data, v. 38, n. 2, p. 101–125, jun. 2009. HUMPHREY, W.; DALKE, A.; SCHULTEN, K. VMD: Visual molecular dynamics. Journal of Molecular Graphics, v. 14, n. 1, p. 33–38, fev. 1996. HWANG, C.; IGLESIAS-SILVA, G. A.; HOLSTE, J. C.; HALL, K. R.; GAMMON, B. E.; MARSH, K. N. Densities of Carbon Dioxide + Methane Mixtures from 225 K to 350 K at Pressures up to 35 MPa. Journal of Chemical & Engineering Data, v. 42, n. 5, p. 897–899, set. 1997. JAMALI, S. H.; HARTKAMP, R.; BARDAS, C.; SÖHL, J.; VLUGT, T. J. H.; MOULTOS, O. A. Shear Viscosity Computed from the Finite-Size Effects of Self-Diffusivity in Equilibrium Molecular Dynamics. Journal of Chemical Theory and Computation, v. 14, n. 11, p. 5959–5968, 2018a. JAMALI, S. H.; WOLFF, L.; BECKER, T. M.; BARDOW, A.; VLUGT, T. J. H.; MOULTOS, O. A. Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. Journal of Chemical Theory and Computation, v. 14, n. 5, p. 2667–2677, 2018b. JORGENSEN, W. L.; CHANDRASEKHAR, J.; MADURA, J. D.; IMPEY, R. W.; KLEIN, M. L. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, v. 79, n. 2, p. 926–935, 1983. JORGENSEN, W. L.; MADURA, J. D.; SWENSON, C. J. Optimized Intermolecular Potential Functions for Liquid Hydrocarbons. Journal of the American Chemical Society, 1984. KAMBERAJ, H.; LOW, R. J.; NEAL, M. P. Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules. The Journal of Chemical Physics, v. 122, n. 22, p. 224114, 8 jun. 2005. KEFFER, D. J.; ADHANGALE, P. The composition dependence of self and transport diffusivities from molecular dynamics simulations. Chemical Engineering Journal, v. 100, n. 1–3, p. 51–69, 2004. KIRKWOOD, J. G.; BUFF, F. P. The statistical mechanical theory of solutions. i. The Journal of Chemical Physics, 1951. KONDRATYUK, N. Contributions of force field interaction forms to Green-Kubo viscosity integral in n -alkane case. Journal of Chemical Physics, v. 151, n. 7, 2019. KRISHNA, R.; VAN BATEN, J. M. The Darken Relation for Multicomponent Diffusion in Liquid Mixtures of Linear Alkanes: An Investigation Using Molecular Dynamics (MD) Simulations. Industrial & Engineering Chemistry Research, v. 44, n. 17, p. 6939–6947, ago. 2005. KRYNICKI, K.; GREEN, C. D.; SAWYER, D. W. Pressure and temperature dependence of self-diffusion in water. Faraday Discussions of the Chemical Society, v. 66, p. 199, 1978. KUBO, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, v. 12, n. 6, p. 570–586, jun. 1957. KUMAR, S. K.; KRISHNAMOORTI, R. Nanocomposites: Structure, phase behavior, and properties. Annual Review of Chemical and Biomolecular Engineering, 2010. LE, T.; STRIOLO, A.; COLE, D. R. CO2-C4H10 Mixtures Simulated in Silica Slit Pores: Relation between Structure and Dynamics. Journal of Physical Chemistry C, v. 119, n. 27, p. 15274–15284, 2015. LEACH, A. R. Molecular Modelling: Principles and Applications. 