Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11133
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Borges, Rodrigo Fernando de Oliveira | |
dc.date.accessioned | 2023-11-19T22:05:04Z | - |
dc.date.available | 2023-11-19T22:05:04Z | - |
dc.date.issued | 2019-08-23 | |
dc.identifier.citation | BORGES, Rodrigo Fernando de Oliveira. Análise e estimação das propriedades de tortas de filtração de fluidos de perfuração não-Newtonianos. 2019. 173 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/11133 | - |
dc.description.abstract | The oil well drilling process is always evolving and being optimized to ensure maximum efficiency to reduce its cost. In this scenario, the loss circulation is a phenomenon to be continuously studied and minimized to avoid fluid loss and oil reservoirs contamination. It is caused by a pressure differential between the formation pores and the well annular region. As drilling fluid invades the reservoir, a layer of solids is formed and the fluid loss rate becomes a function of cake parameters such as permeability and porosity. To minimize the filtrate loss, drilling fluids are designed to provide a thin cake with low permeability. Several methods of determination of the properties of filtration pies are presented. So, it is noticed the absence of procedures of calculation and estimation of adequate parameters, in which the experimental errors associated with the experimental output variables are adequately described. In this study, the effects of temperature, pressure and solids concentration on the filter cake parameters were evaluated. The mud cake compressibility was analyzed in constant pressure filtration processes. The internal structure of the mud cakes was studied by SEM images. Static filtrations were performed in an HTHP filtration cell with non-Newtonian suspensions with concentrations similar to those used in actual processes. The mud cake parameters were estimated by adjusting the filtration model for non-Newtonian fluids using the Estima package, written in Fortran language. Three different methodologies for parameter estimation were presented, in which they are estimated separately for each experimental condition (implicit method) or directly estimated from filtrate volume data. The effect of the applied pressure differential on the cake permeability and on the filter resistance was considered from appropriate constitutive equations. | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Filtração | por |
dc.subject | Fluidos de perfuração | por |
dc.subject | Modelagem | por |
dc.subject | Estimação de parâmetros | por |
dc.subject | Propriedades de torta | por |
dc.subject | Filtration | eng |
dc.subject | Drilling fluids | eng |
dc.subject | Parameter estimation | eng |
dc.subject | Mudcake properties | eng |
dc.title | Análise e estimação das propriedades de tortas de filtração de fluidos de perfuração não-Newtonianos | por |
dc.title.alternative | Analysis and estimation of mud cakes properties of non-Newtonian drilling fluids | eng |
dc.type | Dissertação | por |
dc.contributor.advisor1 | Calado, Veronica Maria de Araujo | |
dc.contributor.advisor1ID | https://orcid.org/0000-0002-1365-8990 | por |
dc.contributor.advisor1ID | 138630704-10 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7950388015437635 | por |
dc.contributor.advisor-co1 | Oechsler, Bruno Fernando | |
dc.contributor.advisor-co1ID | https://orcid.org/0000-0001-5351-5508 | por |
dc.contributor.advisor-co1ID | 054.182.959-93 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/6743301470746932 | por |
dc.contributor.referee1 | Calado, Verônica Maria de Araújo | |
dc.contributor.referee1ID | https://orcid.org/0000-0002-1365-8990 | por |
dc.contributor.referee1ID | 138.630.704-10 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/7950388015437635 | por |
dc.contributor.referee2 | Medronho, Ricardo de Andrade | |
dc.contributor.referee2ID | https://orcid.org/0000-0001-5603-9762 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/2883241764449950 | por |
dc.contributor.referee3 | Brandão, Amanda Lemette Teixeira | |
dc.contributor.referee3ID | https://orcid.org/0000-0001-7602-8980 | por |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/5417244739608507 | por |
dc.creator.ID | 26576344-1 | por |
dc.creator.ID | 143.346.617-18 | por |
dc.creator.Lattes | http://lattes.cnpq.br/4804300026390960 | por |
dc.description.resumo | O processo de perfuração de poços de petróleo está sempre evoluindo e sendo otimizado para garantir a máxima eficiência a fim de reduzir seu custo. Nesse cenário, a perda de circulação é um fenômeno a ser continuamente estudado e minimizado para evitar a perda de fluidos e a contaminação de reservatórios de petróleo. A perda de circulação é causada por um diferencial de pressão entre os poros da formação e a região anular do poço. À medida que o fluido de perfuração invade o reservatório, uma camada de sólidos é formada e a taxa de perda de fluido torna-se função de parâmetros da torta, como a permeabilidade e a porosidade. Para minimizar a perda de filtrado, os fluidos de perfuração são desenvolvidos a fim de fornecer uma torta fina com baixa permeabilidade. Diversos métodos de determinação das propriedades das tortas de filtração são apresentados. Percebe-se então a ausência de procedimentos de cálculo e estimação de parâmetros adequados, nos quais os erros experimentais associados às variáveis de saída experimentais sejam adequadamente descritos. Neste estudo, os efeitos da temperatura, da pressão e da concentração de sólidos nos parâmetros de torta de filtração foram avaliados. A compressibilidade das tortas foi analisada em processos de filtração a pressão constante. A estrutura interna das tortas de filtração foi estudada a partir de imagens obtidas em MEV. Filtrações estáticas foram realizadas em uma célula de filtração HTHP com suspensões nãoNewtonianas de barita e carboximetilcelulose em concentrações similares às utilizadas em processos reais. Os parâmetros das tortas de filtração obtidas foram estimados a partir do ajuste do modelo de filtração para fluidos não-Newtonianos, utilizando o pacote Estima, escrito em linguagem Fortran. Foram apresentadas três diferentes metodologias para a estimação de parâmetros, que são estimados isoladamente para cada condição experimental (método implícito) ou estimados de forma direta, a partir de dados de volume de filtrado. O efeito do diferencial de pressão aplicado na permeabilidade da torta e na resistência do meio filtrante foi considerado a partir de equações constitutivas apropriadas. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Engenharia Química | por |
