Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11134
Full metadata record
DC FieldValueLanguage
dc.creatorOliveira, Raysa Ramos de
dc.date.accessioned2023-11-19T22:05:04Z-
dc.date.available2023-11-19T22:05:04Z-
dc.date.issued2019-08-14
dc.identifier.citationOLIVEIRA, Raysa Ramos de. Efeito do CO2 em condições supercríticas como pré-tratamento da lipase de Thermomyces lanuginosus imobilizada. 2019. 169 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11134-
dc.description.abstractEnzymes present a great perspective considering their application as a biocatalyst in the many sectors. However, their high cost and low stability are still considered limiting factors in industrial-scale processes. For this reason, studies focused on immobilization and, recently, pretreatment using non-conventional media have been favorable in view of these disadvantages. This dissertation aimed to immobilize Thermomyces lanuginosus lipase (TLL) in anionic (Amberlite IRA400 Cl-) and cationic (Amberlite IR120 Na+) supports by ionic adsorption, then evaluate the effects of the supercritical condition of CO2 on Immobilized TLL and compare it with the commercial TLL (Lipozyme TL IM). It was observed that the support Amberlite IRA400 Cl- presented better results of activity and protein content compared to Amberlite IR120 Na+. Afterward, the effects of carbon dioxide supercritical conditions on hydrolytic activity and enzymatic stability were evaluated. The experiments were conducted according to experimental design, varying the temperature from 35 to 75 ºC, the pressure from 80 to 300 bar and the exposure time from 1 to 6 h. The results showed an inactivation of immobilized TLL in Amberlite IR120 Na+ under all proposed conditions. On the other hand, it was observed an overactivation up to 57% in relation to of activity measured before pretreatment for immobilized TLL in Amberlite IRA400 Cl-. Then, the same experimental procedure was applied to Lipozyme TL IM (commercially immobilized lipase), aiming at a comparison between commercial and immobilized lipase in this study. For this, an overactivation of 18% was noted under the same condition proposed for TLL immobilized on Amberlite IRA400 Cl- (75 ºC, 300 bar, and 6 h). Regarding changes in the chemical binding of support and enzyme, no relevant changes were observed. However, it was possible to observe that by the differential exploratory calorimetry analysis that CO2 acted as a protector for Lipozyme TL IM increasing the stability of this lipase, while in the other supports a greater protein degradation was observed. Finally, it was found that the increase in substrate concentration (p-nitrophenyl laurate) resulted in inactivation of both free and immobilized lipase in Amberlite IRA400 Cl- and commercially. Being the largest effect observed on the immobilized TLL in Amberlite IRA400 Cl-.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectLipasespor
dc.subjectImobilização de enzimaspor
dc.subjectFluido supercríticopor
dc.subjectPlanejamento experimentalpor
dc.subjectEnzyme immobilizationeng
dc.subjectSupercritical fluideng
dc.subjectExperimental designeng
dc.titleEfeito do CO2 em condições supercríticas como pré-tratamento da lipase de Thermomyces lanuginosus imobilizadapor
dc.typeDissertaçãopor
dc.contributor.advisor1Brígida, Ana Iraidy Santa
dc.contributor.advisor1ID847.843.343-00por
dc.contributor.advisor-co1Mendes, Marisa Fernandes
dc.contributor.advisor-co1ID023.918.187-50por
dc.contributor.referee1Brígida, Ana Iraidy Santa
dc.contributor.referee2Mendes, Marisa Fernandes
dc.contributor.referee3Pereira, Cristiane de Souza Siqueira
dc.contributor.referee4Gottschalk, Leda Maria Fortes
dc.contributor.referee5Oliveira, Renata Nunes
dc.creator.ID145.327.977-64por
dc.creator.Latteshttp://lattes.cnpq.br/4636322945072582por
dc.description.resumoAs enzimas apresentam uma grande perspectiva considerando sua aplicação como biocatalisador nos mais diversos segmentos. Contudo, seu elevado custo e baixa estabilidade são ainda considerados fatores limitantes em processos de escala industrial. Por esse motivo, estudos focados na imobilização e, recentemente, no pré-tratamento utilizando meios não convencionais têm se mostrado favoráveis frente à essas desvantagens. A presente dissertação teve como objetivo imobilizar a lipase de Thermomyces lanuginosus (TLL) em suportes aniônico (Amberlite IRA400 Cl-) e catiônico (Amberlite IR120 Na+) por meio da adsorção iônica, em seguida, avaliar os efeitos da condição supercrítica do CO2 sobre a TLL imobilizada e compará-la com a TLL comecial (Lipozyme TL IM). Foi observado que o suporte Amberlite IRA400 Cl- apresentou melhores resultados de atividade e teor de proteína frente ao Amberlite IR120 Na+. Posteriormente, os efeitos das condições supercríticas