2a ediçao ed. New York, USA.: Prentice Hall, 2001. LEAHY-DIOS, A. Experimental and Theoretical Investigation of Fickian and Thermal Diffusion Coefficients in Hydrocarbon Mixtures. [s.l.] Yale University, 2008. LEAHY-DIOS, A.; FIROOZABADI, A. Molecular and thermal diffusion coefficients of alkane-alkane and alkane-aromatic binary mixtures: Effect of shape and size of molecules. Journal of Physical Chemistry B, v. 111, n. 1, p. 191–198, 2007. LEE, S. H. Molecular Dynamics Simulation Study of the Transport Properties of Liquid Argon: The Green-Kubo Formula Revisited. Bulletin of the Korean Chemical Society, v. 28, n. 8, p. 1371–1374, 20 ago. 2007. LEE, S. H. Temperature dependence of the thermal conductivity of water: A molecular dynamics simulation study using the SPC/E model. Molecular Physics, v. 112, n. 16, p. 2155–2159, 2014. LIANG, Y.; LEA, A. S.; BAER, D. R.; ENGELHARD, M. H. Structure of the cleaved CaCO3(101̄4) surface in an aqueous environment. Surface Science, v. 351, n. 1–3, p. 172–182, maio 1996. LIANG, Z.; TSAI, H.-L. Molecular dynamics simulations of self-diffusion coefficient and thermal conductivity of methane at low and moderate densities. Fluid Phase Equilibria, v. 297, n. 1, p. 40–45, out. 2010a. LIANG, Z.; TSAI, H. L. Prediction of the transport properties of a polyatomic gas. Fluid Phase Equilibria, 2010b. LINDAHL, E. Molecular Dynamics Simulations. In: KUKOL, A. (Ed.). . Molecular Modeling of Proteins. New York, NY: Springer New York, 2015. p. 3–26. LIU, B.; SHI, J.; WANG, M.; ZHANG, J.; SUN, B.; SHEN, Y.; SUN, X. Reduction in interfacial tension of water-oil interface by supercritical CO2 in enhanced oil recovery processes studied with molecular dynamics simulation. Journal of Supercritical Fluids, v. 111, p. 171–178, 2016. LIU, X.; SCHNELL, S. K.; SIMON, J. M.; BEDEAUX, D.; KJELSTRUP, S.; BARDOW, A.; VLUGT, T. J. H. Fick diffusion coefficients of liquid mixtures directly obtained from equilibrium molecular dynamics. Journal of Physical Chemistry B, v. 115, n. 44, p. 12921–12929, 2011. LIU, Y.; WANG, Q.; ZHANG, L.; WU, T. Dynamics and density profile of water in nanotubes as one-dimensional fluid. Langmuir, 2005. MACIEL, J. C. DA S. L.; ABREU, C. R. A.; TAVARES, F. W. Chemical Potencial of Hard-Core Molecules by Stepwise Insertion Method. Brazilian Journal of Chemical Engineering, v. 35, n. 2, p. 277–288, 1 jun. 2018. MAGINN, E. J.; MESSERLY, R. A.; CARLSON, D. J.; ROE, D. R.; ELLIOTT, J. R. Best Practices for Computing Transport Properties 1. Self-Diffusivity and Viscosity from Equilibrium Molecular Dynamics [Article v1.0]. Living Journal of Computational Molecular Science, v. 1, n. 1, p. 1–20, 2019. MAKRODIMITRI, Z. A.; UNRUH, D. J. M.; ECONOMOU, I. G. Molecular simulation and macroscopic modeling of the diffusion of hydrogen, carbon monoxide and water in heavy n-alkane mixtures. Physical Chemistry Chemical Physics, v. 14, n. 12, p. 4133–4141, 2012. MARRINK, S. J.; DE VRIES, A. H.; MARK, A. E. Coarse Grained Model for Semiquantitative Lipid Simulations. Journal of Physical Chemistry B, 2004. MARTIN, L.; BILEK, M. M.; WEISS, A. S.; KUYUCAK, S. Force fields for simulating the interaction of surfaces with biological moleculesInterface Focus, 2016. MARTIN, M. G.; SIEPMANN, J. I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. Journal of Physical Chemistry B, v. 102, n. 14, p. 2569–2577, 1998. MARTINEZ, L.; ANDRADE, R.; BIRGIN, E. G.; MARTÍNEZ, J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 2009. MILKOV, A. V.; FAIZ, M.; ETIOPE, G. Geochemistry of shale gases from around the world: Composition, origins, isotope reversals and rollovers, and implications for the exploration of shale plays. Organic Geochemistry, v. 143, p. 103997, 