dc.relation.references | ABIMBOLA, M.; KHAN, F.; KHAKZAD, N. Dynamic safety risk analysis of offshore drilling, Journal of Loss Prevention in the Process Industries, v. 30, p.74–85, 2014. AHMAD, H. M., KAMAL, M. S., AL-HARTHI, M. A., High molecular weight copolymers as rheology modifier and fluid loss aditive for water-based drilling fluids, Journal of Molecular Liquids, v.252, p.133-143, 2018. AKTAN, T., FAROUQ, S. M. ALI, Effect of cyclic and in-situ heating on the absolute permeabilities, elastic constants, and electrical resistivities of rocks, SPE 5633, USA, 1975. AL MAHBUB, A., HAQUE, A. X-ray computed tomography imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression. Materials, v.9, I.11, p.890, 2016. AL-HADITHI, T. S. R., BARNES, H.A., WALTERS, K., The relationship between the linear (oscillatory) and nonlinear (steady-state) flow properties of a series of polymer and colloidal systems. Colloidal Polymers Science, v.270, p.40–46, 1992. ALMY, C., LEWIS, W. K., Factor determining capacity of filter press, Journal of Industrial and Chemical Engineering, v.4, p.528, 1912. AL-RIYAMY, K..; SHARMA, M., Filtration Properties of Oil-in-Water Emulsions Containing Solids, SPE 73769, 2004. APALEKE, A. S., AL-MAJED, A., HOSSAIN, M. E., Drilling fluid: State of the art and future trend, Society of Petroleum Engineers, Cairo, Egito, 2012 API RP 13B-1, Recomended practice for field testing water-based drilling fluids. API recommended practice 13B-1, ANSI/API 13B-1/ISO 10414-1, Third Edition, Dezembro, 2003. ARAÚJO, C. A. O., Estudo da filtração cruzada em geometria cilíndrica, Dissertação de Mestrado. Instituto de tecnologia. Departamento de Engenharia química. Universidade Federal Rural do Rio de Janeiro (UFRRJ). Seropédica, 2010. ARTHUR, K. G., PEDEN, J. M., The evaluation of drilling fluid filter cake properties and theirs influence on fluid loss, SPE 17617, China, 1988. BAI, R., TIEN, C., Further work on cake filtration analysis, Chemical Engineering Science, v.60, p.301-313, 2005. BAIRD, R. L., PERRY, M. G., Filtration and separation, 1967. BAKER, F. P., A study of the fundamental laws of filtration using plant-scale equipment, Journal of Industrial and Chemical Engineering, v.13 (7), p.610, 1921. BARBOSA, R. F., Desnvolvimento de uma célula de filtração com operação automática para monitoramento de dados online. Dissertação de Mestrado, Instituto de Tecnologia, Departamento de Engenharia Química. Universidade Federal Rural do Rio de Janeiro, 2016. BARNES, H. A., Thixotropy – A review, Journal of Non-Newtonian Fuid Mechanics, v.70, p.1-33, 1997. BARNES, H. A., A handbook of elementar rheology, University of Wales Institute of NonNewtonian Fluid Mechanics, Department of Mathematics, University of Wales Aberystwyth, 2000. BEAR, J., Dynamics of fluid in porous media, New York, Elsevier, 1972. BENCHABANE, A., BEKKOUR, K., Rheological properties of carboxymethyl cellulose (CMC) solutions, Colloid and Polymer Science, v.286 (10), p.1173, 2008. 140 BIERCK, B. R., WELIS, S. A., DICK, R. I., Compressible cake filtration: Monitoring cake formation and shrinkage using synchrotron X-rays, Journal of the Water Pollution Control Federation, v.60, p.645, 1988. BIRD, R. B., STEWART, W. E., LIGHTFOOT, E. N., Transport Phenomena, Segunda Edição, John Wiley & Sons, Inc. 2002. BOURGOYNE, A. T., MILLHEIM, K. K., CHENEVERT, M. E., YOUNG, S. F., Applied drilling engineering, 2nd Ed. v.2, Textbook Series, SPE, 1991. BURANASRISAK, P., NARASINGHA, M., Effects of particle size distribution and packing characteristic on the preparation of highly=loaded coal-water slurry, International Journal of Chemical Engineering and Applications, v.3 (1), p.31-35, 2012. BÜRGER, R., CONCHA, F., KARLSEN, Phenomenological modelo f filtration processes 1. Cake formation and expression., Chemical Engineering Science, v.56, p. 4537-4553, 2001. CAENN, R., CHILLINGAR, G. V., Drilling fluids: State of the art, Journal of Petroleum Science and Engineering, v.14, p.221-230, 1996. CALABREZ, N. D., Filtração e invasão de fluidos de perfuração: Estudo comparativo, caracterização da torta e modelagem, Dissertação de Mestrado, Instituto de Tecnologia, Departamento de Engenharia Química. Universidade Federal Rural do Rio de Janeiro, 2013. CALCADA, L. A., SCHEID, C. M., DE ARAÚJO, C. A. O., WALDMANN, A. T. A., MARTINS, A. L., Analysis of dynamic and static filtration and determination of mud cake parameters, Brazilian Journal of Petroleum and Gas, v.l. 5, n.3, p.159-170, 2011. CALÇADA, L. A., SCHEID, C. M., CALABREZ, N. D., WALDMAN, A. T. A., MARTINS, A. L., A simplified methology for dynamic fluid filtration estimation considering mudcake compressibility, SPE 168208, 26-28, 2014. CALÇADA, L. A., ELER, F. M., GODOI, F. A. P., SCHEID, C. M., Modeling of barite sag and fluid flow in drilling fluids, Engevista, v.19 (5), p.1401-1416, 2017. CARMAN, P.C., Fluid low through granular beds. Trans. Inst, Chem. Eng., v.26, p.150-166, 