Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11089
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Souza, Camila da Costa Barros de | |
dc.date.accessioned | 2023-11-19T21:59:41Z | - |
dc.date.available | 2023-11-19T21:59:41Z | - |
dc.date.issued | 2021-09-13 | |
dc.identifier.citation | SOUZA, Camila da Costa Barros de. Alterações químicas, estruturais e na capacidade de adsorção de metais pesados da cama de frango durante a compostagem. 2021.162 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/11089 | - |
dc.description.abstract | The presence of contaminants in poultry litter (PL), such as heavy metals, makes its use in agriculture a major challenge. This work aimed to evaluate the chemical changes that occur in the structure of organic matter (OM) PL during its composting, and the evolution in the structure of humic substances (HS) formed during this process, and thus determine the relationship between the structural changes of organic matter during composting with the bioavailability of heavy metals present in PL and their transfer to plants, in addition to the ability of this residue to adsorb Pb and Cu metals. In chapter 1, a preliminary study was carried out on the role of the OM structure of PL in the changes in the solubility of heavy metals present in this residue during the initial stage of composting. In the first thirty days of composting, favoring more stable interactions between heavy metals and the most recalcitrant organic fraction of PL reduced the solubility of these elements and, consequently, the polluting potential of PL. In chapter 2, a characterization of the changes in the organic structure of PL and in the humic fractions formed during the composting process is presented through structural elucidation techniques. It was found that during composting the aliphatic and carboxylic structures are replaced by aromatic compounds in the HA, while the polarity and the presence of oxygenated functional groups increase in the FA. The evolution of humic structures in the PL during composting favored the preservation of nitrogenous structures and the high presence of carbohydrates in this residue at the end of the process. Chapter 3 presents the action of the OM of PL, and its transformations during the entire composting process, on the bioavailability of heavy metals in the environment. The most recalcitrant chemical forms of heavy metals increased during composting due to the affinity of these elements with the oxidized structures of SH formed during the composting process. However, the association of Pb with the oxygenated aliphatic carbon structures of the SH formed during composting contributed to the increase of its water-soluble fraction. Chapter 4 describes the adsorption phenomena of Cu and Pb in PL compounds with different composting times. The linear model proved to be more adequate to describe the process of adsorption of Cu and Pb, in all evaluated composting times. The non-composted PL showed a higher adsorption by Pb, while the composted PL showed a higher adsorption by Cu. However, regardless of the composting time, the adsorption of Cu and Pb in PL occurred predominantly in a specific way. In chapter 5, the transfer of heavy metals to the arugula plant (Eruca sativa) is presented when it is fertilized with PL in different stages of composting. The application of PL, regardless of the composting time, reduced the Mn contents and increased the Cu contents in the plant. The greater affinity of Pb for highly lable structures contributed to its increase in arugula. The increase in the water-soluble and exchangeable fractions of Zn in the soil resulting from the application of PL also favored the increase of Zn contents in the arugula. Thus, the increase in structures of high lability of oxygenated aliphatic carbons in the HS with the composting time, reflecting in the final characteristics of the compound, may be favoring the non-specific adsorption of Pb, increasing the participation of this metal in the water-soluble fraction and contributing to the absorption of this by the arugula plant | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Adubo orgânico | por |
dc.subject | Avicultura | por |
dc.subject | Substâncias húmicas | por |
dc.subject | Eruca sativa | por |
dc.subject | Organic fertilizer | eng |
dc.subject | Aviculture | eng |
dc.subject | Humic substances | eng |
dc.subject | Eruca sativa | eng |
dc.title | Alterações químicas, estruturais e na capacidade de adsorção de metais pesados da cama de frango durante a compostagem | por |
dc.title.alternative | Chemical, structural, and heavy metal adsorption changes in poultry litter during composting | eng |
dc.type | Tese | por |
dc.contributor.advisor1 | Amaral Sobrinho, Nelson Moura Brasil do | |
dc.contributor.advisor1ID | 509.422.127-20 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0002-5053-7338 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8349031396398015 | por |
dc.contributor.advisor-co1 | García, Andrés Calderín | |
dc.contributor.advisor-co1ID | https://orcid.org/0000-0001-5963-3847 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/8896375232574274 | por |
dc.contributor.referee1 | Amaral Sobrinho, Nelson Moura Brasil do | |
dc.contributor.referee1ID | 509.422.127-20 | por |
dc.contributor.referee1ID | https://orcid.org/0000-0002-5053-7338 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/8349031396398015 | por |
dc.contributor.referee2 | Lima, Erica Souto Abreu | |
dc.contributor.referee2ID | https://orcid.org/0000-0003-4140-3634 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/6111184982796209 | por |
dc.contributor.referee3 | Pinheiro, Érika Flávia Machado | |
dc.contributor.referee3ID | https://orcid.org/0000-0001-9039-4127 | por |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/8101589624388403 | por |
dc.contributor.referee4 | Leal, Marco Antonio de Almeida | |
dc.contributor.referee4ID | https://orcid.org/0000-0003-3988-2277 | por |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/6687333214208685 | por |
dc.contributor.referee5 | Parente, Cláudio Ernesto Taveira | |
dc.contributor.referee5ID | https://orcid.org/0000-0002-8904-3968 | por |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/5733011042168647 | por |
dc.creator.ID | 120.208.257-24 | por |
dc.creator.ID | https://orcid.org/0000-0002-5253-3197 | por |
dc.creator.Lattes | http://lattes.cnpq.br/3672142883162627 | por |