2020. MOHAMMED, S.; GADIKOTA, G. The Effect of Hydration on the Structure and Transport Properties of Confined Carbon Dioxide and Methane in Calcite Nanopores. Frontiers in Energy Research, v. 6, n. August, p. 1–13, 30 ago. 2018. MOHAMMED, S.; GADIKOTA, G. CO2-Induced displacement and diffusive transport of shale geofluids in silica nanopores of varying sizes. Journal of CO2 Utilization, v. 32, n. March, p. 37–45, 2019. MOHAMMED, S.; GADIKOTA, G. Exploring the Role of Inorganic and Organic Interfaces on CO2 and CH4 Partitioning: Case Study of Silica, Illite, Calcite, and Kerogen Nanopores on Gas Adsorption and Nanoscale Transport Behaviors. Energy & Fuels, v. 34, n. 3, p. 3578–3590, 2020. MONTEIRO, J. V. DE F.; SILVA, J. R. N. M. DA. Comércio, Gás Natural Aplicado à Indústria e ao Grande. 1a edição ed. São Paulo: Blucher, 2010. MONTICELLI, L. On Atomistic and Coarse-Grained Models for C60 Fullerene. Journal of Chemical Theory and Computation, v. 8, n. 4, p. 1370–1378, 10 abr. 2012. MOULTOS, O. A.; TSIMPANOGIANNIS, I. N.; PANAGIOTOPOULOS, A. Z.; ECONOMOU, I. G. Atomistic molecular dynamics simulations of CO2 diffusivity in H2O for a wide range of temperatures and pressures. Journal of Physical Chemistry B, v. 118, n. 20, p. 5532–5541, 2014. MOULTOS, O. A.; ZHANG, Y.; TSIMPANOGIANNIS, I. N.; ECONOMOU, I. G.; MAGINN, E. J. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO2, n -alkanes, and poly(ethylene glycol) dimethyl ethers. Journal of Chemical Physics, v. 145, n. 7, 2016. MUTISYA, S. M.; KIRCH, A.; DE ALMEIDA, J. M.; SÁNCHEZ, V. M.; MIRANDA, C. R. Molecular Dynamics Simulations of Water Confined in Calcite Slit Pores: An NMR Spin Relaxation and Hydrogen Bond Analysis. Journal of Physical Chemistry C, v. 121, n. 12, p. 6674–6684, 2017. NATH, S. K.; ESCOBEDO, F. A.; DE PABLO, J. J. On the simulation of vapor-liquid equilibria for alkanes. Journal of Chemical Physics, v. 108, n. 23, p. 9905–9911, 1998. NICHOLS, J. W.; WHEELER, D. R. Fourier Correlation Method for Simulating Mutual Diffusion Coefficients in Condensed Systems at Equilibrium. Industrial & Engineering Chemistry Research, v. 54, n. 48, p. 12156–12164, 9 dez. 2015. NIKPOOR, M. H. Modeling of Compositional Grading in Nonisothermal Reservoirs. [s.l.] University of Calgary, 2014. NYGÅRD, K. Local structure and density fluctuations in confined fluids. Current Opinion in Colloid and Interface Science, v. 22, p. 30–34, 2016. PLIMPTON, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995. POKHAREL, S.; ARYAL, N.; NIRAULA, B. R.; SUBEDI, A.; ADHIKARI, N. P. Transport properties of methane, ethane, propane, and n-butane in water. Journal of Physics Communications, v. 2, n. 6, p. 065003, 1 jun. 2018. ROSSI, G.; MONTICELLI, L.; PUISTO, S. R.; VATTULAINEN, I.; ALA-NISSILA, T. Coarse-graining polymers with the MARTINI force-field: Polystyrene as a benchmark case. Soft Matter, 2011. RYCKAERT, J. P.; CICCOTTI, G.; BERENDSEN, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 1977. SANTOS, M. S.; FRANCO, L. F. M.; CASTIER, M.; ECONOMOU, I. G. Molecular Dynamics Simulation of n-Alkanes and CO2 Confined by Calcite Nanopores. Energy and Fuels, v. 32, n. 2, p. 1934–1941, 2018. SCHNELL, S. K.; LIU, X.; SIMON, J.