1937. CARMAN, P. C. The determination of the specific surface of powders. Journal of Society of the Chemical Society, Thansactions, v.57, p. 225, 1938. CARMAN, P. C., Flow of gasesthrough porous media, Butterworths Scientific Publications, 1956. CARRIER, W. D., BECKMAN, J. F., Correlations between index tests and the porperties of remolded clays, Geotechnique, v.34 (2), p.211-228, 1984. CARRIER, W. D., Goodbye, Hazen; Hello, Kozeny-Carman, Journal of Geothechnical and Geoenvironmental Engineering, v.129 (11) p.1054-1056, 2003. CASSE, F. J., RAMEY, H. J., Jr, The effect of temperature and confinning pressure on single-phase flow in consolidated rocks, Journal of Petroleum Technology, v.31 (8), p.1051- 1059, 1979. CASTRO, L. M. N. C., Filtração de suspensão sólido-fluido não-Newtoniano, Dissertação de Mestrado. Universidade Federal do Rio de Janeiro (UFRJ), COPPE/UFRJ, 2013. CHASE, G. G., WILLIS, M. S., Flow resistance in filter cake due to air, Separation Science and Technology, v.26, p.117, 1988. CHENEVERT, M. E., HUYCKE, J., Filter cake structure analysis using the scanning eléctron microscope, SPE 22208, USA, 1991. CHESSER, B. G., CLARK, D. E., WISE, W. V., Dynamic and static filtrate-loss techniques for monitoring filter-cake quality improves drilling-fluid performance, SPE 20439, SPE Drilling & Completion, v.9 (3), 1994. CHHABRA, R.P., SRINIVAS, B.K., Non-newtonian (purely) fluid flow through packed beds: Effect of particle shape. Powder Technology, v.67, I.9, p.15-1, 1901. CHILCOTT, M. D., RALLISON, J. M., Creeping flow of dilute Polymer solutions past cylinders and spheres. Journal of Non-Newtonian Fluid Mechanics, v.29, p.381-432., 1988. CHRISTOPHER, R. H., MIDDLEMAN, S., Power-law flow through a packed bed. Industrial & Chemical Engineering Fundamentals 4(4), 1965. CIVAN, F., Scale effect on porosity and permeability: Kinetics, model and correaltion, A.I.Ch.E. Journal, v.47, p.271-287, 2001. CONCEICAO, S. I., VELHO, J. L.; FERREIRA, J. M. F., Influence of deagglomeration and carboxymethyl celulose binders on rheological behaviour of kaolin suspensions, Applied Clay Science, v.23 (5-6), p.257-264, 2003. COOP, M.R., ALTUHAFI, F.N., Changes to particle characteristics associated with the compression of sands. Géotechnique, v.61, p.459–71, 2011. COX, W. P., MERZ, E. H., Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, v.28, I.118, p.619-622, 1958. CREMASCO, M. A., Operações unitárias em sistemas particulados e fluidomecânicos. Ed. Blucher, 2011. DA LUZ, R. C. S., FAGUNDES, F. P., BALABAN, R. C., Water-based drilling fluids: the contribution of xanthan gum and carboxymethylcellulose on filtration control, DA SILVA, K. C., Estudo da filtração com e sem sedimentação previa de fluidos de perfuração com comportamentos Newtonianos e não-Newtonianos. Dissertação de Mestrado. Instituto de tecnologia. Departamento de Engenharia química. Universidade Federal Rural do Rio de Janeiro (UFRRJ), 2017. DANGOU, M. A., CHANDLER, H., Potential increase of formation damage at horizontal wells as a result of changing dynamic filter cake parameters with the shear rate, 8th European Formation Damage Conference, SPE 120867, 2009. DARLEY, H. C. H., GRAY, G. R., Composition and properties of drilling and completion fluids, 5th Ed. Gulf. Houston, Texas, 1988. DAUGAN, S., TALIN, L., HERZHAFT, B., ALLAIN, C., Aggregation of particles settling in shear-thinning fluids, The European Physical Journal E, v.9 (1), p.55-62, 2002. DAVIDSON, E., HALL, J., TEMPLE, C., A new iron-based, environmentally friendly hydrogen sulfide scavenger for drilling fluids, Society of Petroleum Engineers: Drilling & Completion, Dezembro, 2002. d'ÁVILA, J. S. Um modelo matemático para a sedimentação. Dissertação de Mestrado. Universidade Federal do Rio de Janeiro (UFRJ), COPPE/UFRJ, 1978. DAVISON, J. M., CLARY, S., SAASEN, A., ALLOUCHE, M., BODIN, D., NGUYEN, V. A., Rheology of Various Drilling Fluid Systems Under Deepwater Drilling Conditions and the Importance of Accurate Predictions of Downhole Fluid Hydraulics, Society of Petroleum Engineers, SPE Annual Techinical Conference and Exibition, Houston, Texas, 1999. 142 DE BOER, G. B. J., WEERD, C., THOENES, D., GOOSSENS, H. W. J., Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering, Particle Systems Characterization, v.4 (1), p.14-19, 1987. DE BONO, J.P., MCDOWELL, G.R., Investigating the effects of particle shape on normal compression and overconsolidation using DEM. Granular Matter, v.18, p.1–10, 2016a. DE BONO, J.P., MCDOWELL, G.R., Particle breakage criteria in discrete-element modelling. Géotechnique, v.66, p.1014–27, 2016b. DEALY, J.M., LARSON, R.G., Structure and rheology of molten polymers. Gardner, Cincinnati, 2006. DEWAN, J. T., CHENEVERT, M. E., Mudcake buildup and invasion in low permeability formations; Application to permeability determination by measurement while drilling, SPWLA 34th Annual Logging Symposium, Junho, 1993. DEWAN, J. T., CHENEVERT, M. E., A model for filtration of water-base mud during drilling: Determination of mudcake parameters, Petrophysics, v.42 (3), p.237-250, 2001. DI JIAO, SHARMA, M. M., Formation damage due to static and dynamic filtration of water-based muds, SPE23823, USA, 1992. DULLAERT, K., MEWIS, J., A model system for thixotropy studies. Rheologica Acta, v.45, p.23-32, 2005-b. DULLAERT, K., MEWIS, J., Thixotropy: Build-up and breakdown curves during flow. The Society of Rheology, Inc. v.49, I.6., p.1213-1230, 2005-a. EDALI, M.; ESMAIL, M. N.; VATISTAS, G. H., Rheological properties of high concentrations of carboxymethyl cellulose solutions, Journal of Applied Polymer Science, v.79 (10), p.1787-1801, 2001. ELKATATNY, S. M., MAHMOUD, M. A., NASR-EL-DIN, H. A., Characterization of filter cake generated by water-based drilling fluids using CT scan, SPE Drilling & Completion, v.27 (2), p.282-293, 2012. ENDO, Y., ALONSO, M., Physical meaning of specific cake resistance and effects of cake properties in compressible cake filtration, Filtration & Separation, p.43-46, 2001. ERSHAGHI, I., AZARI, M., Modeling of filter cake buildup under dynamic-static conditions, SPE8902, USA, 1980. ESPIE, D. M., MACCIETTO, S. Nonlinear transformations for parameter estimation. Industrial & Engineering Chemistry Research, v. 27, p. 2175-2179, 1988. EZEAKACHA, C., SALEHI, S., GHALAMBOR, A., KARIMI, M., An integrated study of mud plastering effects for reducing filtrate’s invasion, SPE 179016, USA, 2016. FAGUNDES, K. R. S., FAGUNDES, F. P., CARVALHO, L. G. G., AMORIM, L. V., BALABAN, R. C., Influence of CMC molecular weight and degree of substitution on clay swelling inhibition in water-based drilling fluids, Macromolecules Symposium, v.367, p.151-162, 2016. FANCHI, J. R., Integrated reservoir asses management: principles and best pratices. Elsevier Inc., 2010. FATHI-NAJAFI, M., THELIANDER, H., Determination of local filtration properties at constant pressure, Separation Technology, v.5, p.165-178, 1995. FATTAH, K. A., LASHIN, A., Investigation of mud density and weighting materials effect on drilling fluid filter cake properties and formation damage, Journal of African Earth Sciences, v.117, p.345-357, 2016. FAVERO, J. L., SECCHI, A. R., CARDOZO, N. S. M., JASAK, H., Voscielastic fluid analysis in internal and in free surface flows using the software OpenFOAM., Computers and Chemical Engineering, v.34, p.1984-1993, 2010. FERET, L. R., Assoc. Internat. Pour l’Essai des Mat., Zurique, 2, Grupo D, 1931. FERRAZ, A. S. F. S. Efeito da distribuição granulométrica de partículas sólidas e de polímeros aniônicos na formação da torta de filtração e no volume de filtrado, Dissertação de Mestrado, Instituto de Tecnologia, Departamento de Engenharia Química. Universidade Federal Rural do Rio de Janeiro, 2014. FORCHHEIMER, P., Wasserbewegung Durch BodenJ. ZVDI, v.45, p.1781-1788, 1901. FOUST, A. S., Princípio das operações unitárias, 2ª ed. Editora LTC, 1982 FOX, R. W., MCDONALD, A. T., PRITCHARD, P. J., LEYLEGIAN, J. C., Introdução à mecânica dos fluidos. Editora LTC, 8ª edição, 2014. FREDRICKSON, A. G., A model for the thixotropy of suspensios., AlChE Journal, v.16, n.3, p.436-440, 1970. GATES, G. L., BOWIE, C. P., Correlation of certain properties of oil-well drilling fluids with particle size distribution, U.S. Bureau of Mines Report of Investigations n.3645, 1942. GHANNAM, M. T., ESMAIL, M. N., Rheological properties of carboxymethyl celulose, Journal of Applied Polymer Science, v.64 (2), p.289-301, 1997. GILSE, J. P. M. Van, GINNEKEN, P. J. H. Van, WATERMAN, H. I., Journal of the Society of Chemical Industry, v.49, 1930. GOBRAN, B. D., BRIGHAM, W. E., RAMEY Jr, H. J., Absolute permeability as a function of confining pressure, pore pressure, and temperature, SPRE Formation Evaluation, 1987. GREENSMITH, H. W., RIVLIN, R. S., The hydrodynamics of non-Newtonian fluids III. The normal stress effect i high Polymer solutions, Phylosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, v.245 (899), p.399-428, 1953. GUIMARAES, I. B., ROSSI, L. F. S., Estudo dos constituintes dos fluidos de perfuração: Proposta de uma formulação otimizada e ambientalmente correta, 4° PDPETRO, Campinas, São Paulo, Outubro, 2007. HALDORSEN, Jakob BU et al. Borehole acoustic waves, Oilfield Review, v. 18, n. 1, p. 34- 43, 2006. HALLETT, F. R., Particle size analysis by dynamic light scattering. Food Research International 27, p. 195-198, 1994. HARTMANN, A., ÖZERLER, M., MARX, C., NEWMANN, H., Analysis of mudcake structures formed under simulated borehole conditions, SPE Drilling & Completion, v.3 (4), p.395-402, 1988. HAZEN, A., Some physical properties of sands and graves, with special reference to their use in filtration, 24th Annual Report, Massachusetts State Board of Health, Public Document, n.34, p.539-556, 1892. HINCHLEY, J. W., URE, S. G. M., CLARKE, B. W., Studies in filtration, Transactions of the Institution of Chemical Engineers, v.3, p.24-38, 1925. 144 HORIBA, Light scattering theory: Laser diffraction. Apresentação, Horiba Ltd., 2007. HORSFIELD, M. A., FORDHAM, E. J., HALL, L. D., H NMR Imaging studies of filtration in coloidal suspensions, Journal of Magnetic Ressonance, v.81, p.593, 1989. HUANG, C.G., GREEN, D.W., WILLHITE, P.G., An Experimental Study of the In-Situ Gelation of Chrornium(+3)/Polyacrylamide Polymer in Porous Media. Society of Petroleum Engineers, Resevoir Engineering, SPE 12638, p.583-592, Novembro, 1986. HUGHES, T. L., JONES, T. G. J., HOUWEN, O. H., Chemical characterization of CMC and its relationship to drillng-mud rheology and fluid loss, SPE 20000-PA, v.8 (3), Setembro, 1993. JAN, B. M., RAE, G. R., NOOR, M. I., SUHADI, A. N., DEVADAAS, M., Increasing production by maximizing underbalance during perforation using nontraditional lightweight completion fluid, SPE 108423-PA, v.24 (2), Junho, 2009. JACHNIK, Richard. Drilling Fluid Thixotropy & Relevance Annual Transactions of the Nordic Rheology, v.13, 2005. JAFFAL, H. A., EL MOHTAR, C. S., GRAY, K. E., Modeling of filtration and mudcake buildup: An experimental investigation. Journal of Natural Gas Science and Engineering, v.38, p.1-11, 2017. JIA, X., GOLCHERT, D., WILLIAMS, R.A., X-ray microtomography facilitated evaluation and simulation of filter performance, Congress and Industrial Process Tomography, Japan, p.183-188, 2005. JOSEPH, D.D., LIU, Y.J., POLETTO, M., FENG, J., Aggregation and dispersion of spheres falling in viscoelastic liquids, Journal of Non-Newtonian Fluid Mechanics, v.54, p.45-86., 1994. KAPLAN, S.J., MORLAND, C.D., HSU, S.C., Predict non-newtonian fluid pressure drop across random-fiber filters. Chemical Engineering, p.93-98, 1979. KARATZA, Z., ANDÒ, E., PAPANICOLOPOULOS, S.