do dióxido de carbono sobre a atividade hidrolítica e estabilidade enzimática também foram avaliados. Os experimentos foram conduzidos de acordo com um planejamento experimental, variando a temperatura de 35 a 75 ºC, a pressão de 80 a 300 bar e o tempo de exposição de 1 a 6 h. Os resultados mostraram uma redução da atividade da TLL imobilizada em Amberlite IR120 Na+ em todas as condições propostas. Por outro lado, foi observado uma superativação em até 57% em relação a atividade medida antes do pré-tratamento para a TLL imobilizada em Amberlite IRA400 Cl-. Em seguida, o mesmo procedimento experimental foi aplicado à Lipozyme TL IM. Para este, foi notado uma superativação de 18% na mesma condição proposta para a TLL imobilizada em Amberlite IRA400 Cl- (75 ºC, 300 bar e 6 h). Em relação às mudanças nas ligações presentes no suporte e na enzima, não foram observadas alterações relevantes. Contudo, foi possível observar pela análise de calorimetria exploratória diferencial que o CO2 atuou com um protetor no complexo enzima-suporte para a Lipozyme TL IM aumentando a estabilidade dessa lipase, enquanto que nos outros suportes foi observado uma maior degradação das proteínas. Por último, foi verificado que o aumento da concentração do substrato (p-nitrofenil laurato) acarretou em uma inativação tanto da lipase livre, quanto na imobilizada em Amberlite IRA400 Cl- e comercialmente. Sendo o maior efeito observado na TLL imobilizada em Amberlite IRA400 CI-por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesABDEL-NABY, M. A.; ISMAIL, A-M, S.; AHMED, S. A.; FATTAH, A. F. A. Production and immobilization of alkaline protease from Bacillus mycoides. Bioresource Technology, v. 64, p. 205-210, 1998 ADAK, S.; DATTA, S.; BHATTACHARYA, S.; BANERJEE, R. Role of spacer length in interaction between novel gemini imidazolium surfactants and Rhizopus oryzae lipase. International Journal of Biological Macromolecules, v. 81, p. 560-567, 2015. AEHLE, W. Enzymes in Industry: Production and Applications. 3ª Edição, Wiley-VCH, 2007. ALVES, M. D.; CREN, E. C.; MENDES, A. A. Kinetic, thermodynamic, optimization and reusability studies for the enzymatic synthesis of a saturated wax ester. Journal of Molecular Catalysis B: Enzymatic, v. 133, p. s377-s387, 2016. ANDRADE, J. M.; OESTREICHER, E. G.; OVILEIRA, J. V.; OLIVEIRA, D.; ANTUNES, O. A. C.; DARIVA, C. Effect of treatment with compressed CO2 and propane on d-hydantoinase activity. Journal of Supercritical Fluids, v. 46, p. 342-350, 2008. ANGAJALA, G.; PAVAN, P.; SUBASHINI, R. Lipases: An overview of its current challenges and prospectives in the revolution of biocatalysis. Biocatalysis and Agricultural Biotechnology, v. 7, p. 257-270, 2016. ANSCHAU, A.; ARAGÃO, V. C.; PORCIUNCULA, B. D. A.; KALIL, S. J.; BURKERT, C. A. V.; BURKERT, J. F. M. Enzymatic synthesis optimization of isoamyl butyrate. Journal of the Brazilian Chemical Society, v. 22, p. 2148-2156, 2011. ANWAR, M. Z.; KIM, D. J.; KUMAR, A.; PATEL, S. K. S.; OTARI, S.; MARDINA, P. JEONG, J. H.; SOHN, J. H.; KIM, J. H.; PARK, J. T.; LEE, J. K. SnO2 hollow nanotubes: a novel and efficient support matrix for enzyme immobilization. Nature: Scientific reports, v.7, p. 1-11, 2017. AUCOIN, M. G.; LEGGE, R. L. Effects of supercritical CO2 exposure and depressurization on immobilized lipase activity. Biotechnology Letters, v. 23, p. 1863-1870, 2001. AYBASTIER, O.; DEMIR, C. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene–divinylbenzene copolymer using response surface methodology. Journal of Molecular Catalysis B: Enzymatic, v. 63, p. 170-178, 2010. BADGUJAR, K. C.; BHANAGE, B. M. The combine use of ultrasound and lipase immobilized on co-polymer matrix for efficient biocatalytic application studies. Journal of Molecular Catalysis B: Enzymatic, v. 122, p. 255-264, 2015. BANSODE, S. R.; RATHOD, V. K. An intensified technique for lipase catalyzed amide synthesis. Chemical Engineering and Processing – Process Intensification, 2019 (accepted manuscript). BAUER, CH.; STEINBERGE, D. J.; SCHALAUER, G.; GAMSE, T.; MARR, R. Activation and denaturation of hydrolases in dry and humid supercritical carbon dioxide (SC-CO2). Journal of Supercritical Fluids, v. 19, p. 79-86, 2000. BBC. Global markets for enzymes in industrial applications. BBC Research, BIO030J, 2017. Disponível em: <http://www.bccresearch.com/market-research/biotechnology/enzymes-industrial-applications-report-bio030j.html>. Acesso em: 20 jun. 2018. BEZBRADICA, D.; STOJANOVIĆ, M.; VELIČKOVIĆ, D.; DIMITRIJEVIĆ, A.; CAREVIĆ, M.; MIHAILOVIĆ, M.; MILOSAVIĆ, N. Kinetic model of lipase-catalyzed conversion of ascorbic acid and oleic acid to liposoluble vitamin C ester. Biochemical Engineering Journal, v. 71, p. 89–96, 2013 BRADY, D.; JORDAAN, J. Advances in enzyme immobilisation. Biotechnology