-M.; BARDOW, A.; BEDEAUX, D.; VLUGT, T. J. H.; KJELSTRUP, S. Calculating Thermodynamic Properties from Fluctuations at Small Scales. The Journal of Physical Chemistry B, v. 115, n. 37, p. 10911–10918, 22 set. 2011. SETZMANN, U.; WAGNER, W. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa. Journal of Physical and Chemical Reference Data, v. 20, n. 6, p. 1061–1155, nov. 1991. SHINODA, W.; SHIGA, M.; MIKAMI, M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Physical Review B, v. 69, n. 13, p. 134103, 7 abr. 2004. SIMONNIN, P.; NOETINGER, B.; NIETO-DRAGHI, C.; MARRY, V.; ROTENBERG, B. Diffusion under Confinement: Hydrodynamic Finite-Size Effects in Simulation. Journal of Chemical Theory and Computation, v. 13, n. 6, p. 2881–2889, 2017. SINGH, S. K.; SINHA, A.; DEO, G.; SINGH, J. K. Vapor−Liquid Phase Coexistence, Critical Properties, and Surface Tension of Confined Alkanes. The Journal of Physical Chemistry C, v. 113, n. 17, p. 7170–7180, 30 abr. 2009. SIRK, T. W.; MOORE, S.; BROWN, E. F. Characteristics of thermal conductivity in classical water models. The Journal of Chemical Physics, v. 138, n. 6, p. 064505, 14 fev. 2013. SOFOS, F.; KARAKASIDIS, T.; LIAKOPOULOS, A. Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls. International Journal of Heat and Mass Transfer, 2009. SPAN, R.; WAGNER, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 1996. SPEIGHT, J. G. The Chemistry and Technology of Petroleum. 1a edição ed. [s.l.] CRC Press, 1999. SPEIGHT, J. G. Deep Shale Oil and Gas. [s.l.] Gulf Professional Publishing, 2017. SPERA, M. B. M.; FRANCO, L. F. M. Surface and confinement effects on the self-diffusion coefficients for methane-ethane mixtures within calcite nanopores. Fluid Phase Equilibria, v. 522, n. 19, p. 112740, nov. 2020. STÖCKELMANN, E.; HENTSCHKE, R. Adsorption isotherms of water vapor on calcite: A molecular dynamics-Monte Carlo hybrid simulation using a polarizable water model. Langmuir, v. 15, n. 15, p. 5141–5149, 1999. SUÁREZ, A. A. The Expansion of Unconventional Production of Natural Gas (Tight Gas, Gas Shale and Coal Bed Methane). In: AL-MEGREN, H. A. (Ed.). . Advances in Natural Gas Technology. Rijeka: IntechOpen, 2012. SUI, H.; ZHANG, F.; WANG, Z.; WANG, D.; WANG, Y. Molecular simulations of oil adsorption and transport behavior in inorganic shale. Journal of Molecular Liquids, v. 305, p. 15–19, 2020. SWOPE, W. C.; ANDERSEN, H. C.; BERENS, P. H.; WILSON, K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics, v. 76, n. 1, p. 637–649, jan. 1982. TAYLOR, R.; KRISHNA, R. Multicomponent Mass Transfer. 1a Edição ed. New York, USA.: Wiley, 1993. THOMAS, J. E. Fundamentos de engenharia de petróleo. 2. ed. Rio de Janeiro: Interciência LTDA, 2004. TIAN, M.; LI, Z.; SONG, R.; LI, Y.; GUO, C.; SHA, Y.; CUI, W.; XU, S.; HU, G.; WANG, J. Graphene biosensor as affinity biosensors for biorecognition between Guanine riboswitch and ligand. Applied Surface Science, 2020. TRAVALLONI, L.; CASTIER, M.; TAVARES, F. W.; SANDLER, S. I. Critical behavior of pure confined fluids from an extension of the van der Waals equation of state. The Journal of Supercritical Fluids, v. 55, n. 2, p. 455–461, dez. 2010. VEGA, C.; SANZ, E.; ABASCAL, J. L. F. The melting temperature of the most common models of water. Journal of Chemical Physics, 2005. VERLET, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, v. 