dc.description.resumo | A presença de contaminantes na cama de frango (CF), como os metais pesados, torna a sua utilização na agricultura um grande desafio. Este trabalho teve por objetivo avaliar as alterações químicas que ocorrem na estrutura da matéria orgânica (MO) da CF durante a sua compostagem, e a evolução na estrutura das substâncias húmicas (SH) formadas durante esse processo, e, assim, determinar a relação entre as alterações estruturais da MO durante a compostagem com a biodisponibilidade dos metais pesados presentes na CF e sua transferência para as plantas, além da capacidade desse resíduo de adsorver os metais Pb e Cu. No capítulo 1, foi realizado um estudo preliminar sobre o papel da estrutura da MO da CF nas alterações da solubilidade dos metais pesados presentes nesse resíduo durante o estágio inicial da compostagem. Nos primeiros trinta dias de compostagem, o favorecimento de interações mais estáveis entre os metais pesados e a fração orgânica mais recalcitrante da CF reduziu a solubilidade desses elementos e, consequentemente, o potencial poluidor da CF. No capítulo 2, é apresentada uma caracterização das alterações na estrutura orgânica da CF e nas frações húmicas formadas durante o processo de compostagem mediante técnicas de elucidação estrutural. Verificou-se que durante a compostagem as estruturas alifáticas e carboxílicas são substituídas por compostos aromáticos nos AH, enquanto que a polaridade e a presença de grupamentos funcionais oxigenados aumentam nos AF. A evolução das estruturas húmicas na CF durante a compostagem favoreceu a preservação de estruturas nitrogenadas e a elevada presença de carboidratos nesse resíduo ao final do processo. O capítulo 3, apresenta a ação da MO da CF, e das suas transformações durante toda a compostagem, na biodisponibilidade dos metais pesados no ambiente. As formas químicas mais recalcitrantes dos metais pesados aumentaram durante a compostagem devido à afinidade desses elementos com as estruturas oxidadas das SH formadas durante o processo de compostagem. Entretanto, a associação do Pb com as estruturas de carbono alifáticos oxigenados das SH formadas durante a compostagem contribuiu para a o aumento da sua fração hidrossolúvel. O capítulo 4 descreve os fenômenos de adsorção do Cu e Pb em compostos de CF com diferentes tempos de compostagem. O modelo linear mostrou-se mais adequado para descrever o processo de adsorção do Cu e do Pb, em todos os tempos de compostagem avaliados. A CF não compostada apresentou uma maior adsorção pelo Pb, enquanto que a CF compostada apresentou maior adsorção pelo Cu. Contudo, independente do tempo de compostagem, a adsorção do Cu e do Pb na CF ocorreu, predominantemente, de forma específica. No capítulo 5, é apresentado a transferência de metais pesados à planta de rúcula (Eruca sativa) quando a mesma é aduba com CF em diferentes estágios de compostagem. A aplicação da CF, independentemente do tempo de compostagem, reduziu os teores de Mn e aumentou os teores de Cu na planta. A maior afinidade do Pb por estruturas de elevada labilidade contribuiu para o seu incremento na rúcula. O aumento das frações hidrossolúvel e trocável do Zn no solo decorrente da aplicação de CF, também favoreceu o aumento dos teores de Zn na rúcula. Assim, o incremento de estruturas de elevada labilidade de carbonos alifáticos oxigenados nas SH com o tempo de compostagem, refletindo nas características finais do composto, pode estar favorecendo a adsorção não específica do Pb, aumentando a participação desse metal na fração hidrossolúvel e contribuindo para a absorção desse pela planta de rúcula | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Agronomia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | por |
dc.relation.references | A. ABDOLALI, W.S. GUO, H.H. NGO, S.S. CHEN, N.C. NGUYEN, K.L. TUNG, Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review, Bioresour. Technol. 160 (2014) 57-66. ABPA - Associação Brasileira de Proteína Animal. Relatório Anual 2018. 176p. Disponível em: <www.abpa-br.com.br>. Acesso em: 30 set. 2020. ADANI, A.; GENEVINI, P.; TAMBONE, F.; MONTONERI, E. Compost effect on soil humic acid: A NMR study. Chemosphere, v. 65, p. 1414-1418, 2006. ADELI, A.; SHANKLE, M. W.; TEWOLDE, H.; SISTANI, K R.; ROWE, D. E. Nutrient Dynamics from Broiler Litter Applied to No-Till Cotton in an Upland Soil. Agronomy Journal, v. 100, p. 564-570, 2008. ADENIYI, A. G.; IGHALO, J. O. Biosorption of pollutants by plant leaves: an empirical review. Journal of Environmental Chemical Engineering, v. 7, p. 103100, 2019. AGUIAR, N.O.; NOVOTNY, E.H.; OLIVEIRA, A.L.; RUMJANEK, V.M.; OLIVARES, F.L.; CANELLAS, L.P. Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. Journal of Geochemical Exploration, v. 129, p. 95-102, 2013. AL-FAIYZ, Y. S. S. CPMAS 13C NMR characterization of humic acids from composted agricultural Saudi waste. Arabian Journal of Chemistry, v. 10, p. S839-S853, 2017. ALLEONI, L. R. F.; MELLO, J. W. V.; ROCHA, W. S. D. Eletroquímica, adsorção e troca iônica no solo. In: MELO, V. F.; ALLEONI, L. R. F. (eds.). Química e Mineralogia do Solo, Parte II - Aplicações. Voçosa, MG: Sociedade Brasileira de Ciência do Solo, 2009. p. 69-130. ALSCHER, R. G.; HESS, J. L. Antioxidants in Higher Plants. Boca Ranton: CRC Press, 1993. AMARAL SOBRINHO, N. M. B.; BARRA, C. M.; LÃ, O. R. Química dos metais pesados. In: MELO, V. F.; ALLEONI, L. R. F. (eds.). Química e Mineralogia do Solo. Parte II - Aplicações.Viçosa, MG: SBCS, 2016. p. 249-312. AMIR, S.; JOURAIPHY, A.; MEDDICH, A.; EL GHAROUS, M.; WINTERTON, P.; HAFIDI, M. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13C NMR. Journal of Hazardous Materials, v. 177, p. 524-529, 2010. AMIR, S.; HAFIDI, M.; LEMEE, L.; MERLINA, G.; GUIRESSE, M.; PINELLI, E.; REVEL, J.-C.; BAILLY, J.-R.; AMBLES, A. Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis–gas chromatography–mass spectrometry. Process Biochemistry, v. 41, p. 410-422, 2006. ANAIA, G. C. Determinação de íons metálicos por FI-FAAS após separação e concentração em fase sólida: avaliação critica de adsorventes. Dissertação (Mestrado em Química Analítica). Universidade de São Paulo, São Paulo, SP, 2008. ANASTOPOULOS, I.; MASSAS, I.; EHALIOTIS, C. Composting improves biosorption of Pb2+ and Ni2+ by renewable lignocellulosic materials. Characteristics and mechanisms involved. Chemical Engineering Journal, v. 231, n. 17, p. 245-254, 2013. ANGELO, J. C.; GONZALES, E. G.; KONDO, N.; ANZAI, N. H.; CABRAL, M. M. Material de cama: qualidade, quantidade e efeito sobre o desempenho de frangos de corte. Revista Brasileira de Zootecnia, v. 1, n. 26, p. 121-130, 1997. ANVISA (20113) RDC nº 42, de 29 de Agosto de 2013. Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos. Disponível em: http://portal.anvisa.gov.br/documents/33880/2568070/rdc0042_29_08_2013.pdf/c5a17d2d-a415-4330-90db-66b3f35d9fbd. Acesso em: 25 de março de 2020. ARENA, C.; SANTORUFO, L.; CATALETTO, P. R.; MEMOLI, V.; SCUDIERO, R.; MAISTO, G. Eco-physiological and antioxidant responses of holm oak (Quercus ilex L.) leaves to Cd and Pb. Water, Air, & Soil Pollution, v. 228, p. 459, 2017a. ARKHIPKIN, A. I.; ROA-URETA, R. Identification of ontogenetic growth models for squid. Marine and Freshwater Research, v. 56, p. 371-386, 2005. AVISITE. A cadeia avícola analisada do ovo ao consumidor. Disponível em: < https://www.avisite.com.br/index.php>. Acesso em: 01 de nov. de 2018. AWASTHI, M. K.; PANDEY, A. K.; KHAN, J.; BUNDELA, P. S.; WONG, J. W. C.; SELVAM, A. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresource Technology, v. 168, p. 214-221, 2014. AYYAZ, A.; AMIR, M.; UMER, S.; IQBAL, M.; BANO, H.; GUL, H.S.; NOOR, Y.; KANWAL, A.; KHALID, A.; JAVED, M.; ATHAR, H. R.; ZAFAR, Z. U.; FAROOQ, A. Melatonin induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola (Brassica napus L.). Heliyon, v. 6, p. e04364, 2020. BEESLEY, L.; INNEH, O. S.; NORTON, G. J.; MORENO-JIMENEZ, E.; PARDO, T.; CLEMENTE, R.; DAWSON, J. J. C. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, v. 186, p. 195-202, 2014. BEIYUAN, J.; LI, J. S.; TSANG, D. C.; WANG, L.; POON, C. S.; LI, X. D.; FENDORF, S. Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong. Science of the Total Environmentm v. 599, p. 679-688, 2017. BENITES, V. M.; BEZERRA, F. B.; MOUTA, R. O.; ASSIS, I. R.; SANTOS, R. C.; CONCEIÇÃO, M.; ANDRADE, A. G. Produção de adubos orgânicos a partir da compostagem dos resíduos da manutenção da área gramada do Aeroporto Internacional do Rio de Janeiro. Rio de Janeiro: Embrapa Solos, 2004. 21p. (Boletim de Pesquisa e Desenvolvimento nº 50). BENITES, V. M.; MADARI, B.; MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Rio de Janeiro: Embrapa Solos, 2003. 