Letters, v. 31, p. 1639-1650, 2009. BRENA, B.; GONZALEZ-POMBO, P.; BATISTA-VIERA, F. Immobilization of Enzymes: A Literature Survey. Methods in Molecular Biology, v. 1051, p. 15-31, 2013. BRÍGIDA, A. I. S. Imobilização de lipases utilizando fibra da casca de coco verde como suporte para aplicações industriais. Rio de Janeiro, p. 1-220. Tese (doutorado) – Universidade Federal do Rio de Janeiro, UFRJ, 2010. BROCCA, S.; SECUNDO, F.; OSSOLA, M.; ALBERGHINA, L.; CARREA, G.; LOTTI, M. Sequence of the lid affects activity and specificity of C. rugosa lipase isozymes. Protein Science, v. 12, p. 2312-2319, 2003. BRUNNER, G. Supercritical fluids: technology and application to food processing. Journal of Food Engineering, v. 67, p. 21-33, 2005. BRZOZOWSKI, A. M.; DEREWENDA, U.; DEREWENDA, Z. S.; DODSON, G. G.; LAWSON, D. M.; TURKENBURG, J. P.; BJORKLING, F.; HUGE-JENSEN, B.; PATKAR, S. A.; THIM, L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, v. 351, p. 491-494, 1991. CAO, C.; MATSUDA, T. Biocatalysis in Organic Solvents, Supercritical Fluids and Ionic Liquids. In: GOSWAMI, A.; STEWART, J. D., editors. Organic Synthesis Using Biocatalysis. Elsevier, 2015, p. 67-97. CARVALHO, A. C.; FONSECA, T. S.; MATTOS, M. C.; DE OLIVEIRA, M. C.; LEMOS, T. L.; MOLINARI F.; ROMANO, D. SERRA, I. Recent advances in lipase-mediated preparation of pharmaceuticals and their intermediates. International Journal of Molecular Sciences, v. 16, p. 29682-29716, 2015. CARVALHO, N. B.; SILVA, M. A. O.; FRICKS, A. T.; FRANCESCHI, E.; DARIVA, C.; ZANIN, G. M.; LIMA, A. S.; SOARES, C. M. F. Evaluation of activity of Bacillus lipase (free and immobilized) treated with compressed propane. Journal of Molecular Catalysis B: Enzymatic, v. 99, p. 130-135, 2014. CELIA, H.; CERNIA, E.; PALOCCI, C.; SORO, S.; TURCHET, T. Tuning Pseudomonas cepacea lipase (PCL) activity in supercritical fluids. Journal of Supercritical Fluid, v. 33, p. 193-199, 2005. CERNIA, E.; PALOCCI, C. Lipases in Supercritical Fluids. KAZLAUSKAS, R. Methods in Enzymology, v.286, San Diego, Academic Press, 1997, cap. 23, p. 495-508. CHAUDHURI, A.; BHARADWAJ, G.; MAHESHWARI, R. An unusual pattern of invertase activity development in the thermophilic fungus Thermomyces lanuginosus. FEMS Microbiology Letters, v. 177, p. 39-45, 1999. CHEN, D.; PENG, C.; ZHANG, H.; YAN, Y. Assessment of Activities and Conformation of Lipases Treated with Sub- and Supercritical Carbon Dioxide. Applied Biochemistry and Biotechnology, v. 169, p. 2189-2201, 2013a. CHEN, D.; ZHANG, H.; XU, J.; YAN, Y. Effect of sub- and supercritical CO2 treatment on the properties of Pseudomonas cepacia lipase. Enzyme and Microbial Technology, v. 53, p. 110-117, 2013b. CHENG, M.; ANGKAWIDJAJA, C.; KOGA, Y.; KANAYA, S. Requirement of lid2 for interfacial activation of a family I.3 lipase with unique two lid structures. The FEBS Journal. v. 279, p. 3727–3737, 2012. CHEW, Y. H.; CHUA, L. S.; CHENG, K. K.; SARMIDI, M. R.; AZIZ, R. A.; LEE, C. T. Kinetic study on the hydrolysis of palm olein using immobilized lipase. Biochemical Engineering Journal, v. 39, p. 516–520, 2008. CHIES, V. Indústrias investem na biotecnologia. Empresa Brasileira de Pesquisa Agropecuária, 28 set. 2017. Disponível em: <https://www.embrapa.br/busca-de-noticias/-/noticia/28622890/industrias-investem-na-biotecnologia>. Acesso em: 01 Ago. 2018 CHIOU, S. H.; WU, W. T. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, v. 25, p. 197-204, 2004. CHOI, M. F. M. Progress in enzyme-based biosensors using optical transducers. Microchim Acta, v. 148, p. 107–32, 2004. COLLINS, S. E.; LASSALLE, V.; FERREIRA, M. L.; FTIR-ATR characterization of free Rhizomucor meihei lipase (RML), Lipozyme RM IM and chitosan-immobilized RML. Journal of Molecular Catalysis B: Enzymatic, v. 72, p. 220-228, 2011. CORTINA, J. L.; MIRALLES, N.; AGUILAR, M.; STASTRE, A. M. Extraction studies of Zn (II), Cu (II) and Cd (II) with impregnated and Levextrel resins containing di (2-ethylhexyl) phosphoric acid (Lewatit 1026). Hydrometallurgy, v. 36, p. 131–142, 1994. DALLA-VECCHIA, R.; NASCIMENTO, M. G.; SOLDI, V. Aplicações sintéticas de lipases imobilizadas em polímeros. Química Nova, v. 27, p.623-630, 2004. DE DIEGO, T.; LOZANO, P.; GMOUH, S.; VAUTIER, M.; IBORRA, J. L. Understanding structure–stability relationships on Candida antarctica lipase B in ionic liquids, Biomacromolecules, v. 6, p. 1457-1464, 2005. DHAKE, K. P.; DESHMUKH, K. M.; PATIL, Y. P.; SINGHAL, R. S.; BHANAGE, B. M. Improved activity and stability of Rhizopus oryzae lipase via immobilization for citronellol ester synthesis in supercritical carbon dioxide. Journal of Biotechnology, v. 156, p. 46–51, 2011. DHARMSTHITI, S.; LUCHAI, S. Production and Immobilization of Lipase from Aeromonas sobria Harboring a Heterologous Gene. Journal of fermentation and bioengineering, v. 86, p. 335-337, 1998. DIAS, A. L. B.; SANTOS, P.; MARTÍNEZ, J. Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: A review. Journal of CO2 Utilization, v. 23, p. 159-178, 2018. DJORDJEVIC, D. M.; PETRONIJEVIC, Z. B.; CVETKOVIC, D. M. Polyester fabric modification by some lipases. Chemical Industry & Chemical Engineering Quarterly, v. 11, p. 183-188, 2005. DOS SANTOS, P.; RENZENDE, C. A.; MARTÍNEZ, J. Activity of immobilized lipase from Candida antarctica (Lipozyme 435) and its performance on the esterification of oleic acid in supercritical carbon dioxide. Journal of Supercritical Fluids, v. 107, p.170-178, 2016. DUMORNÉ, K.; CÓRDOVA, D. C.; ASTORGA-ELÓ, M.; RENGANATHAN, P. Extremozymes: A potential source for industrial applications, J. Microbiol. Biotechnol. 27 (2017) 649–659. doi:10.4014/jmb.1611.11006 DUPONT, J.; DE SOUZA, R. F.; SUAREZ, A. Z. Ionic liquids (molten salts) phase organometallic catalysis. Chemical Reviews, v. 102, p. 3667-3692, 2002. EARLE, M. J.; PLECHKOVA, N. V.; SEDDON, K. R. Green synthesis of biodiesel using ionic liquids. Pure and Applied Chemistry, v. 81, p. 2045-2057, 2009. ECKSTEIN, M.; WASSERCHEID, P.; KRAGL, U. Enhanced enantioselectivity of lipase from Pseudomonas sp. at high temperatures and fixed water activity in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulphonyl]amide, Biotechnology Letters, v. 24, p. 763-767, 2002. EISENMENGER, M. J.; REYES-DE-CORCUERA, J. I. High pressure enhancement of enzymes: A review. Enzyme and Microbial Technology, v. 45, p. 331-347, 2009. EL-HENNAWI, H. M.; SHAHIN, A. A.; REKABY, M.; RAGHEB, A. A. Ink jet printing of bio-treated linen, polyester fabrics and their blend. Carbohydrate Polymers, v. 118, p. 235-241, 2015. EMERSON, R. Thermophiles. In: ANSWORTH, G. C.; SUSSMAN, A. S., editors. The Fungi. An Advanced Treatise. Academic Press, London, p. 105-128, 1968. EMREGUL, E.; SUNGUR, S.; AKBULUT, U. Polyacrylamide-gelatine carrier system used for invertase immobilization. Food Chemistry, v. 97, p. 591-597, 2006. ENGINEERING TOOLBOX. Carbon Dioxide - Thermophysical Properties. 2018. Disponível em: <https://www.engineeringtoolbox.com/CO2-carbon-dioxide-properties-d_2017.html>. Acesso em 19 de maio de 2019. FAIGL, F.; THURNER, A.; FARKAS, F.; BATTANCS, M.; POPPE, L. Synthesis and enantioselective rearrangement of (Z)-4-triphenylmethoxy-2,3- epoxybutan-1-ol enantiomers. Chirality, v. 19, p. 197–202, 2007. FAN, Y.; QIAN, J. Lipase catalysis in ionic liquids/supercritical carbon dioxide and its applications. Journal of Molecular Catalysis B: Enzymatic, v. 66, p. 1-7, 2010. FEHER, E.; MAJOR, B.; BELAFI-BAKO, K.; GUBICZA, L. On the background of enhanced stability and reusability of enzymes in ionic liquids. Biochemical Society Transactions, v. 35, p. 1624-1627, 2007. FERNANDES, P. Enzymatic Processing in the Food Industry. Reference Module in Food Science, 2018. FERNANDEZ-LAFUENTE, R. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, v. 62, p. 197-212, 2010. FRANKEN, L. P. G.; MARCON, N. S.; TREICHEL, H.; OLIVEIRA, D.; FREIRE, D. M. G.; DARIVA, C.; DESTAIN, J.; OLIVEIRA, J. V. Effect of Treatment with Compressed Propane on Lipases Hydrolytic Activity. Food Bioprocess Technology, v. 3, p. 511-520, 2010. GARCIA, S. M. P. Biocatálise em meios não convencionais: solventes orgânicos, fluidos supercríticos e líquidos iónicos. Lisboa, p.1-136. Dissertação (mestrado) – Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2005. GIESSAUF, A.; MAGOR, W.; STEINBERGER, D. J.; MARR, R. A study of hydrolases stability in supercritical carbon dioxide (SC-CO2). Enzyme and Microbial Technology, v. 24, p. 577-583, 1999. GOTTOR, V. Biocatalysis applied to the preparation of pharmaceuticals. Organic Process Research & Development, v. 6, p. 420-426, 2002. GUPTA, R.; RATHI, P.; GUPTA, N.; BRADOO, S. Lipase assays for conventional and molecular screening: an overview. Applied Biochemistry and Biotechnology, v. 37, p. 63-71, 2003. HEIKINHEIMO, P.; GOLDMAN, A.; JEFFRIES, C.; OLLIS, D. L. Of barn owls and bankers: a lush variety of α/β hydrolases. Structure, v. 7, p. R141–R146, 1999. HJORTH, A.; CARRIERE, F.; CUDREY, C.; WOLDIKE, H.; BOEL, E.; LAWSON, D. M.; FERRATO, F.; CAMBILLAU, C.; DODSON, G. G.; THIM, L. A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho) lipase. Biochemistry, v. 32, p. 4702–4707, 1993. HU, W.; ZHOU, L.; XU, Z.; ZHANG, Y.; LIAO, X. Enzyme Inactivation in Food Processing using High Pressure Carbon Dioxide Technology. Critical Reviews in Food Science and Nutrition, v. 53, p. 145–161, 2013. ILLANES, A.; CAUERHFF, A.; WILSON, L.; CASTRO, G. R. Recent trends in biocatalysis engineering. Bioresource Technology, v. 115, p. 48-57, 2012. JEGANNATHAN, K. R.; ABANG, S.; PONCELET, D.; CHAN, E. S.; RAVINDRA, P. Production