159, n. 1, p. 98–103, 5 jul. 1967. WAGNER, W.; PRUSS, A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data, 2002. WANG, S.; FENG, Q.; ZHA, M.; JAVADPOUR, F.; HU, Q. Supercritical Methane Diffusion in Shale Nanopores: Effects of Pressure, Mineral Types, and Moisture Content. Energy and Fuels, v. 32, n. 1, p. 169–180, 2018. WANG, S.; ZHOU, G.; MA, Y.; GAO, L.; SONG, R.; JIANG, G.; LU, G. Molecular dynamics investigation on the adsorption behaviors of H2O, CO2 , CH4 and N2 gases on calcite (110) surface. Applied Surface Science, v. 385, p. 616–621, 2016. WEINER, S. J.; KOLLMAN, P. A.; CASE, D. A.; SINGH, U. C.; GHIO, C.; ALAGONA, G.; PROFETA, S.; WEINER, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, v. 106, n. 3, p. 765–784, fev. 1984. WEINER, S. J.; KOLLMAN, P. A.; NGUYEN, D. T.; CASE, D. A. An all atom force field for simulations of proteins and nucleic acids. Journal of Computational Chemistry, 1986. WU, Y.; TEPPER, H. L.; VOTH, G. A. Flexible simple point-charge water model with improved liquid-state properties. The Journal of Chemical Physics, v. 124, n. 2, p. 024503, 14 jan. 2006. XIAO, S.; EDWARDS, S. A.; GRÄTER, F. A new transferable forcefield for simulating the mechanics of CaCO3 crystals. Journal of Physical Chemistry C, v. 115, n. 41, p. 20067–20075, 2011. YEH, I.; HUMMER, G. System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions. The Journal of Physical Chemistry B, v. 108, n. 40, p. 15873–15879, out. 2004. YOUNGLOVE, B. A.; ELY, J. F. Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane. Journal of Physical and Chemical Reference Data, v. 16, n. 4, p. 577–798, out. 1987. ZARAGOZA, A.; GONZALEZ, M. A.; JOLY, L.; LÓPEZ-MONTERO, I.; CANALES, M. A.; BENAVIDES, A. L.; VALERIANI, C. Molecular dynamics study of nanoconfined TIP4P/2005 water: How confinement and temperature affect diffusion and viscosity. Physical Chemistry Chemical Physics, v. 21, n. 25, p. 13653–13667, 2019. ZHANG, L.; LIU, C.; LIU, Y.; LI, Q.; CHENG, Q.; CAI, S. Transport Property of Methane and Ethane in K-Illite Nanopores of Shale: Insights from Molecular Dynamic Simulations. Energy & Fuels, v. 34, n. 2, p. 1710–1719, 20 fev. 2020. ZHENG, L.; BRESME, F.; TRUSLER, J. P. M.; MÜLLER, E. A. Employing SAFT Coarse-Grained Force Fields for the Molecular Simulation of Thermodynamic and Transport Properties of CO2-n-Alkane Mixtures. Journal of Chemical and Engineering Data, v. 65, n. 3, p. 1159–1171, 2020. ZOBACK, M. D.; KOHLI, A. H. Unconventional Reservoir Geomechanics. 1a. ed. Cambridge, UK; New York, USA: Cambridge University Press, 2019.por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71141/2020%20-%20David%20Tavares%20Ferreira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6086
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-10-21T18:19:21Z No. of bitstreams: 1 2020 - David Tavares Ferreira.pdf: 3402146 bytes, checksum: 196ed2495a37d0d197f70b95424d6146 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-10-21T18:19:21Z (GMT). No. of bitstreams: 1 2020 - David Tavares Ferreira.pdf: 3402146 bytes, checksum: 196ed2495a37d0d197f70b95424d6146 (MD5) Previous issue date: 2020-12-10eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - David Tavares Ferreira.pdf3.32 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.