-A., OOI, J.Y., VIGGIANI, G., Evolution of deformation and breakage in sand studied using X-ray tomography. Géotechnique, v.1, p.11, 2017. KAZEMI-BEYDOKHTI, A., HAJIABADI, S. H., Rheological investigation of smart polymer/carbon nanotube complex on properties of water-based drilling fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.556, p.23-29, 2018. KELESSIDIS, V. C., MAGLIONE, R., TSAMANTAKI, C., ASPIRTAKIS, Y., Optimal determination of rheological parameters or Herschel-Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling. Journal of Petroleum Science and Engineering, v.53, I.3-4, p.203-224, 2006. KENNEDY, J., EBERHART, R., Particle swarm optimization, Proceedings of ICNN’95 – International Conference on Neural Networks, Novembro, 1995. KHAN, R., KURU, E., SAASEN, A., An Investigation of the Extensional Viscosity of Polymer Based Fluids as a Possible Mechanism of Internal Cake Formation. Society of Petroleum Engineers, International Symposium and Exhibition on Formation Damage Control, SPE 86499, Lafayette, EUA, p.17-20, Fevereiro, 2004. KHANDAL, R. K., TADROS, T. F., Application of viscoelastic measurements to the investigation of the swelling of sodium montmorillonite suspensions. Journal of Colloid Interface Science, v.125, p.122-128, 1988. 145 KIM, A. S., HOEK, E. M. V., Cake structure in dead-end membrane filtration: Monte Carlo simulations, Environmental Engineering Science, v.19 (6), p.373-386, 2002. KOPONEN, A., KATAJA, M., TIMONEN, J., Permeability and effective porosity of porous media, Physics Rev. E, v.56, p.3319-3325, 1997. KOTTWITZ, F. A., BOYLAN, D. R., Prediction of resistance in constant-pressure cake filtration, A.I.Ch.E Journal, v.4 (2), p.175-180, 1958. KOZENY, J. Ueber kapillare Leitung des Wassers im Boden, Akademie der Wissenschaften Wien Math, v. 136 (2), p.271, 1927. KRUMBEIN, W. C., MONK, G. D., Permeability as a function of the size parameters of unconsolidated sand, Transictions of AIME v.151, p.153-163, 1943. KYAN, C. P., WASAN, D. T., KINTNER, R. C., Flow of single-phase fluids through fibrous beds, Industrial Chemical Engineering Fundation, v.9, p.596-603, 1970. LA HEIJ, E. J., KERKHOF, P. J. A. M., KOPINGA, K., PEL, L., Determininf porosity profiles during filtration and expression. of sewage sludge by NMR imaging, A.I.Ch.E. Journal, v.42 (4), p.953-959, 1996. LAGALY, G., Principles of flow of kaolin and bentonite dispersion, Applied Clay Science, v.4, p.105-123, 1989. LAUN, H. M., Prediction of elastic strains of polymer melts in shear and elongation. Journal of Rheology, v.30, p.459–501, 1986. LI, W., KISER, C., RICHARD, Q., Development of a filter cake permeability test methodology, American Filtration & Separations Society, USA, 2005. LIPSCOMB, G. G., DENN, M. M., Flow of binham fluids in complex geometries. Journal of non-Newtonian Fluid Mechanics, v.14, p.337-346, 1984. LONDE, L. R., Eficiência da filtração lenta no tratamento de efluentes de leitos cultivados. Dissertação de Mestrado. Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola – Água e Solos, Campinas, Abril, 2002. LONGERON, D. G., Drilling fluids filtration and permeability impairment: Performance evaluation of various mud formulation, SPE 48988, 27-30, 1998. LU, W., HUANG, Y., HWANG, K., Methods to determine the relationship between cake properties and solid compressive pressure, Separation and Purification Technology, v. 13 (1), p.9-23, 1998b. LU, W., HUANG, Y., HWANG, K., Stress distribution in a confined wet cake in the compression-permeability cell and its application, Powder Technology, v. 97 (1), p.16-25, 1998a. LUCENA, D. V., LIRA, H. L., AMORIM, L. V., Efeitos de aditivos poliméricos nas propriedades reológicas e de filtração de fluidos de perfuração. Tecnologia em Metalurgia, Materiais e Mineração, São Paulo, v.11, n.1, p.66-73, 2014. MA, G., CHEN, Y., YAO., ZHOU, W., WANG, Q., Evolution of particle size and shape towards a steady state: Insights from FDEM simulations of crushable granular materials.Computers and Geotechnics, v.112, p.147-158, 2019. MACHADO, J. C. V., Reologia e escoamento de fluidos: Ênfase na indústria do petróleo, Editora Interciência, Rio de Janeiro, 2002. MACOSKO, C. W., Rheology: Principles, measurements and applications, Wiley-VCH, Inc., USA, 1993. MAGALHAES, S. C. F., SCHEID, C. M., CALCADA, L. A., ALMEIDA, H. L. S., FOLSTA, M., Real-time measurements of the physicochemical properties of drilling fluids, V Encontro Nacional de Hidráulica de Poços de Petróleo e Gás, ENAHPE, Teresópolis, Rio de Janeiro, Agosto, 2013. MAHTO, V., SHARMA, V. P., Rheological study of a water based oil well drilling fluid, Journal of Petroleum Science and Engineering, v.45, p.123-128, 2002. MAIDLA, E. E., WOJTANOWICZ, A. K., Laboratory study of borehole firction fator with a dynamic-filtration apparatus, SPE 18558, SPE Drilling Engineering, v.5 (3), 1990. MALVERN Panalytical Ltd, 2017. MANUAL OFITE, Complete HTHP Fiilter press. Instruction manual, OFI Testing Equipment, Inc., Texas, USA, 2015. MARTINS, L. F., Estudo da formação e estabilidade de tortas de filtração na perfuração de poços de petróleo. Dissertação de Mestrado, Instituto de Tecnologia, Departamento de Engenharia Química. Universidade Federal Rural do Rio de Janeiro, 2013. MASSARANI, G., Aspectos da fluidodinâmica em meios porosos. Revista Brasileira de Engenharia, número especial, v.96, 1989. MASSARANI, G., Fluidodinâmica de sistemas particulados. Programa de Engenharia Química, COPPE/ Universidade Federal do Rio de janeiro, 2ª Ed., 2001. MASSARANI, G., SILVA TELLES, A., An extended capillary model for flows in porous media. Journal of Porous Media, v.4, I.4, p.297-307, 2001. MAVKO, G. NUR, A., The effect of a percolation threshold in the Kozeny-Carman