of biodiesel using immobilized lipase - a critical review. Critical Reviews in Biotechnology, v. 28, p. 253-264, 2008. JURADO, E.; BRAVO, V.; LUZÓN, G.; FERNÁNDEZ-SERRANO, M.; GARCÍA-ROMÁN, M.; ALTMAJER-VAZ, D.; VICARIA, J. M. Hard‐Surface Cleaning Using Lipases: Enzyme–Surfactant Interactions and Washing Tests. Journal of Surfactants Detergents, v. 10, p. 61-70, 2007. KALSI, P. S. Spectroscopy of Organic Compounds, 2nd ed., New Age International Limited, India, 1995. KANTOUCH, A.; RASLAN, W. M.; EL-SAYED, H. J. Effect of Lipase Pretreatment on the Dyeability of Wool Fabric. Journal of Natural Fibers, v. 2, p. 35-48, 2005. KAO, F. J.; EKHORYTOMWEN, S. A.; SAWAN, S. P. Residual stability of lipase from Candida rugosa in hexane, supercritical CO2, and supercritical SF6. Biotechnology Techniques, v. 11, p. 849-852, 1997. KLIBANOV, A. M. Enzyme-catalyzed processes in organic-solvents. Annals of the New York Academy of Sciences, v. 501, p. 129-129, 1987. KNEZ, Z.; HABULIN, M. Compressed gases as alternative enzymatic-reaction solvents: A short review. Journal of Supercritical Fluids, v. 23, p. 29-34, 2002. KNEZ, Z. Enzymatic reactions in dense gases. Journal of Supercritical Fluids, v. 47, p. 357-372, 2009. KNEZ, Z. Enzymatic reactions in subcritical and supercritical fluids. Journal of Supercritical Fluids, v. 134, p. 133-140, 2018. KNEZEVIC, Z. D.; SILER-MARINKOVIC, S. S.; MOJOVIC, L. V. Immobilized lipases as practical catalysts. APTEFF, v. 35, p. 151-164, 2004. KOSHIYAMA, I.; HAMANO, M.; FUKUSHIMA, D. A heat denaturation study of the 11S globulin in soybean seeds. Food Chemistry, v. 6, p. 309–322, 1981. KRISHNA, S. H.; DIVAKAR, S.; PRAPULLA, S. G.; KARANTH, N. G. Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor miehei. Journal of Biotechnology, v. 87, p. 193-201, 2001. KUHN, G. O.; COGHETTO, C.; TREICHEL, H.; OLIVEIRA, D.; OLIVEIRA, J. V. Effect of compressed fluids treatment on the activity of inulinase from Kluyveromyces marxianus NRRL Y-7571 immobilized in montmorillonite. Process Biochemistry, v. 46, p. 2286-2290, 2011. KUMAR, S. K.; MANIMARAN, A.; PERMAUL, K.; SINGH, S. Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. Journal of Bioscience and Bioengineering, v.107, p. 494-498, 2009. KUMAR, R. R.; SREELATHA B.; GIRISHAM, S.; REDDY, S. M. Incidence of thermophilic fungi from different substrates in Andhra Pradesh (India). International Journal of Pharma and Bio Sciences, v. 1, p. 1-6, 2010. KUMAR, M.; MUKHERJEE, J.; SINHA, M.; KAUR, P.; SHARMA, S.; GUPTA, M. N.; SINGH, T. P. Enhancement of stability of a lipase by subjecting to three phase partitioning (TPP): structures of native and TPP-treated lipase from Thermomyces lanuginosa. Sustainable Chemical Processes, v. 3, p. 1-10, 2015. LANZA, M.; PRIAMO, W. L.; OLIVEIRA, J. V.; DARIVA, C.; DE OLIVEIRA, D. The Effect of Temperature, Pressure, Exposure Time, and Depressurization Rate on Lipase Activity in SCCO2. Applied Biochemistry and Biotechnology, v. 113, p. 181-187, 2004. LI, C.; GUOCHENG, D.; DONGXU, Z.; JIAN, C. Thermal stability and conformational changes of transglutaminase from a newly isolated Streptomyces hygroscopicus. Bioresource Technology, v. 99, p. 3794-3800, 2008. LI, N.; ZONG, M. H.; MA, D. Unexpected reversal of the regioselectivity in Thermomyces lanuginosus lipase-catalyzed acylation of floxuridine. Biotechnology Letter, v. 31, p. 1241-1244, 2009. LI, L.; FREY, M.; BROWNING, K. J. Biodegradability study on cotton and polyester fabrics. Journal of Engineered Fibers and Fabrics, v. 5, p. 42-53, 2010. LI, S.; YANG, X.; YANG, S.; ZHU, M.; WANG, X. Technology Prospecting on Enzymes: Application, Marketing and Engineering. Computational and Structural Biotechnology Journal, v. 2, p. 1-11, 2012. LI-CHAN, E. C. Y.; MA, C. Y. Thermal analysis of flaxseed (Linum usitatissimum) proteins by differential scanning calorimetry. Food Chemistry, v. 77, p. 495-502, 2002. LIU, Y.; CHEN, D.; XU, L.; YAN, Y. Evaluation of structure and hydrolysis activity of Candida rugosa Lip7 in presence of sub-/super-critical CO2. Enzyme and Microbial Technology, v. 51, p.324-358, 2012. LIU, Y.; CHEN, D.; WANG, S. Effect of sub- and super-critical CO2 pretreatment on conformation and catalytic properties evaluation of two commercial enzymes of CALB and Lipase PS. Journal of Chemical Technology & Biotechnology, v. 88, p. 1750-1756, 2013. LIU, D. M.; CHEN, J.; SHI, Y. P. Advances on methods and easy separated support materials for enzymes immobilization. Trends in Analytical Chemistry, v. 102, p. 332-342, 2018. LOWRY, O. H.; ROSEBROUGH, N. J.; LEWIS-FARR, A.; RANDALL, R. J. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, v. 193, p. 265-275, 1951. LOZANO, P.; DE DIEGO, T.; CARRI’E, D.; VAULTIER, M.; IBORRA, J. L. Overstabilization of Candida antarctica lipase B by ionic liquids in ester synthesis, Biotechnology Letters, v. 23, p.1529-1533, 2001. LOZANO, P.; V´ILLORA, G.; G´OMEZ, D.; GAYO, A. B.; S´ANCHEZ-CONESA, J. A.; RUBIO, M.; IBORRA, J. L. Membrane reactor with immobilized Candida antarctica lipase B for ester synthesis in supercritical carbon dioxide. Journal of Supercritical Fluids, v. 29, p. 121-128, 2004. LYBERG, A. M.; ADLERCREUTZ, P. Lipase specificity towards eicosapentaenoic acid and docosahexaenoic acid depends on substrate structure. Biochimica et Biophysica Acta, v. 1784, p. 343-350, 2008. MAKOLOMAKWA, M.; PURI, K. A.; PERMAUL, K.; SINGH, S. Thermo-acid-stable phytase-mediated enhancement of bioethanol production using Colocasia esculenta. Bioresource Technology, v. 235, p. 396-404, 2017. MARTINS, A. B.; FRIEDRICH, J. L. R.; CAVALHEIRO, J. C.; GARCIA-GALAN, C.; BARBOSA, O.; AYUB, M. A. Z.; FERNANDEZ-LAFUENTE, R.; RODRIGUES, R. C. Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene–divinylbenzene beads. Bioresource Technology, v. 134, p. 417-422, 2013. MATEO, C.; PALOMO, J. M.; FERNANDEZ-LORENTE G.; GUISAN J. M.; FERNANDEZ-LAFLUENTE, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, v. 40, p. 1451-1463, 2007. MATIJOSYTE, I.; ARENDS, I.; DE VRIES, S.; SHELDON, R. A. Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. Journal of Molecular Catalysis B: Enzymatic, v. 62, p. 142-914, 2010. MATTE, C. R.; BORDINHÃO, C.; POPPE, J. K.; BENVENUTTI, E. V.; COSTA, T. M. H.; RODRIGUES, R. C.; HERTZ, P. F.; AYUB, M. A. Z. Physical-Chemical Properties of the Support Immobead 150 Before and After the Immobilization Process of Lipase. Journal of the Brazilian Chemical Society, v. 28, p. 1430-1439, 2017. MELGOSA, R.; SANZ, M. T.; SOLAESA, A. G.; BUCIO S. L.; BELTRÁN, S. Enzymatic activity and conformational and morphological studies of four commercial lipases treated with supercritical carbon dioxide. Journal of Supercritical Fluids, v. 97, p.51-62, 2015. MENDES, A. A.; OLIVEIRA, P. C.; CASTRO, H. F.; GIORDANO, R. L. C. Aplicação de quitosana como suporte para a imobilização de enzimas de interesse industrial. Química Nova, v. 34, p. 831-840, 2011. MENGER, F. M.; PORTNOY, C. E. The effect of urea and other reagents on the reactivity of associated p-nitrophenyl laurate. Journal of the American Chemical Society, v. 90, p. 1875–1878, 1968. MERTINELLE, M.; HOLMQUIST, M.; HULT, K. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochimica et Biophysica Acta, v. 1258, p. 272–276, 1995. MONHEMI, H.; HOUSAINDOKHT, M. R. Chemical modification of biocatalyst for function in supercritical CO2: In silico redesign of stable lipase. Journal of Supercritical Fluids, v. 117, p. 147-163, 2016. MUKHERJEE, J.; GUPTA, M, N. Dual bioimprinting of Thermomyces lanuginosus lipase for synthesis of biodiesel. Biotechnology Reports, v. 10, p. 38-43, 2016. NAKAMURA, K.; TAKEBE, Y.; KITAYMA, T.; OHNO, A. Effect of solvent structure on enantioselectivity of lipase-catalyzed transesterification. Tetrahedron Letters, v. 32, p. 4941-4944, 1991. NARDINI, M.; DIJKSTRA, B. W. α/β hydrolase fold enzymes: the family keeps growing. Current Opinion in Structural Biology, v. 9, p. 732–737, 1999. NGUYEN, Q. D.; BUJNA, E.; HOSCHKE, A.; SZABO, R. J. M. Thermophilic fungus Thermomyces lanuginosus: Current review on potential source for thermostale enzymes, In: GUPTA, V. K.; AYYACHAMY, M.; editors. Biotechnology of Microbial Enzymes, Nova Science Publishers Inc., New York, p. 21-55, 2012. NOEL, M.; COMBS, D. Rhizomucor miehei lipase: differential scanning calorimetry and pressure/temperature stability studies in presence of soluble additives. Enzyme Microbial. Technology, v. 33, p. 299–308, 2003. NOGUEIRA, F. S.; MIMURA, A. M. S.; SILVA, J. C. J.; SOUSA, R. A. Potencialidade de uso da resina Amberlite IR120 no tratamento de resíduos químicos contendo espécies iônicas com CR2O72-, Fe3+ e MnO4-. Eclética Química, v. 39, p. 12-21, 2014. NOVOZYMES. Immobilized lipases for biocatalysis for smarter chemical synthesis. No. 2014-12576-04. Bagsvaerd Denmark, 2016a. 6 p. NOVOZYMES. Lipases for biocatalysis for smarter chemical synthesis. No. 2014-12478-04. Bagsvaerd Denmark, 2016b. 6 p. OLIVEIRA, D.; FEIHRMANN, A. C.; RUBIRA, A. F.; KUNITA, M. H.; DARIVA, C.; OLIVEIRA, J. V. Assessment of two immobilized lipases activity treated in compressed fluids. Journal of Supercritical Fluids, v. 38, p. 373-382, 2006. OLLIS, D. L.; CHEAH, E.; CYGLER, M.; DIJKSTRA, B.; FROLOW, F.; FRANKEN, S. M.; HAREL, M.; REMINGTON, S. J.; SILMAN, I.; SCHRAG, J.; SUSSMAN, J. L.; VERSCHUEREN, K. H. G.; GOLDMAN, A. The α/β hydrolase fold. Protein Engineering, v. 5, p. 197–211, 1992. PLEISS, J.; FISHER, M.; SCHMID, R. D. Anatomy of lipase binding sites: the sessile fatty acid binding site. Chemistry Physics lipids, v. 93, p. 