relation, Geophysics, v.62, p.1480-1482, 1997. MAXWELL, J. C., On the dynamical theory of gases. Philosophical Transactions of the Royal Society, v.A157, p.49-88, 1867. MCCABE, W.L., SMITH, J.C., HARRIOT, P., Unit operations of Chemical Engineering, fifth edition, McGraw-Hill, U.S., 1993. MELLOT, J., Technical Improvements in Wells Drilled with a Pneumatic Fluid, SPE paper 99162, SPE/IDAC Drilling Conference, Miami, Florida, USA, 21-23, 2008. MELO, K. C., Avaliação e modelagem reológica de fluidos de perfuração base água. Dissertação de Mestrado, Centro de Tecnologia, Departamento de Engenharia Química. Universidade Federal do Rio Grande do Norte, 2008. MEWIS, J., Thixotropy – A General review. Journal of non-Newtonian Fluid OMLAND, T. H., DAHL, B., SAASEN, A., SVANES, K., AMUNDSEN, P. A., The influence of particle type and size distribution on viscosity in a non-Newtonian drilling fluid, Annual Transactions of the Nordic Rheology Society, v.13, 2005. Mechanics, v.6, p.1-20, 1979. MIE, G., Beigrade zur optic truber medien, speziell kolloidaler metallosungen, Annual of Physics, v.25, p.377-455, 1908. MØLLER, P. C. F., MEWIS, J., BONN, D., Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. The Royal Society of Chemistry, Soft Matter, v.2, p.274- 283, 2006. MOURA, M. J., FIGUEIREDO, M. M., Aplicação das técnicas de picnometria de gás e de porosimetria de mercúrio à caracterização da madeira de E. globulus. Lisboa, Portugal, Silva Lusitana 10(2), p. 207-216, 2002. 147 MURASE, T., IRITANI, E., CHO, J. H., SHIRATO, M., Determination of filtration characteristics based upon filtration tests under step-up pressure conditions, Journal of Chemical Engineering of Japan, v.22 (4), p.373-377, 1989. MYUNG, I. J. Tutorial on maximum likelihood estimation, Journal of Mathematical Psychology, v. 47, p.90-100, 2003. NADIMI, S., FONSECA, J., A micro finite-element model for soil behaviour: numerical validation. Géotechnique, v.1, p.6, 2016. NICORA, L. F., BURRAFATO, G., Zirconium citrate: A new generation dispersant for environmentally friendly drilling fluids. Society of Petroleum Engineers, Indonesia, 1998. NOTEBAERT, F. F., WILMS, D. A., VAN HAUTE, A. A., A new deduction with a larger application of the specific resistance to filtration of sludges, Water Research, v.9, p.667- 673, 1975. NYGAARD, G., NÆVDAL, G., Nonlinear model predictive control scheme for stabilizing annulus pressure during oil well drilling, Journal of Process Control, v.16, p.719-732, 2006. OLIVEIRA, B. R., OLIVEIRA, R. N., SCHEID, C. M., FERRAZ, A. S. F. S., MARQUES, M. R. C., CALÇADA, L. A., Effects of pH and solid concentration on the rheology of drilling fluids composed by natural clay, water and NaCMC. Brazilian Journal of Petroleum and Gas, v.12, n.2, p.99-106, 2018. OLIVIER, J., VAXELAIRE, J., VOROBIEV, R., Modelling cake filtration: An overview, Separation Science and Technology, p.1667-1700, 2007. OMLAND, T. H. Particle Settling in non-Newtonian Drilling Fluids. Tese de Doutorado. Faculty of Science and Technology Departament of Petroleum Engineering, 2009. OUTMANS, H. D., Mechanics of static and dynamic filtration in the borehole, SPE 491, p.236-244, Setembro, 1963. PANDA M. N., LAKE, L. W., Estimation of silge-phase permeability from parameters of particle-size distribution, AAPG Bull, v.78, p.1078-1039, 1994. PAPE, H., CLAUSER, C., IFFLAND, J., Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model, Pure and Applied Geophysics, v.157, p.603-619, 2000. PAPO, A., The thixotropic behavior of white Portland cement paste, Cement and Concrrete Research, v.18, p.595–603, 1988. PARTINGTON, J. E., An advanced treatise on physical chemistry. V.2: The properties of liquids. Longmans, Green & Co., London, 1951. PEDEN, J.M., ARTHUR, K.G., MARGARITA AVALOS., The analysis of filtration under dynamic and static conditions, SPE 12503, USA, 1984. RAHEEM, A. R., VIPULANANDAN, C., Testing and modeling of filter cake formation using new seepage-consolidation concept, Engineering Science and Technology, an International Journal, v.22(3), p.979-989, 2019. ROBERTSON, R. E., STIFF JR, H. A., An Improved Mathematical Model for Relating Shear Stress to Shear Rate in Drilling Fluids and Cement Slurries. Society of Petroleum Engineers, v.16, 1976. ROCHA, L.A.S., AZEVEDO, C.T., Projetos de Poços de Petróleo – Geopressões e Assentamento de Colunas de Revestimentos. 2ª Ed. Editora, 2009. 148 ROCHA, R. R., Estudo teórico-experimental da sedimentação em batelada: monitoramento e modelagem de perfis de concentração de sólidos e análise de equações constitutivas. Dissertação de mestrado, Universidade Federal Rural do Rio de Janeiro, Programa de Pós-Graduação em Engenharia Química, 2018. RODRIGUEZ, E. F., GIACOMELLI, VAZQUEZ, A., Permeability-porosity relationship in RTM for diferente fiberglass and natural reinforcements, Journal of Composite Materials, v.38, p.259-268, 2004. ROUSSEL, N., A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cement and Concrete Research, v.36, p.1797-1806, 2006. ROY, J., LUBCZYNSKI, M. The magnetic resonance sounding technique and its use for groundwater investigations, Hydrogeology Journal, v. 11, n. 4, p. 455-465, 2003. RUGANG, Y., GUANCHENG, J., WEI, L., TIANQING, D., HONGXIA, Z., Effect of waterbased drilling fluid components on filter cake structure. Powder technology, v. 262, p. 51- 61, 2014. RUTH, B. F., MONTILLON, G. H., MONTONNA, R. E., Studies in filtration I. Critical analysis of filtration theory, Journal of Industrial and Chemical Engineering, v.25 (1), p.76- 82, 1933. RUTH, B. F., Studies in filtration III. Derivation of general filtration equations, Industrial and Engineering Chemistry, v.27 (6), p.708-723, 1935. RUTH, B. F., Correlating filtration theory with industrial practice, Journal of Industrial and Chemical Engineering, v.38 (6), p.564-571, 1946. SAASEN, A, OMLAND, T. H., EKRENE, S., BRÉVIÈRE, J., VILLARD, E., KAAGSONLOE, N., TEHRANI, A., CAMERON, J., FREEMAN, M. A., GROWCOK, F., PATRICK, A., STOCK, T., JØRGENSEN, T., REINHOLT, F., AMUNDSEN, H. E. F., STEELE, A., MEETEN, G., Automatic measurement of drilling fluid and drill-cuttings properties. Society of Petroleum Engineers, SPE Drilling & Completion, v.24, I.04, 2009. SABIRI, N., COMITI, J., Pressure drop in non-newtonian purely viscous fluid flow through porous media. Chemical Engineering Science, v.50, n.7, p.1193-1201, 1995. SAFI, B., ZAROURI, S. CHABANE-CHAOUACHE, R., SAIDI, M., BENMOUNAH, A., Physico-chemical and rheological characterization of water-based mud in the presence of polymers. Journal of Petroleum Exploration and Production Technology, v.6, I.2, p.185–190, 2016. SANTOS, O. L. A., Segurança de poço na perfuração. 