67-80, 1998. PORSGAARD, T.; XU, X.; GÖTTSCHE, J.; MU, H. Differences in the intramolecular structure of structured oils do not affect pancreatic lipase activity in vitro or the absorption by rats of (n-3) fatty acids. Journal of Nutrition, v. 135, p. 1705-1711, 2005. PRESAD, A. K.; KALRA, N.; YADAV, Y.; KUMAR, R.; SHARMA, S. K.; PATKAR, S.; LANGE, L.; WENGEL, J.; PARMAR, V. Deacylation studies on furanose triesters using an immobilized lipase: Synthesis of a key precursor for bicyclonucleosides. Chemical Communications, p. 2616-2617, 2007. PRICE, J.; NORDBLAD, M.; MARTEL H. H.; CHRABAS, B.; WANG, H.; NIELSEN, P. M.; WOODLEY, J. M. Scale-up of industrial biodiesel production to 40 m3 using a liquid lipase formulation. Biotechnology And Bioengineering, v. 113, p.1719-1728, 2016. PUCHART, V.; VRSANSKA, M.; SVOBODA, P.; POHL, J.; OGEL, Z. B.; BIELY, P. Purification and characterization of two forms of endo-β-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Biochimica et Biophysica Acta (BBA) - General Subjects, v. 1674, p. 239-250, 2004. RABE, M.; VERDES, D.; SEEGER, S. Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interdace Science, v. 162, p. 87-106, 2011. REICHARDT, C.; UTGENANNT, S.; STAHMANN, K. P.; KLEPEL, O.; BARIG, S. Highly stable adsorptive and covalent immobilization of Thermomyces lanuginosus lipase on tailor-made porous carbon material. Biochemical Engineering Journal, v. 138, p. 63-73, 2018. REISENBERG, M.; SINGH, P. K.; WILLIAMS, G.; DOHERTY, P. The diacylglycerol lipases: structure, regulation and roles in and beyond endocannabinoid signalling. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 367, p. 3264–3275, 2012. RICH, J. O.; MOZHAEV, V.; DORDICK, J.; DOUGLAS, C.; KHMELNITSKY, Y. L. Molecular imprinting of enzymes with water-insoluble ligands for non aqueous biocatalysis. Journal of the American Chemical Society, v. 124, p. 5254-5255, 2002. RIGO, E.; RIGONI, R. E.; LODEA, P.; OLIVEIRA, D. D.; FREIRE, D. M. G.; LUCCIO, M. D. Application of Different Lipases as Pretreatment in Anaerobic Treatment of Wastewater Environmental Engineering Science, v. 25, p. 1243-1248, 2008. ROHM AND HAAS COMPANY. Product Data Sheet. AMBERLITE® IRA400 Cl-Strong Base Anion Exchanger. IE-553EDS. 2005. 2p. ROMERO, M. D.; CALVO L.; ALBA, C.; DANESHFAR, A.; GHAZIASKAR, H. S. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme and Microbial Technology, v. 37, p. 42-48, 2005. SANTOS, P.; REZENDE, C.; MARTÍNEZ, J. Activity of immobilized lipase from Candida antarctica (Lipozyme 435) and its performance on the esterification of oleic acid in supercritical carbon dioxide. Journal of Supercritical Fluids, v. 107, p. 170–178, 2016. SELLEK, G. A.; CHAUFHURI, J. B. Biocatalysis in organic media using enzymes from extremophiles. Enzyme and Microbial Technology, v. 25, p. 471-482, 1999. SHARMA, R.; CHISTI, Y.; BANERJEE, U. C. Production, purification, characterization and applications of lipases. Biotechnology Advances, v. 19, p. 627-662, 2001. SHARMA, S.; KANWAR, S. S. Organic solvent tolerant lipases and applications. The Scientific World Journal, v. 2014, p. 1-14, 2014. SHIN, S.K.; SIM, J.E.; KISHIMURA, H.; CHUN, B.-S. Characteristics of menhaden oil ethanolysis by immobilized lipase in supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry, v. 18, p. 546–550, 2012. SIMAS, A. S. L. Produção de Biodiesel a partir de óleos vegetais virgens e usados, comparando transesterificação básica e enzimática. Lisboa, p. 1-146. Dissertação (mestrado) – Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2008. SIVALINGAM, G.; MADRAS, G. Dynamics of lipase catalyzed enzymatic degradation of poly(bisphenol‐A carbonate). Journal Applied Polymer Science, v. 91, p. 2391-2396, 2004. SMITH, B. Infrared Spectral Interpretation: A Systematic Approach. CRC Press, USA, 1999. SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introdução à Termodinâmica da Engenharia Química, 7a Ed., LTC – Livros Técnicos e Científicos Editora, Rio de Janeiro, 2007. SOARES, C. M. F.; SANTOS, O. A. S.; CASTRO, H. F.; MORAES, F. F.; ZANIN, G. M. . Applied Biochemistry and Biotechnology, v. 113, p. 307-319, 2004. SONG, C. E. Enantioselective chemo- and bio-catalysis in ionic liquids. Journal of chemical communications, v. 9, p. 1033-1043, 2004. SPINELLI, S.; FATARELLA, E.; DI MICHELE, A.; POGNI, R. Immobilization of fungal (Trametes versicolor) laccase onto Amberlite IR-120 H beads: Optimization and characterization. Process Biochemistry, v. 48, p. 218-223, 2013. SREELATHA, B.; SHANTHI, P. A.; GIRISHAM, S. Incidence of thermophilic fungi in different dung samples of Warangal district of AP. International Journal of Pharma and Bio Sciences, v. 3, p. 355–359, 2013. TALBERT, J. N.; GODDART, J. M. Enzymes on material surfaces. Colloids and Surfaces B: Bioinerfaces, v. 93, p. 8-19, 2012 TAN, T.; LU, J.; NIE, K.; DENG, L.; WANG, F. Biodiesel production with immobilized lipase: A review. Biotechnology Advances, v. 28, p. 628-634, 2010. TAO, M.; LI, Q.; QU, J.; ZHANG, M. Enzymatic synthesis of dipalmitin in supercritical carbon dioxide and mechanism study. Industrial and Engineering Chemistry Research, v. 52, p. 13528–13535, 2013. THAKUR, S. Lipases, its sources, properties and applications: a review. International Journal of Scientific and Engineering Research, v.3, p. 1-29, 2012. THE DOW CHEMICAL COMPANY. Product Data Sheet. AMBERLITE™ IRC120 Na Ion Exchange Resin. No. 177-03802. Rev. 1. 2018. 3 p. THIRSTRUP, K.; VERGER, R.; CARRIERE, F. Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry, v. 33, p. 2748–2756, 1994. TOLEDO, L.; RIVAS, B. L.; URBANO, B. F.; SÁNCHEZ, J. Novel N-methyl-D-glucamine-based watersoluble polymer and its potential application in the removal of arsenic. Separation and Purification Technology, v. 103, p. 1-7, 2013. TRABOULSI, A.; DUPUY, N.; REBUFA, C.; SERGENT, M.; LABED, V. Investigation of gamma radiation effect on the anion exchange resin Amberlite IRA-400 in hydroxide form by Fourier transformed infrared and 13C nuclear magnetic resonance spectroscopies. Analytica Chimica Acta, v. 717, p. 110-121, 2012. TREICHEL, H.; OLIVEIRA, D.; MAZUTTI, M. A.; DI LUCCIO, M.; OLIVEIRA, J. V. A review on microbial lipases production. Food Bioprocess Technology, v. 3, p. 182-196, 2010. UPPENBERG, J.; HANSEN, M.T.; PATKAR, S.; JONES, T. A. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure, v. 2, p. 293-308, 1994. URBANO, B. F.; VILLENAS, I.; RIVAS, B. L; CAMPOS, C. H.; Cationic polymer-TiO2 nanocomposite sorbent for arsenate removal. Chemical Engineering Journal, v. 268, p. 362-370, 2015. VARANDAS, V. S.; FERREIRA, R. D. M.; CAVALCANTE, P. A. W.; OLIVEIRA, T. S.; COÊLHO, D. F.; RODRIGUES, J. R. S.; FREITAS, J. A.; SOUZA, R. R. Imobilização de lipase de Candida rugosa em suporte de quitosana por ligação covalente. Scientia Plena, v. 14, p. 1-7, 2018. VILLENEUVE, P.; MUDERHWA, J. M.; GRAILLE, J.; HAAS, M. J. Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. Journal of Molecular Catalysis B: Enzymatic, v. 9, p. 113-148, 2000. VILLENEUVE, P.; BAROUH, N.; BARÉA, B.; PIOMBO, G.; FIGUEROA-ESPINOZA, M.C.; TURON, F.; PINA, M.; LAGO, R. C. A. Chemoenzymatic synthesis of structured triacylglycerols with conjugated linoleic acids (CLA) in central position. Food Chemistry, v. 100, p. 1443-1452, 2007. WEINGÄRTNER, H.; FRANCK, E. U. Supercritical water as a solvent. Angewandte Chemie International Edition, v. 44, p. 2672–2692, 2005. WENDHAUSEN, P. A. P.; RODRIGUES G. V.; MARCHETTO O. Apostila de Análises Térmicas, Universidade Federal de Santa Catarina, Departamento de Engenharia Mecânica, 2002. YADAV, G. D.; DEVI, K. M. Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling, Chemical Engineering Science, v. 59, p. 373-383, 2004. ZAKS, A.; KLIBANOV, A. M. Enzymatic catalysis in nonaqueous solvents. Journal of Biological Chemistry, v. 263, p. 3194-3201, 1988. ZHANG, Z.; KUIJER, R.; BULSTRA, S. K.; GRIJPMA, D. W.; FEIJEN, J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials, v. 27, p. 1741-1748, 2006. ZHANG, D. H.; LI, C.; ZHI, G. Y. Kinetic and thermodynamic investigation of enzymatic l-ascorbyl acetate synthesis. Journal of Biotechnology, v. 168, p. 416-420, 2013. ZHAO, H.; SONG, Z.; OLUBAJO, O.; COWINS, J. V. New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel. Applied Biochemistry and Biotechnology, v. 162, p. 13-23, 2010. ZHAO, X.; QI, F.; YUAN, C.; DU, W.; LIU, D. Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renewable and Sustainable Energy Reviews, v. 44, p. 182-197, 2015. ZHOU, Z.; INAVAT, A.; SCHWIEGER, W.; HARTMANN, M. Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials, v. 154, p. 133-141, 2012. ZHU, K., JUTILA, A., TUOMINEN, E.K.J., PATKAR, S. A., SVENDSEN, A., KINNUNEN, P.K.J. Impact of the tryptophan residues of Humicola lanuginosa lipase on its thermal stability. Biochimica et Biophysica Acta, v. 1547, p. 329-338, 2001.por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68737/2019%20-%20Raysa%20Ramos%20de%20Oliveira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5513
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-04-03T06:37:41Z No. of bitstreams: 1 2019 - Raysa Ramos de Oliveira.pdf: 1970759 bytes, checksum: 07e3c6bd553723a7795b6b99a95cf187 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-04-03T06:37:41Z (GMT). No. of bitstreams: 1 2019 - Raysa Ramos de Oliveira.pdf: 1970759 bytes, checksum: 07e3c6bd553723a7795b6b99a95cf187 (MD5) Previous issue date: 2019-08-14eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Raysa Ramos de Oliveira.pdf1.92 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.