1ª Reimpressão, Blucher, São Paulo, 2013. SCHRAMM, G., A practical approach to rheology and rheometry. 2ª Edição, Gebrueder HAAKE GmbH, Karlsruhe, Alemanha, 2000. SCHWAAB, M., LEMOS, L. P., PINTO, J. C. Optimun reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant. Chemical Engineering Science, v. 62, p.2750-2764, 2007a. SCHWAAB, M., PINTO, J. C. Análise de dados experimentais, I: fundamentos de estatística e estimação de parâmetros. Volume 1, Rio de janeiro, E-papers, 2007b. SCHWAAB, M., BISCAIA, E. C., MONTEIRO Jr, J. L., PINTO, J. C. Nonlinear parameter estimation through particle swarm optimization, Chemical Engineering Science, v. 63 (6), p. 1542-1552, 2008a. SCHWAAB, M., PINTO, J. C. Optimun reparameterization of power function models. Chemical Engineering Science, v. 63, p.4631-4635, 2008b. SCHWAAB, M., LEMOS, L. P., PINTO, J. C. Optimun reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving multiple reparameterizations. Chemical Engineering Science, v. 63, p.2895-2906, 2008c. SCHWALBERT, M. P., Simulação de escoamentos não newtonianos não isotérmicos e sua aplicação à engenharia de poços de petróleo. Dissertação de mestrado, Universidade Federal do Rio de Janeiro, COPPE/UFRJ, Programa de Engenharia Química, 2013. SHARMA, V., MCKINLEY, G. H., An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheologica Acta,v.51, p.487-495, 2012. SHIH, C. H., LEE, J., Effect of fiber architecture on permeability in liquid composite molding, Polymer Composition, v.19, p. 629-639, 1998. SHIRATO, M., OKAMURA, S., Behaviour of various kaolin slurries in constant pressure filtration, Journal of Chemical Engineering of Japan, v.23 (11), p.226, 1959. SHIRATO, M., SAMBUICHI, M., KATO, H., ARAGAKI, T., Internal flow mechanism in filter cakes, A.I.Ch.E. Journal, v.15 (3), p.405-409, 1969. SHIRATO, M., ARAGAKI, T., ICHIMURA, K., OOTSUJI, N., Porosity variation in filter cake under constant-pressure filtration, Journal of Chemical Engineering of Japan, v.4 (2), p.172-177, 1971. SHIRATO, M., ARAGAKI, T., Verification of internal flow mechanism theory of cake filtration, Filtration and Separation, v.9, p.294, 1972. SHIRATO, M., ARAGAKI, T., IRITANI, E., Blocking filtration laws for filtration of powerlaw non-Newtonian fluids, Journal of Chemical Engineering of Japan, v.12 (2), p.162-164, 1979. SHIRATO, M., ARAGAKI, T., IRITANI, E., Analysis of constant pressure filtration of power-law non-Newtonian fluids, Journal of Chemical Engineering of Japan, v.13 (1), p.61- 66, 1980. SHIROMA, P. H., Estudo do comportamento reológico de suspensões aquosas de bentonita e CMC: Influência da concentração de NaCl. Dissertação de mestrado em Engenharia Química, Universidade de São Paulo, São Paulo, 2012. SILVA TELLES, A., MASSARANI, G., Escoamento de Fluidos Não-Newtonianos em Sistemas Particulados. Revista Brasileira de Física 9(2), 1979. SIMPSON, M. A., ABDRABALREDA, S. H., AL-KHAMEES, S. A., ZHOU, S., ANSARI, A. A., Overbalanced pre-khuff drilling of horizontal reservoir sections with potassium formate brines, SPE 92407, Março, 2005. 150 SKOOG, WEST, HOLLER, CROUCH, Fundamentos de química analítica. Tradução da 8ª edição norte-americana, Editora Thomson, São Paulo-SP, 2006. SMILES, D. E., A theory of constant pressure filtration, Chemical Engineering Science, v.25, p.985-996, 1970. SOMERTON, W. H. GUPTA, V. S., Role of fluxing agents in thermal alteration of sandstones, Journal of Petroleum Technology, v.17 (5), p.585-88, 1965. SPERRY, D. R., The principles of filtration, Metallurgical and Chemical Engineering, v.15 (4), p.198-203, 1916. SPERRY, D. R., Metallurgical Chemistry, v.161, 1917. SPERRY, D. R., Effect of pressure on fundamental filtration equation when solids are nonrigid or deformable, Journal of Industrial and Chemical Engineering, v.20 (9), p.892-895, 1928. STREEKSTRA, G. J., HOEKSTRA, A. G., NIJHOF, E., HEETHAAR, R. M., Ligh scattering by red blood cells in ektacytometry: Fraunhofer versus anomalus diffraction, Applied Optics, v.32 (13), p.2266-2272, 1993. TATTERSAL, G.H., The rheology of Portland cement pastes, British Journal of Applied Physics, v.6, p.165–167, 1955. TERZAGHI, K., PECK, R. B., Soil Mechanics in Engineering Practice, Ed. John Wiley, New York, 1948. THERMOFISHER SCIENTIFIC, HAAKETM RheoStressTM 1 Rheometer. Disponível em: https://www.thermofisher.com/order/catalog/product/379-0001?SID=srch-srp-379-0001. Acesso em Abril de 2019. THOMAS, J. E. Fundamentos da Engenharia de Petróleo. Rio de Janeiro: Editora Interciência, 2001. TIEN, C., BAI, R., RAMARAO, B. V., Analysis of cake growth in cake filtration: Effect of fine particle retention, A.I.Ch.E. Journal, v.43 (1), p.33-44, 1997. TIEN, C., TEOH, S. K., TAM, B. H. R., Cake filtration analysis – the effect of the relationship between pore liquid pressure and cake compressive stress, Chemical Engineering Science, v.56, p.5361-5369, 2001. TILLER, F. M., The role of porosity in filtration I. Numerical methods for constant rate and constant pressure filtration based on Kozeny’s Law, Chemical Engineering Progress, v.49 (9), p.467-479, 1953. TILLER, F. M., The role of porosity in filtration II. Analytical equations for constant rate filtration, Chemical Engineering Progress, v.51 (6), p.282-290, 1955. TILLER, F. M., The role of porosity in filtration III. Variable-pressure – variable-rate filtration, A.I.Ch.E. Journal, v.4 (2), p.170-174, 1958. TILLER, F. M., COOPER, H. R., The role of porosity in filtration IV. Constant pressure filtration, A.I.Ch.E. Journal, v.6 (4), p.595-601, 1960. TILLER, F. M., COOPER, H. R., The role of porosity in filtration V. Porosity variation in filter cakes, A.I.Ch.E. Journal, v.8 (4), p.445-449, 1962. TILLER, F. M., SHIRATO, M., The role of posority in filtration VI. New difinition of filtration resistance, A.I.Ch.E. Journal, v.10 (1), p.61-67, 1964. 151 TILLER, F. M., HAYNES JR, S., LU, W., The role of porosity in filtration VII. Effect of side-wall friction in comrpession-permeability cells, A.I.Ch.E. Journal, v.18 (1), p.13-19, 1972. TILLER, F. M., LU, W., The role of porosity in filtration VIII. Cake nonuniformity in compression-permeability cells, A.I.Ch.E. Journal, v.18 (3), p.569-572, 1972. TILLER, F. M., CRUMP, J. R., Solid-liquid separation: An overview, 1977. TILLER, F. M., LEU, W. F., Basic data fitting in filtration, Journal of the Chinese Intitution of Chemical Engineering, v.11, p.61-70, 1980. TILLER, F. M., LEU, W., Experimental study of the mechanism of constant pressure cake filtration: Clogging of filter media, Separation Science and Technology, v.18 (12), p.1351- 1369, 1983. TILLER, F. M., TSAI, C., The role of porosity in solid-liquid separation XII. Correlation of parameters in constitutive equations for permeability, Specific flow resistance, and solidosity with null-stress solidosity, A.I.Ch.E. Journal, 1985. TILLER, F. M., YEH, C. S., LEU, F., Compressibility of paniculate structures in relation to thickening, filtration, and expression. – A review, Separation Science and Technology, v.22 (2), p.1037-1063, 1987. TILLER, F. M., YEH, C. S., The role of porosity in solid-liquid separation XI. Filtration followed by expression at high pressure, A.I.Ch.E. Journal, v.33 (8), p.1241-1256, 1987. TILLER, F. M., HSYUNG, N. B., SHEN, Y. L., CHEN, W., Catscan analysis of sedimentation and constant pressure filtration, Proc. World Filtration Congress, France, 1990. TILLER, F. M., KWON, J. H., Role of porosity in filtration XIII. Behaviour of highly compactible cakes, A,I,Ch,E, Journal, v.44 (10), p.2159-2167, 1998. UNDERWOOD, A. J. V., The mathematical theory of filtration, Proc. World Engineering COngress, Tokyo, p.245-264, 1929. VIEIRA, F.R.B, Controle da pressão anular de fundo durante a perfuração de poços de petróleo. Dissertação de mestrado, Instituto de Tecnologia, Departamento de Engenharia Química. Universidade Federal Rural do Rio de Janeiro, 2009. WAKEMAN, R. J., The formation and properties of apparently incompressible filter cakes under vacuum on downward facing surfaces, Transictions of the Institute of Chemical Engineering, v.59, p. 260, 1981. WALDMANN, A. T. A., Mecanismos que governam a efetividade de agentes obturantes no controle da invasão de fluidos de perfuração na rocha reservatório de petróleo. Dissertação de Mestrado. Pontifícia Universidade Católica do Rio de Janeiro, 2005. WARD, S. G., WHITMORE, R. L., Studies of the viscosity and sedimentation of suspensions Part 1. The viscosity of suspension of spherical particles, British Journal of Applied Physics, v.1 (11), p.286, 1950. WARNER, H., Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells. Industrial & Engineering Chemistry Fundamentals, v.11, p.379-387., 1972. WEBER, H. C., HERSHEY, R. L., Some practical application of the Lewis filtration equation, Journal of Industrial and Chemical Engineering, v.18 (4), p.341, 1926. WEINBRANDT, R. M., RAMEY, H. J. Jr., CASSE, F. J., The effect of temperature on relative and absolute permeability of sandstones, SPEJ, v.21, p. 376-384, 1975. WINTER, H. H., Three views of viscoelasticity for Cox–Merz materials. Rheologica Acta, v.48, p.241–243, 2009. WREATH, D.G., Pope, G.A., SEPEHRNOORI, K., Dependence of Polymer Apparent Viscosity on the Permeable Media and Flow Conditions, In Situ, v.14, p.263-284, 1990 Xu, P., YU, B., Developing a new forma of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry, Advances in Water Resources, v.31, p.74-81, 2008. YAN W.M., SHI, Y., Evolution of grain grading and characteristics in repeatedly reconstituted assemblages subject to one-dimensional compression. Geotech Lett v.4, p.223–229, 2014. ZHAO, J., WANG, C., LEE, D., TIEN, C., Cake consolidation in a compression– permeability cell: effect of side-wall friction, Journal of Colloid and Interface Science, v.262 (1), p.60-72, 2003. | por |
dc.subject.cnpq | Química | por |
dc.subject.cnpq | Engenharia Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/68708/2019%20-%20Rodrigo%20Fernando%20de%20Oliveira%20Borges.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5507 | |
dc.originais.provenance | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2022-03-31T22:56:58Z No. of bitstreams: 1 2019 - Rodrigo Fernando de Oliveira Borges.pdf: 6525092 bytes, checksum: dadf66ba55360f87c695dfbb4b6b0bc7 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-03-31T22:56:58Z (GMT). No. of bitstreams: 1 2019 - Rodrigo Fernando de Oliveira Borges.pdf: 6525092 bytes, checksum: dadf66ba55360f87c695dfbb4b6b0bc7 (MD5) Previous issue date: 2019-08-23 | eng |
Appears in Collections: | Mestrado em Engenharia Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019 - Rodrigo Fernando de Oliveira Borges.pdf | 2019 - Rodrigo Fernando de Oliveira Borges | 6.37 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.