7p. (Comunicado Técnico 16). BERBARA, R. L. L.; GARCÍA, A. C. Humic Substances and Plant Defense Metabolism. In: AHMAD, P.; WANI, M.R. (eds.). Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Volume 1. New York: Springer Science+Business Media, 2014. BERNAL, M. P.; NAVARRO, A. F.; ROIG, A.; CEGARRA, J.;GARCIA, D. Carbon and nitrogen tranformations during composting of sweet sorghum bagasse. Biology and Fertility Soils, v. 22, p. 141-148, 1996. BERNAL, M. P.; ALBURQUERQUE, J. A.; MORAL, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, v. 100, p. 5444-5453, 2009. BERTAGNOLI, B. G. P.; OLIVEIRA, J. F.; BARBOSA, G. M. C.; COLOZZI FILHO, A. Poultry litter and liquid swine slurry applications stimulate glomalin, extraradicular mycelium production, and aggregation in soils. Soil and Tillage Research, v. 202, p. 104657, 2020. BISHOP, P. L.; GODFREY, C. Nitrogen transformation during sewage composting. Biocycle, v. 24, p. 34-39, 1983. BOCANEGRA, M. P.; LOBARTINI, J. C.; ORIOLI, G. A. Plant uptake of iron chelated by humic acids of different molecular weights. Commun. Journal of Soil Science and Plant Nutrition, v. 37, p. 239-248, 2006. BORŮVKA, L.; DRÁBEK, O. Heavy metal distribution between fractionsof humic substances in heavily polluted soils. Plant, Soil and Environment, v. 50, n. 8, p. 339–345, 2004. BRASIL. Instrução Normativa SDA Nº 17 de 21 de maio de 2007. Métodos Analíticos Oficiais para Análise de Substratos e Condicionadores de Solos. Brasília, DF: Ministério da Agricultura, Pecuária e abastecimento (MAPA), Secretaria de Defesa Agropecuária (SDA), 2007. Disponível em: <http://extranet.agricultura.gov.br/sislegis-consulta/consultarLegislacao.do;jsessionid=0f23b8d11096cc7b234d025b1cebc1f66c3dc0f47942a0ddc6d0d9017a0246d7.e3uQb3aPbNeQe3yLaxuLahqOai0?operacao=visualizar&id=17762>. Acesso em: 19 setembro de 2015. BRUNETTI, G.; FARRAG, K.; SOLER-ROVIRA, P.; FERRARA, M.; NIGRO, F.; SENESI, N. The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three brassicaceae species from contaminated soils in the Apulia region, Southern Italy. Geoderma, v. 170, p. 322-330, 2012. BUDZIAK, C. R. Grupos ácidos e capacidade de oxidação de ácidos húmicos como método de avaliação de processos de compostagem. 2002. 139 f. Dissertação (Mestrado Química) - Universidade Federal do Paraná, Curitiba, 2002. BURAKOV, A. E.; GALUNIN, E. V.; BURAKOVA, I. V.; KUCHEROVA, A. E.; AGARWAL, S.; TKACHEV, A. G.; GUPTA, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicology and Environmental Safety, v. 148, p. 702-712, 2018. BURNHAM, K. P.; ANDERSON, D. R. Kullback–Leibler information as a basis for strong inference in ecological studies. Wildlife Research, v. 28, p.111-119, 2001. BURNHAM, K. P.; ANDERSON, D. R. Model Selection and Multimodel Inference: a Practical Information-theoretic Approach, second ed. New York: Springer-Verlag, 2002. CAI, L.; GAO, D.; CHEN, T. B.; LIU, H. T.; ZHENG, G. D.; YANG, Q.W. Moisture variation associated with water input and evaporation during sewage sludge bio-drying. Bioresource Technology, v. 117, p. 13-19, 2012. CANELLAS, L. P.; OLIVARES, F. L.; AGUIAR, N. O.; JONES, D. L.; NEBBIOSO, A.; MAZZEI, P.; PICCOLO, A. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, v. 196, p. 15-27, 2015. CANELLAS, L. P.; OLIVARES, F. L. Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, v. 1, p. 1-11, 2014. CANELLAS, L. P.; PICCOLO, A.; DOBBSS, L. B.; SPACCINI, R.; OLIVARES, F. L.; ZANDONADI, D. B.; FAÇANHA, A. R. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere, v. 78, p. 457-466, 2010. CANELLAS, L. P.; SANTOS, G. A. Humosfera: tratado preliminar sobre a química das substâncias húmicas. Campos dos Goytacazes: CCTA, UENF, 2005. 309 p. CANELLAS, L. P.; MENDONÇA, E. S.; DOBBSS, L. B.; BALDOTTO, M. A.; VELLOSO, A. C. X.; SANTOS, G. A.; AMARAL SOBRINHO, N. M. B. Reações da matéria orgânica. In: SANTOS, G. A.; SILVA, L. S.; CANELLAS, L. P.; CAMARGO, F. A. O. (orgs.). Fundamentos da matéria orgânica do solo: Ecossistemas tropicais & subtropicais. Porto Alegre: Metrópole, 2008. p.45-63. CANELLAS, L. P.; SANTOS, G. A.; AMARAL SOBRINHO, N. M. B.; MORAES, A.; RUMJANEK, V. M. Adsorção de Cu2+ e Cd2+ em ácidos húmicos extraídos de resíduos orgânicos de origem urbana. Ciência Rural, v. 29, n.1, p. 21-26, 1999. CAREY, F. A.; SUNDBERG, J. Advanced organic chemistry – structure and mecanisms. New York: Plenum Press, 1990. CASTRO, S. V.; LOBO, C. H.; FIGUEIREDO, J. R.; RODRIGUES, A. P. R. Proteínas de choque termico hsp 70: Estrutura e atuação em resposta ao estresse celular. Acta Veterinaria Brasilica, v. 7, p. 261, 2014. CAVAZZINI, A.; FELINGER, A.; KACZMARSKI, K.; SZABELSKI, P.; GUIOCHON, G.; Study of the adsorption equilibria of the enantiomers of 1-phenyl-1-propanol on cellulose tribenzoate using microbore column. Journal of Chromatography A, v.953, p.55-66, 2002. CCQC (California Compost Quality Council). Compost Maturity Index, Technical Report, 2001. CELESTINA, C.; MIDWOOD, J.; SHERRIFF, S.; TRENGOVE, S.; HUNT, J.; TANG, C.; SALE, P.; FRANKS, A. Crop yield responses to surface and subsoil applications of poultry litter and inorganic fertilizer in south-eastern Australia. Crop & Pasture Science, v. 69, p. 303-316, 2018. CELI, M.; SCHNITZER, M.; NÉGRE, M. Analysis of carboxyl groups in soil humic acids by a wet chemical method, Fourier-transform infrared spectrophotometry, and solution-state carbono-13 nuclear magnetic resonance. A comparative study. Soil Science, v. 162, n. 3, p. 189-197, 1997. CESTONARO, T.; ABREU, P. G.; ABREU, V. M. N.; COLDEBELLA, A.; TOMAZELLI, I. L.; HASSEMER, M. J. Desempenho de diferentes substratos na decomposição de carcaça de frango de corte. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, n.12, p.1318-1322, 2010. CHAKRABORTY, R.; ASTHANA, A.; SINGH, A. K.; JAIN, B.; SUSAN, A. B. H. Adsorption of heavy metal ions by various low-cost adsorbents: a review. International Journal of Environmental Analytical Chemistry, v. 00, p. 1-38, 2020. CHARY, N. S.; KAMALA, C.; RAJ, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and environmental safety, v. 69, p. 513-524, 2008. CHATTERJEE, N., FLURY, M., HINMAN, C., COGGER, C. G. Chemical and Physical Characteristics of Compost Leachates. A Review. Washington: Technical Report for Washington State Department of Transportations, 2013. CHEN, Y. Organic Matter Reactions Involving Micronutrients in Soils and Their effect on Plants. In: PICCOLO, A. (Ed.). Humic Substances in Terrestrial Ecosystems. Amsterdam: Elsevier Science B.V., 1996. p. 507-530. CHEN, L.; DE HARO, M. M.; MOORE, A.; FALEN, C. The Composting Process: Dairy Compost Production and Use in Idaho CIS 1179. Moscow: University of Idaho, 2011. CHEN, R.; WANG, Y.; WANG, W.; WEI, S.; JING, Z.; LIN, X. N2O emissions and nitrogen transformation during windrow composting of diary manure. Journal of Environmental Management, v. 160, p. 121-127, 2015. CHEN, H.; YUAN, X.; LI, T.; HU, S.; JI, J.; WANG, C. Characteristics of heavy metal transfer and their influencing factor sin different soil-op systems of the industrialization region, China. Ecotoxicology and Environmental Safety, v. 126, p. 193-201 2016. CONSELVAN, G. B.; FUENTES, D.; MERCHANT, A.; PEGGION, C.; FRANCIOSO, O.; CARLETTI, P. Effects of humic substances and indole-3-acetic acid on Arabidopsis sugar and amino acid metabolic profile. Plant Soil, v. 426, p. 17-32, 2018. CONTE, P.; AGRETTO, A.; SPACCINI, R.; PICCOLO, A. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environmental Pollution, v. 135, p. 515-522, 2005. COUTINHO, I. B. Sorção de zinco, cádmio, cobre e chumbo em Organossolos. Dissertação (Curso de Pós-Graduação em Agronomia). Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2014. COUTINHO, I. B.; SOUZA, C. C. B.; LIMA, E. S. A.; GARCÍA, A. C.; PEREIRA, M. G.; VALLADARES, G. S.; AMARAL SOBRINHO, N. M. B. Roles of Soil Organic Matter and Humic Substance Structure in Cu and Pb Adsorption in Histosols. Soil and Sediment Contamination, v. 30, p. 148-162, 2020. CRIPPEN, T. L.; SHEFFIELD, C. I.; BYRD, J. A.; ESQUIVE, J. F.; BEIER, R. C.; YEATER, K. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition. Science of the Total Environment, v. 553, p. 650-661, 2016. CURI, N.; LARACH, J. O. I.; KÄMPF, N.; MONIZ, A. C.; FONTES, L. E. P. Vocabulário em ciência do solo. Campinas, SP: Sociedade Brasileira de Ciência do Solo, 1993. DAI PRÁ, M. A. Desenvolvimento de um sistema de compostagem para o tratamento de dejetos de suínos. 2006. (Mestrado em Zootecnia) - Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas. Pelotas, 2006. DALÓLIO, F. S.; SILVA, J. N.; OLIVEIRA, A. C. C.; TINÔCO, I. F. F.; BARBOSA, R. C.; RESENDE, M. O.; ALBINO, L. F. T.; COELHO, S. T. Poultry litter as biomass energy: a review and future perspectives. Renewable and Sustainable Energy Reviews, v. 76, p. 941-949, 2017. DAS, K.; KEENER, H. M. Moisture effect on compaction and permeability in composts. Journal of Environmental Engineering, v. 123, p. 275-281, 1997. DE BERTOLDI, M.; VALLINI, G.; PERA, A. The biology of composting: a review. Waste Management & Research, v. 1, p. 157-176, 1983. DEBRASSI, A.; LARGURA, M. C. T.; RODRIGUES, C. A. Adsorption of congo red dye by hydrophobic O-carboxymethyl chitosan derivatives. Química Nova, v. 34, n. 5, p. 764–770, 2011. DE LA ROSA, J. M.; GONZÁLEZ-PÉREZ, J. A.; GONZÁLEZ-VILA, F. J.; KNICKER, H.; ARAÚJO, M. F. Molecular composition ofsedimentary humic acids from South West Iberian Peninsula: a multi-proxy approach. Organic Geochemistry, v. 42, p. 791-802, 2011. DE MELO, B. A.; MOTTA, F. L.; SANTANA, M. H. Humic acids: structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering C, v. C 62, p. 967-974, 2016. DEMIRBAS, A. Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials, v. 157, p. 220-229, 2008. DESHMUKH, A. P.; SIMPSON, A. J.; HADAD, C. M.; HATCHER, P.G. Insights into the structure of cutin and cutan from Agave americana leaf cuticle using HRMAS NMR spectroscopy. Organic Geochemistry, v. 36, p. 1072-1085, 2005. DE SOUZA, L. A.; DE ANDRADE, S. A. L.; DE SOUZA, S. C. R.; SCHIAVINATO, M. A. Tolerância e potencial fitorremediador de Stizolobium aterrimum associada ao fungo micorrízico arbuscular Glomus etunicatum em solo contaminado por chumbo. Revista Brasileira de Ciência do Solo, v. 35, p. 1441, 2011. DONAGEMMA, G. K.; CAMPOS, D. V. B. de; CALDERANO, S. B.; TEIXEIRA, W. G.; VIANA, J. H. M. Manual de métodos de análise de solos. 2.ed. Rio de Janeiro: Embrapa Solos, 2011. 230p. (Embrapa Solos. Documentos, 132). EDWARDS, D. R; DANIEL, T. C. Environmental impacts of on-farm poultry waste disposal –– A review. Bioresource Technology, v. 41, p. 9-33, 1992. EMBRAPA. Central de inteligência aves e suínos: Estatística. Disponível em: <https://www.embrapa.br/suinos-e-aves/cias/estatisticas>. Acesso em: 26 de mar. de 2021. EMBRAPA. Soluções tecnológicas: Fertilizante Organomineral Granulado obtido a partir de cama de frango, 2013. Disponível em: https://www.embrapa.br/busca-de-solucoes-tecnologicas/-/produto-servico/1300/fertilizante-organomineral-granulado-obtido-a-partir-de-cama-de-frango. Acesso em: 26 de março de 2021. EMILIANO, P. C. Fundamentos e aplicações dos Critérios de Informação: Akaike e Bayesiano. Dissertação (Programa de Pós-Graduação em Estatística e Experimentação Agropecuária). Universidade Federal de Lavras, Lavras, MG, 2009. EPSTEIN, E. The science of composting. Lancaster: Technomic Publishing, 1997. 493 p. ERBIL, H. Y. Surface chemistry of solid and liquid interfaces. Oxford, Malden, MA: Blackwell Pub., 2006. FAN, Y.; LI, H.; XUE, Z.; ZHANG, Q.; CHENG, F. Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China. Ecological Engineering, v. 102, p. 367-373, 2017. FAO - WORLD HEALTH ORGANIZATION FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Codex alimentarius commission: procedural manual. Rome, 2019. FARREL, M.; JONES, D. I. Heavy metal contamination of a mixed waste compost: metal speciation and fate. Bioresource Technology, v. 100, p. 4423-4432, 2009. FERNANDES, F.; SILVA, S. M. C. P. Manual prático para a compostagem de biossólidos. 1ª ed. Rio Rio de Janeiro: ABES – Associação Brasileira de Engenharia Sanitária e Ambiental, 2000. FIALHO, L. L.; SILVA, W. T. L.; MILOEF, D. M. B. P.; SIMÕES, M. L.; NETO, L. M. Monitoramento químico e físico do processo de compostagem de diferentes resíduos orgânicos. In: Relatório Técnico. São Carlos, SP: Embrapa Instrumentação Agropecuária, 2005. FIALHO, L. L.; SILVA, W. T. L.; MILORI, D. M. B. P.; SIMÕES, M. L.; MARTIN-NETO, L. Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods. Bioresource Technology, v. 101, p. 1927-1934, 2010. FIGLIOLI, F.; SORRENTINO, M. C.; MEMOLI, V.; ARENA, C.; MAISTO, G.; GIORDANO, S.; CAPOZZI, F.; SPAGNUOLO, V. Overall plant responses to Cd and Pb metal stress in maize: growth pattern, ultrastructure, and photosynthetic activity. Environmental Science and Pollution Research, v. 26, p. 1781-1790, 2019. FIGUEROA, J. A. L.; WROBEL, K.; AFTON, S.; CARUSO, J. A.; CORONA, J. F. G.; WROBEL, K. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere, v. 70 p. 2084-2091, 2008. FIRDEVS, M. Cadmium and lead in livestock feed and cattle manure from four agricultural areas of Bursa, Turkey. Toxicological and Environmental Chemistry, v. 87, n. 3, p. 329-334, 2005. FLAIG, W. Introductory review on humic substances aspects of research on their genesis, their physical and chemical properties, and their effect on organismis. In: POVOLEDO, D.; GOLTEMAN, H. L. (orgs.) Humic substances: their structure and function in the biosphere proceedings of an international meeting. Wageningen: Centre for Agricultural Publishing and Documentation, 1975. p. 19-42. FERNANDES, M. R.; MCCULLOCH, J. A.; VIANELLO, M. A.; MOURA, Q.; PÉREZ-CHAPARRO, P. J.; ESPOSITO, F.; SARTORI, L.; DROPA, M.; MATTÉ, M. H.; LIRA, D. P. A.; MAMIZUKA, E. M.; LINCOPAN, N. First report of the globally disseminated IncX4 plasmid carrying the mcr-1 gene in a colistin-resistant Escherichia coli ST101 isolated from a human infection in Brazil. Antimicrobial Agents and Chemotherapy, v. 60, p. 6415-6417, 2016. FLAIG, W. Generation of model chemical precursors. In: FRIMMEL, F.H.; CHRISTMAN, F. (orgs.) Humic substances and their role in the environment. New York: Wiley, 1988. p. 75-92. FLYHAMMAR, P. Use of sequential extraction of heavy metals on anaerobically municipal solid waste. Science of Total Environmental, v. 212, p. 203-215, 1998. FONTENOT, J. P.; SMITH, L. W.; SUTTON, A. L. Alternative utilization of animal wastes. Journal of Animal Science, v. 57 (suppl. 2), p. 221-233, 1983. FRANCO, T. Metais Pesados em Solos de Áreas de Produção Intensiva de Hortaliças em Petrópolis – RJ. 2019. 80 f. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia Agrícola e Ambiental, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. FRAZÃO, J. J.; BENITES, V. M.; RIBEIRO, J. V. S.; PIEROBON, V. M.; LAVRES, J. Agronomic effectiveness of a granular poultry litter-derived organomineral phosphate fertilizer in tropical soils: Soil phosphorus fractionation and plant responses. Geoderma, v. 337, p. 582-593, 2019. FU, F.; WANG, Q. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, v. 92, p. 407-418, 2011. FUENTES, M.; GONZÁLEZ-GAITANO, G.; GARCÍA-MINA, J. M. The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Organic Geochemistry, v. 37, p. 1949-1959, 2006. FUKUSHIMA, M.; YAMAMOTO, M.; KOMAI, T.; YAMAMOTO, K. Studies of structural alterations of humic acids from conifer bark residue during composting by pyrolysis-gas chromatography/mass spectrometry using tetramethylammonium hydroxide (TMAH-py-GC/MS). Journal of Analytical and Applied Pyrolysis, v. 86, p. 200-206, 2009. FÜLEKY, G.; BENEDEK, S. Composting to recycle biowaste. In: LICHTFOUSE, E. (ed.). Sociology, Organic Farming, Climate Change and Soil Science. Netherlands: Springer, 2010. p. 319-346. FURTADO E SILVA, J. A. M.; AMARAL SOBRINHO, N. M. B.; GARCÍA, A. C.; PANDOLFO, C. M.; VEIGA, M. Mitigation of Heavy Metal Contamination in Soil via Successive Pig Slurry Application. Soil and Sediment Contamination, v. 28, p. 1-16, 2017. GAJALAKSHMI, S.; ABBASI, S. A. Solid waste management by composting: state of the art. Critical Reviews in Environmental Science and Technology, v. 38, p. 311–400, 2008. GAMBLE, D. S.; SCHNITZER, M. Trace metals and metal and organic interactions in Natural waters. In: SINGER, P. C. (orgs.). Trace Metals and Metal organic interactions in natural waters. Michigan: Ann Arbor Science, 1973. p. 265-302. GAO, M.; LIANG, F.; YU, A.; LI, B.; YANG, L. Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere, v. 78, p. 614-619, 2010a. GAO, X.; TAN, W.; ZHAO, Y.; WU, J.; SUN, Q.; QI, H.; XIE, X.; WEI, Z. Diversity in the Mechanisms of Humin Formation during Composting with Different Materials. Environmental Science & Technology, v. 53, p. 3653-3662, 2019. GARCÍA, A. C.; GARCÍA-MINA, J. M.; TAVARES, O. C. H.; SANTOS, L. A.; BERBARA, R. L. L. Substâncias húmicas e seus efeitos sobre a nutrição de plantas. In: FERNANDES, M. S.; SOUZA, S. R.; SANTOS, L. A. (eds.). Nutrição Mineral de Plantas. Viçosa: Sociedade Brasileira de Ciência do Solo, 2018b. p. 227-277. GARCÍA, A. C.; TAVARES, O. C. H.; BALMORI, D. M.; ALMEIDA, V. S.; GARCÍA, A. C.; IZQUIERDO, F. G.; BERBARA, R. L. L. Effects of Humic Materials on Plant Metabolism and Agricultural Productivity. In: AHMAD, P. (ed.). Emerging Technologies and Management of Crop Stress Tolerance, Volume 1. New York: Elsevier, 2014. p. 449-466. GARCÍA, A. C.; TAVARES, O. C. H.; BALMORI, D. M.; ALMEIDA, V. S.; CANELLAS, L. P.; GARCÍA-MINA, J. M.; BERBARA, R. L. L. Structure-function relationship of vermicompost humic fractions for use in agriculture. Journal of Soils and Sediments, v. 18, p. 1365-1375, 2016. GARCÍA, A. C.; TAVARES, O. C. H.; BALMORI, D. M.; ALMEIDA, V. S.; CANELLAS, L. P.; GARCÍA-MINA, J. M.; BERBARA, R. L. L. Structure-function relationship of vermicompost humic fractions for use in agriculture. Journal of Soils and Sediments, v.18, p.1365-1375, 2018a. GHABBOU, E. A.; DAVIES, G. The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 OW, UK Registered Charity No. 207890, 2001. GILES, C. H.; SMITH, D.; HUITSON, A. A general treatment and classification of the solute adsorption isotherm. I. Theorical. Journal of Colloid and Interface Science, v.47, p.755-765,1974 GONÇALVES, R. G. M. Fatores de Transferência de Metais Pesados do Solo para Plantas de Couve Manteiga (Brassica oleracea var. acephala) Cultivadas na Microbacia do Rio Jacó, Petrópolis – RJ. 2019. 85 f. Dissertação (Mestrado) - Programa de Pós-Graduação em Agronomia – Ciência do Solo, Universidade Federal Rural do Rio de Janeiro. Seropédica, 2019. GONG, R.; DING, Y.; LIU, H.; CHEN, Q.; LIU, Z. Lead biosorption and desorption by intact and pretreated spirulina maxima biomass. Chemosphere, v. 58, p. 125-130, 2005. GOUVÊA, R.; SANTOS, F. F.; AQUINO, M. H. C.; PEREIRA, V. L. A. Fluoroquinolones in industrial poultry production, bacterial resistance and food residues: a review. Brazilian Journal of Poultry Science, v.17 (1), p.1-10. 2015. GREGG S. J.; SING K. S. W. Adsorption, Surface Area and Porosity. Acadmic Press, London, v. 4, 1982. GUIMARÃES, M. D. A.; SANTANA, T. A.; SILVA, E. V.; ZENZEN, I. L.; LOUREIRO, M. E. Toxicidade e tolerância ao cádmio em plantas. Revista Trópica-Ciências Agrárias e Biológicas, v. 1, n. 3, p. 58-68, 2008. GUO, X-X.; LIU, H-T.; WU, S-B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Science of the Total Environment, 662, 501-510, 2019. GUO, X.; HUANG, J.; LU, Y.; SHAN, G.; LI, Q. The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during cocomposting of dairy manure and sugarcane pressmud. Bioresource Technology, v. 219, n. 169-174, 2016. HAHN, L. Processamento da cama de aviário e suas implicações nos agroecossistemas. 2004. 130 f. Dissertação (Mestrado) - Programa de Pós-graduação em Agroecossistemas, Universidade Federal de Santa Catarina, Florianópolis, 2004. HALL, J. L. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, v. 53, p. 1-11, 2002. HASHEM, M. A. Adsorption of lead ions from aqueous solution by okra wastes. International Journal of Physical Sciences, v. 2, p. 178-184, 2007. HAUG, R. T. Compost Engineering Principles e Practice. Michigan, USA: Ann Arbor Science, 1980. HE, M.; TIAN, G.; LIANG, X. Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. Journal of Hazardous Materials, v. 163, p. 671–677, 2009a. HE, M.; LI, W.; LIANG, X.; WU, D.; TIAN, G. Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste Management, v. 29, p. 590-597, 2009b. HE, Z.; TAZISONG, I. A.; YIN, X.; WATTS, D. B.; SENWO, Z. N.; TORBERT, H. A. Long-Term Cropping System, Tillage, and Poultry Litter Application Affect the Chemical Properties of an Alabama Ultisol. Pedosphere, v. 29, p. 180-194, 2019. HO, Y. B.; ZAKARIA, M. P.; LATIF, P. A.; SAARI, N. Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatographyetandem mass spectrometry. Journal of Chromatography A, v. 1262, p. 160-168, 2012. HOUGH, R. L.; BREWARD, N.; YOUNG, S. D.; CROUT, N. M. J.; TYE, A. M.; MOIR, A. M.; THORNTON, I. Assessing potential risk of heavy metal exposure from consumption ofhome-produced vegetables by urban populations. Environmental Health Perspectives, v. 112, p. 215-221, 2004. HSU, J.; LO, S. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environmental Pollution, v. 104, p. 189–196, 1999. HSU, J-H.; LO, S-L. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manura. Environmental Pollution, v. 114, p. 119-127, 2001. HU, Y.; ZHOU, J.; DU, B.; LIU, H.; ZHANG, W.; LIANG, J.; ZHANG, W.; YOU, L.; ZHOU, J. Health risks to local residents from the exposure of heavy metals around the largest copper smelter in China. Ecotoxicology and Environmental Safety, v. 171, p. 329-336, 2019. HU, W.; HUANG, B.; SHI, X.; CHEN, W. P.; ZHAO, Y. C.; JIAO, W. T. Accumulation andhealth risk of heavy metals in a plot-scale vegetable production system in aperi-urban vegetable farm near Nanjing, China. Ecotoxicology and Environmental Safety, v. 98, p. 303-309, 2013. HUANG, G.F.; WU, Q.T.; WONG, J.W.; NAGAR, B.B. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresource Technology, v. 97, p. 834-1842, 2006. HUANG, Y., STANKIEWICZ, B.A., EGLINTON, G., SNAPE, C.E., EVANS, B., LATTER, P.M., INESON, P. Monitoring biomacromolecular degradation of Calluna vulgaris in a 23 year field experiment using solid state 13C-NMR and pyrolysis-GC/MS. Soil Biology & Biochemistry, v. 30, p. 1517-01528, 1998. IANNOTTI, D. A.; PANG, T.; TOTH, B. L.; ELWELL, D. L.; KEENER, H. M.; HOITINK, H. A. J. A quantitative respirometric method for monitoring compost stability. Compost Sci. Util., v. 1, p. 52-65, 1993. IBGE. Produção Pecuária Municipal, 2017. Disponível em: https://cidades.ibge.gov.br/brasil/rj/sao-jose-do-vale-do-rio-preto/pesquisa/24/76693. Acesso em: 09 de junho de 2020. IBGE. Indicadores IBGE. Levantamento Sistemático da Produção Agrícola. Estatística da Produção agrícola. Publicado em 08/01/2020. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/periodicos/2415/epag_2019_dez.pdf. Acesso em: 12 de julho de 2021. INÁCIO, C. T.; MILLER, P. R. M. Compostagem: ciência e prática para a gestão de resíduos orgânicos. Rio de Janeiro: Embrapa Solos, 2009. IQBAL, M. K.; NADEEM, A.; SHERAZI, F.; KHAN, R. A. Optimization of process parameters for kitchen waste composting by response surface methodology. International Journal of Environmental Science and Technology, v. 12, n. 5, p. 1759-1768, 2015. IRVING, H.; WILLIAMS, R. P. J. Order of stability of metal complexes. Nature, v. 162, p. 746–747, 1948. JACKSON, B. P.; BERTSCH, P. M.; CABRERA, M. L.; CAMBERATO, J. J.; SEAMAN, J. C.; WOOD, C.W. Trace Element Speciation in Poultry Litter. Journal of Environmental Quality, v. 32, p. 535-540, 2003. JAHNEL, M. C.; MELLONI, R.; CARDOSO, E. J. B. N. Maturidade do composto de lixo. Scientia Agricola, v. 56, p. 301-304, 1999. JARECKI, M. K.; CHONG, C.; VORONEY, R.P. Evaluation of compost leachates for plant growth in hydroponic culture. Journal of Plant Nutrition, v. 28, n. 4, p. 651-667, 2005. JEPPU, G. P.; CLEMENT, T. P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. Journal of Contaminant Hydrology, v. 129-130, p. 46-53, 2012. JIANG, S. S.; HUANG, L. B.; NGUYEN, T. A. H.; OK, Y. S.; RUDOLPH, V.; YANG, H.; ZHANG, D. K. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere, v. 142, n. 7, p. 64-71, 2016. JINDO, K.; SONOKI, T.; MATSUMOTO, K.; CANELLAS, L.; ROIG, A. Influence of biochar addition on the humic substances of composting manures. Waste Management, v. 49, p. 545-552, 2016. JOSEPH, L.; JUN, B. M.; FLORA, J. R. V.; PARK, C. M.; YOON, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere, v. 229, p. 142-159, 2019. JURADO, M. M.; SUÁREZ-ESTRELLA, F.; LÓPEZ, M. J.; VARGAS-GARCÍA, M. C.; LÓPEZ-GONZÁLEZ, J. A.; MORENO, J. Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresource Technology, v. 186, p. 15-24, 2015. KABATA-PENDIAS, A.; PENDIAS, H. Trace Elements in Soil and Plants. Boca Ranton, Florida: CRC Press, 1985. KANG, J.; ZHANG, Z.; WANG, J. Influence of humic substances on bioavailability of Cu and Zn during sewage sludge composting. Bioresource Technology, v. 102, p. 8022-8026, 2011. KARER, J.; WAWRA, A.; ZEHETNER, F.; DUNST, G.; WAGNER, M.; PAVEL, P.B.; PUSCHENREITER, M.; FRIESL-HANL, W.; SOJA, G. Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils. Water, Air, & Soil Pollution, v. 226, n. 10, p.342, 2015. KELLEHER, B. P.; LEAHY, J. J.; HENIHAN, A. M.; O’DWYER, T. F.; SUTTON, D.; LEAHY, M. J. Advances in poultry litter disposal technology – a review. Bioresource Technology, v. 83, p. 27-36, 2002. KIEHL, E. J. Fertilizantes orgânicos. Piracicaba: Editora Agronômica Ceres Ltda, 1985. KIEHL, E. J. Manual de compostagem: maturação e qualidade do composto. Piracicaba, 2004. KINGERY, W. L.; WOOD, C. W.; DELANEY, D. P.; WILLIAMS, J. C.; MULLINS, G. L., Impact of long-term land application of broiler litter on environmentally related soil properties. Journal of Environmental Quality, v. 23, p. 139‒147, 1994. KONONOVA, M. M. Soil organic matter. Oxford: Pergamon Press, 1961. KOSASIH, A. N.; FEBRIANTO, J.; SUNARSO, J.; JU, Y. H.; INDRASWATI, N.; ISMADJI, S. Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta). Journal of Hazardous Materials, v. 180, p. 366-374, 2010. KPOMBLEKOU-A, K.; MORTLEY, D. Organic fertilizers in Alabama: composition, transformations, and crop response in selected soils of the southeast United States. In: LARRAMENDY, M. L.; SOLONESKI, S. (eds.). Organic Fertilizers - from Basic Concepts to Applied Outcomes. Croatia: IntechOpen, 2016. p. 25-50. KRAUSE, G. H.; WEIS, E. Chlorophyll fluorescence and photosynthesis: The basis. Annual Review of Plant Physiology and Plant Molecular Biology, v. 42, p. 313-349, 1991. KUANA, S. L. Limpeza e desinfecção de instalações avícolas. In: JÚNIOR, A. B.; SILVA, E. N.; FÁBIO, J. DI.; SESTI, L.; ZUANAZE, M. A. A. Doenças das aves. 2ª ed. Campinas: Facta, 2009. 1.104 p. KUCKENBERG, J.; TARTACHNYK, I.; NOGA, G. Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precision Agriculture, v. 10, n. 1, p. 34-44, 2009. KULIKOWSKA, D.; GUSIATIN, Z. M.; BUŁKOWSKA, K.; KLIK, B. Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time. Journal of Hazardous Materials, v. 300, p. 882-891, 2015. KUMAR, V.; SHARMA, A.; DHUNNA, G.; CHAWLA, A.; BHARDWAJ, R.; THUKRAL, A. K. A tabulated review on distribution of heavy metals in various plants. Environmental Science and Pollution Research, v. 24, p. 2210-2260, 2017. KUMAR, M.; OU, Y. L.; LIN, J. G. Co-composting of green waste and foodwaste at low C/N ratio. Waste Management, v. 30, p. 602-609, 2010. LABORDA, F.; BOLEA, E.; GORRIZ, M. P.; GÓRRIZ, M. P.; MARTÍN-RUIZ, M. P.; RUIZ-BEGUERÍA, S.; CASTILLO, S. A speciation methodology to study the contributions of humic-like and fulvic-like acids to the mobilization of metals from compost using size exclusion chromatography-ultraviolet absorption–inductively coupled plasma mass spectrometry and deconvolution analysis. Analytica Chimica Acta, v. 606, p. 1-8, 2008. LARRÉ-LARROUY, M. C.; THURIÈS, L. Does the methoxyl group content of the humic acid-like fraction of composts provide a criterion to evaluate their maturity? Soil Biology & Biochemistry, v. 38, p. 2976-2979, 2006. LASAT, M. M. Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, v. 31, n. 1, p. 109-120, 2002. LAWAL, O. S.; SANNI, A. R.; AJAYI, I. A.; RABIU, O. O. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II) ions onto the seed husk of Calophyllum inophyllum. Journal of Hazardous Materials, v. 177, n. 1-3, p. 829-835, 2010. LAZCANO, C.; GÓMEZ-BRANDÓN, M.; DOMÍNGUEZ, J. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, v. 72, p. 1013-1019, 2008. LEAL, M. A. de A.; GUERRA, J. G. M.; PEIXOTO, R. T. dos G.; SANTOS, S. da S. Processo de compostagem a partir da mistura entre capim elefante e crotalária. Seropédica: Embrapa Agrobiologia, 2011. (Boletim de pesquisa e desenvolvimento, 77). LEAL, R. M. P.; FIGUEIRA, R. F.; TORNISIELO, V. L.; REGITANO, J. B. Occurrence and sorption of fluoroquinolones in poultry litters and soils from São Paulo State, Brazil. Science of the Total Environment, v. 432, p. 344-349, 2012. LEAL, M. A. de A. Método de avaliação da estabilidade de materiais orgânicos por meio de emissões potenciais de CO2 e de NH4. Seropédica: Embrapa Agrobiologia, 2020. LEITA, L.; DE NOBILI, M. Water-soluble fractions of heavy metals during composting of municipal solid waste. Journal of Environmental Quality, v. 20, p. 73-78, 1991. LI, Y. X.; CHEN, T. B. Concentrations of additive arsenic in Beijing pig feeds and the residues in pig manure. Resources, Conservation & Recycling, v. 45, p. 356-367, 2005. LIANG, J.; YANG, Z.; TANG, L.; ZENG, G.; YU, M.; LI, X.; WU, H.; QIAN, Y.; LI, X.; LUO, Y. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere, v. 181, p. 281-288, 2017. LIM, S. L.; LEE, L. H.; WU, T. Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production, v. 111, p. 262-278, 2016. LIM, S. L.; WU, T. Y. Characterization of matured vermicompost derived from valorization of palm oil mill byproduct. Journal of Agricultural and Food Chemistry, v. 64, n. 8, p. 1761-1769, 2016. LIU, J.; LI, N.; ZHANG, W.; WEI, X.; TSANG, D. C.; SUN, Y.; LUO, X.; BAO, Z.; ZHENG, W.; WANG, J.; XU, G.; HOU, L.; CHEN, Y.; FENG, Y.Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, v. 248, p. 906-915, 2019a. LIU, J.; LUO, X.; SUN, Y.; TSANG, D. C.; QI, J.; ZHANG, W.; LI, N.; YIN, M.; WANG, J.; LIPPOLD, H.; CHEN, Y.; SHENG, G. Thallium pollution in China and removal technologies for waters: A review. Environment International, v. 126, p. 771-790, 2019b. LIU, J.; YIN, M.; LUO, X.; XIAO, T.; WU, Z.; LI, N.; WANG, J.; ZHANG, W.; LIPPOLD, H.; BELSHAW, N.; FENG, Y.; CHEN, Y. The mobility of thallium in sediments and source apportionment by lead isotopes. Chemosphere, v. 219, p. 864-874, 2019c. LIU, L.; GUO, X.; ZHANG, C.; LUO, C.; XIAO, C.; LI, R. Adsorption behaviours and mechanisms of heavy metal ions’ impact on municipal waste composts with different degree of maturity. Environmental Technology, v. 40:22, p. 2962-2976, 2018a. LIU, L.; GUO, X.; WANG, S.; LI, L.; ZENG, Y.; LIU, G. Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts. Ecotoxicology and Environmental Safety, v. 150, p. 270-279, 2018b. LÓPEZ-GONZÁLEZ, J. A.; SUÁREZ-ESTRELLA, F.; VARGAS-GARCÍA, M. C.; LÓPEZ, M. J.; JURADO, M. M.; MORENO, J. Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresource Technology, v. 175, p. 406-416, 2015. LU, Q.; ZHAO, Y.; GAO, X.,;WU, J.; ZHOU, H.; TANG, P.; WEI, Q.; WEI, Z. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting. Bioresource Technology, v. 256, p. 128-136, 2018. LU, X. M.; LU, P. Z.; CHEN, J. J.; ZHANG, H.; FU, J. Effect of passivator on Cu form transformation in pig manure aerobic composting and application in soil. Environmental Science and Pollution Research, v. R22, p. 14727-14737, 2015. LU, D. A.; WANG, L. X.; YAN, B. X.; OU, Y.; GUAN, J. N.; BIAN, Y.; ZHANG, Y. B. Speciation of Cu and Zn during composting of pig manure amended with rock phosphate. Waste Management, v. 34, n. 8, p. 1529-1536, 2014. LV, B.; XING, M.; YANG, J. Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresource Technology, v. 209, p. 397-401, 2016. LV, B.; XING, M.; YANG, J.; QI, W.; LI, Y. Chemical and spectroscopic characterization of water extractable organic matter during vermicomposting of cattle dung. Bioresource Technology, v. 132, p. 320-326, 2013. MAGUIRRE, M.; SLAVECK, J.; VIMPANY, I.; HIGGINSON, F. R.; PICKERING, W. F. Influence of pH on copper and zinc uptake by soil clays. Australian Journal of Soil Research, Melbourne, v. 19, p. 217-229, 1981. MAHESHWARI, S., Environmental impacts of poultry production. Poultry, Fisheries & Wildlife Sciences, v. 1, 2013. MAIA, C. M. B. F.; FUKAMACHI, C. R. B.; PICCOLO, S.; MANGRICH, A. S. EPR and DRIFT spectroscopic characterization of humic fractions during composting of sawdust and paper mill sludge. Brazilian Journal of Foresty Research, v. 32, p. 117-122, 2012. MAILLARD, L. C. A synthesis of humic matter by effect of amine acids on sugar reducing agents. Annales de Chimie, v. 5, p. 258-316, 1916. MALAVOLTA, E. Fertilizantes e seu impacto ambiental: micronutrientes e metais pesados, mitos, mistificação e fatos. São Paulo, Produquímica, 153 p. 1994. MAPA. Instrução Normativa n-15 de 17 de julho de 2001. Diário Oficial da União: seção 1, Brasília, DF, ano 138, 18 jul. 2001. MAPA. Projeções do Agronegócio: Brasil 2017/18 a 2027/28 projeções de longo prazo / Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Política Agrícola. – Brasília: MAPA/ACE, 2018. 112 p. Disponível em: <www.agricultura.gov.br>. Acesso em: 01 jan. 2019. MATHEW, B. B.; JAISHANKAR, M.; BIJU, V. G.; BEEREGOWDA, K. N. Role of bioadsorbents in reducing toxic metals. Journal of Toxicology, v. 2016, 2016. MATTIAS, J. L. Metais pesados em solos sob aplicação de dejetos líquidos de suínos em duas microbacias hidrográficas de Santa Catarina. 2006. Tese (Doutorado) – Universidade Federal de Santa Maria, Centro de Ciências Rurais, Pós-Graduação em Ciência do Solo, Santa Maria – RS, 2006. MARTIN, S. A.; MCCANN, M. A.; WALTMAN, W. D. Microbiological survey of Georgia poultry litter. Journal of Applied Poultry Research, v. 7, p. 90-98, 1998. MARTINS, C. A. S.; NOGUEIRA, N. O.; RIBEIRO, P. H.; RIGO, M. M.; CANDIDO, A. O. A dinâmica de metais-traço no solo. Revista Brasileira de Agrociência, v. 17, p. 383-391, 2011. MARTÍN-MATA, J.; LAHOZ-RAMOS, C.; BUSTAMANTE, M. A.; MARHUENDA-EGEA, F. C.; MORAL, R.; SANTOS, A.; SÁEZ, J. A.; BERNAL, M. P. Thermal and spectroscopic analysis of organic matter degradation and humification durin composting of pig slurry in different scenarios. Environmental Science and Pollution Research, v. 23, p. 17357-17369, 2016. MARTINEZ-BALMORI, D.; SPACCINI, R.; AGUIAR, N. O.; NOVOTNY, E. H.; OLIVARES, F. L.; CANELLAS, L.P. Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity. Journal of Agricultural and Food Chemistry, v. 62, p. 11412-11419, 2014. MATTOT, L. S.; RABIDEAU, A. J. ISOFIT - A program for fitting sorption isotherms to experimental data. Environmental Modelling & Software, v.23, p.670-676, 2008. MCBRIDE, M. B.; SPIERS, G. Trace elements content of selected fertilizers and dairy manures as determined by ICP-MS. Communications in Soil Science and Plant Analysis, v.32, p. 139-156, 2001. McGRATH, S.; MAGUIRE, R. O.; TACY, B. F.; KIKE, J. H. Improving soil nutrition with poultry litter application in low input forage systems. Agronomy Journal, v. 102, p. 48-54, 2009. MEHMOOD, A.; RAZA, W.; KIM, K. H.; RAZA, N.; LEE, S. S.; ZHANG, M.; LEE, J. H.; SARFRAZ, M. Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environmental Research, v. 168, p. 382-388, 2019. MEHTA, C. M.; PALNI, U.; FRANKE-WHITTLE, I. H.; SHARMA, A. K. Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, v. 34, p. 607-622, 2014. MENG, F.; YUAN, G.; WEI, J.; BI, D.; SIK OK, Y. Humic substances as a washing agent for Cd-contaminated soils. Chemosphere, v. 181, p. 461-467, 2017a. MENG, J.; WANG, L.; ZHONG, L.; LIU, X.; BROOKES, P.C.; XU, J.; CHEN, H. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure. Chemosphere, v. 180, p. 93-99, 2017b. MENZIES, N. W.; DONN, M. J.; KOPITTKE, P. M. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, v. 145, p. 121-130, 2007. MEURER, E. J.; RHENHEIMER, D.; BISSANI, C. A. Fenômenos de sorção em solos. In: MEURER, E. J. (ed.). Fundamentos de química do solo. Porto Alegre: Evangraf, 2010. p. 108-148. MIAOMIAO, H.; WENHONG, L.; XINQIANG, L.; DONGLEI, W.; GUANGMING, T. Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste Management, v. 29, p. 590-597, 2009. MIKKELSEN, R. L.; GILLIAM, J. W. Animal waste management and edge of field losses, In: STEELE, K. (Ed). Animal waste and the land-water interface. Boca Raton: Lewis Publishers, 1995. p. 57-68. MILLER, F. C. Composting as a process based on the control of ecologically selective factors. In: METTING JR., F. B. (org.). Soil Microbial Ecology, Applications in Agricultural and Environmental Management. New York: CRC Press, 1992. p. 515-544. MIRZA, N.; MAHMOOD, Q.; MAROOF, S. M.; PERVEZ, A.; SULTAN, S. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content. The Scientific World Journal, v. 2014, p. 1-11, 2014. MORAL, R.; PEREZ-MURCIA, M. D.; PEREZ-ESPINOSA, A.; MORENO-CASELLES, J.; PAREDES, C.; RUFETE, B. Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Management, v. 28, n. 2, p. 367–371, 2008. MORAL, R.; PAREDES, C.; BUSTAMANTE, M. A.; MARHUENDA-EGEA, F.; BERNAL, M. P. Utilisation of manure composts by high-value crops: Safety and environmental challenges. Bioresource Technology, v. 100, p. 5454-5460, 2009. MORALES-GUTIERREZ, F. J.; BARBOSA, J.; BARRON, D. Metabolic study of enrofloxacin and metabolic profile modifications in broiler chicken tissues after drug administration. Food Chemistry, v. 172, p. 30-39, 2015. MUDHOO, A.; RAMASAMY, D. L.; BHATNAGAR, A.; USMAN, M.; SILLANPÄÄ, M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. Ecotoxicology and Environmental Safety, v. 197, p. 110587, 2020. MUDHOO, A.; GARG, V. K.; WANG, S. Removal of heavy metals by biosorption. Environmental Chemistry Letters, v. 10, p. 109-117, 2012. MUHAMMAD, S.; ULLAH, R.; JADOON, I. A. K. Heavy metals contamination in soil and food and their evaluation for risk assessment in the Zhob and Loralai valleys, Baluchistan province, Pakistan. Microchemical Journal, v. 149, p. 103971, 2019. MUKHERJEE, S.; HALDER, G. A review on the sorptive elimination of fluoride from contaminated wastewater. Journal of Environmental Chemical Engineering, v. 6, p. 1257-1270, 2018. MUSTAFA, G.; KOMATSU, S. Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochim Biophys Acta., v. 1864, n. 8, p. 932-44, 2016. NAKASAKI, K.; SASAKI, M.; SHODA, M.; KUBOTA, H. Change in microbial numbers during thermophilic composting of sewage sludge with reference to CO2 evolution rate. Appl. Environmental Microbiology, v. 49, n. 1, p. 37-41, 1985. NARDI, S.; PIZZEGHELLO, D.; MUSCOLO, A.; VIANELLO, A. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, v. 34, p. 1527-1536, 2002. NEBBIOSO, A.; PICCOLO, A. Advances in humeomics: enhanced structural identification of humic molecules after size fractionation of a soil humic acid. Analytica Chimica Acta, v. 720, p.77-90, 2012. NEUMANN, D.; LICHTENBERGER, O.; GÜNTHER, D.; TSCHIERSCH, K.; NOVER, L. Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta, v. 194, p. 360, 1994. NGUYEN, T. A. H.; NGO, H. H.; GUO, W.S.; ZHANG, J.; LIANG, S.; YUE, Q.Y.; LI, Q.; NGUYEN, T. V. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology, v. 148, p. 574-585, 2013. NIST - National Institute of Standards and Technology. Standard Reference Materials - SRM 1573a - Tomato leaves. Baseline Trace Element Concentrations. Certificate Issue Date: 19 Oct 1993. NIST - National Institute of Standards and Technology. Standard Reference Materials - SRM 2709 - San Joaquin Soil. Baseline Trace Element Concentrations. Certificate Issue Date: 18 July 2003. NIST - National Institute of Standards and Technology. Standard Reference Materials -SRM 2782 - Industrial Sludge. Baseline Trace Element Concentrations. Certificate Issue Date: 09 September 2011. NOMEDA, S.; VALDAS, P.; CHEN, S. Y.; LIN, J. G. Variations of metal distribution in sewage sludge composting. Waste Management, v.28, n. 9, p. 1637-1644, 2008. NOVOTNY, E. H. Estudos espectroscópicos e cromatográficos de substâncias húmicas de solos sob diferentes sistemas de preparo. 2002. 215 f. Tese (Doutorado) - Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, 2002. OLAETXEA, M.; DE HITA, D.; GARCIA, C. A.; FUENTES, M.; BAIGORRI, R.; MORA, V. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant rootand shoot-growth. Applied Soil Ecology, v. 123, p. 521-537, 2018. OLIVEIRA, E. A. G.; LEAL, M. A. A.; ROCHA, M. S.; GUERRA, J. G. M.; RIBEIRO, R. L. D. Avaliação da estabilidade de materiais orgânicos por meio de incubação e da captura conjunta das emissões de CO2 e de NH3. Seropédica: Embrapa Agrobiologia, 2014. (Boletim de Pesquisa e Desenvolvimento nº 97). OLIVEIRA, M. C.; ALMEIDA, C. V.; ANDRADE, D. O.; RODRIGUES, S. M. M. Teor de Matéria Seca, pH e Amônia Volatilizada da Cama de Frango Tratada ou Não com Diferentes Aditivos. Revista Brasileira de Zootecnia, v. 32, n. 4, p. 951-954, 2003. OLIVEIRA, C. C.; LOPES, E. S.; BARBOSA, D. R.; PIMENTA, R. L.; SOBRINHO, N. M. B. A.; COELHO, S. M. O.; SOUZA, M. M. S.; COELHO, I. S. Occurrence of the colistin resistance mcr-1 gene in soils from intensive vegetable production and native vegetation. European Journal of Soil Science, v. 70, p. 876-881, 2019. ONWOSI, C. O.; IGBOKWE, V. C.; ODIMBA, J. N.; EKE, I. E.; NWANKWOALA, M. O.; IROH, I. N.; EZEOGU, L. I. Composting technology in waste stabilization: on the methods, challenges and future prospects. Journal of Environmental Management, v. 190, p. 140-157, 2017. ORTOLANI, E. L.; BRITO, L. A. B. Enfermidades Causadas pelo uso Inadequado de "Cama de frango" na Alimentação de Ruminantes. Revista do Conselho Federal de Medicina Veterinária, Suplemento Técnico, n. 22, 2001. ORRICO, A. C. A.; CENTURION, S. R.; FARIAS, R. M.; ORRICO JUNIOR, M. A. P.; GARCIA, R. G. Effect of different substrates on composting of poultry litter. Revista Brasileira de Zootecnia, v. 41, n. 7, p. 1764-1768, 2012. OVIEDO-RONDÓN, E. O.; Tecnologias para mitigar o impacto ambiental da produção de frangos de corte. Revista Brasileira de Zootecnia, v.37, p.239-252, 2008. OYEWUMI, O.; SCHREIBER, M. E. Using column experiments to examine transport of as and other trace elements released from poultry litter: implications for trace element mobility in agricultural watersheds. Environmental Pollution, v. 227, p. 223-233, 2017. PAIVA, E. C. R.; MATOS, A. T.; AZEVEDO, M. A.; BARROS, R. T. P.; COSTA, T. D. R. Avaliação da compostagem de carcaças de frango pelos métodos da composteira e de leiras estáticas aeradas. Engenharia Agrícola, v. 32, n. 5, p. 961-970, 2012. PARENTE, C. E. T. Exposição humana e contaminação ambiental por piretróides, antibióticos e metais pesados derivados da avicultura, RJ, Brasil. 2019. 128 f. Tese (Doutorado) - Programa de Pós-Graduação em Ciências Biológicas – (Biofísica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2019. PARENTE, C. E. T.; LINO, A. S.; ARRUDA JUNIOR, E. R.; ZONTA, E.; DORNELES, P.R.; TORRES, J.P.M.; MEIRE, R.O.; MALM, O. Multi-temporal accumulation and risk assessment of available heavy metals in poultry litter fertilized soils from Rio de Janeiro upland region. Environmental Monitoring and Assessment, v. 191, p. 28, 2019a. PARENTE, C. E. T.; AZEREDO, A.; VOLLÚ, R. E.; ZONTA, E.; AZEVEDO-SILVA, C. E.; BRITO, E. M. S.; SELDIN, L.; TORRES, J. P. M.; MEIRE, R. O.; MALM, O. Fluoroquinolones in agricultural soils: Multi-temporal variation and risks in Rio de Janeiro upland region. Chemosphere, v. 219, p. 409-417, 2019b. PARENTE, C. E. T.; BRUSDZENSKI, G. S.; ZONTA, E.; LINO, A. S.; AZEVEDO-SILVA, C. E.; DORNELES, P. R.; AZEREDO, A.; TORRES, J. P. M.; MEIRE, R. O.; MALM, O. Fluoroquinolones and trace elements in poultry litter: estimation of environmental load based on nitrogen requirement for crops. Journal of Environmental Science and Health, Part B, v. 55, p. 1087-1098, 2020. PARK, J. H.; CHOPPALA, G.; BOLAN, N.; CHUNG, J.; CHUASAVATHI, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil, v. 348, n. 1-2, p. 439–451, 2011. PAULINO, C. A. Antissépticos e desinfetantes. In: SPINOSA, H.; GORNIAK, S.; BERNARDI, M. Farmacologia aplicada a medicina veterinária. 4ª ed. Rio de Janeiro: Guanabara Koogan, 2006. p. 441-447. PHAENARK, C.; POKETHITIYOOK, P.; KRUATRACHUE, M.; NGERNSANSARUAY, C. Cd and Zn accumulation in plants from the Padaeng zinc mine area. International Journal of Phytoremediation, v. 11, p. 479-495, 2009. PEER, W. A.; BAXTER, I. R.; RICHARDS, E. L.; FREEMAN, J. L.; MURPHY, A. S. Phytoremediation and hyperaccumulator plants. In: TAMAS, M. J.; MARTINOIA, E. (eds.). Molecular biology of metal homeostasis and de toxification. Berlin: Springer-Verlag Berlin Heidelberg, 2005. p. 299-340. PEIXOTO, R. T. dos G. Compostagem: opção para o manejo orgânico do solo. Londrina: IAPAR, 1988. 48p. (IAPAR. Circular, 57). PEREIRA NETO, J. T. Tratamento, reciclagem e impacto ambiental de dejetos agrícolas. In: Conferência sobre Agricultura e Meio Ambiente. Viçosa: Anais... UFV-NEPEMA, 1994. p. 61-74. PEREIRA NETO, J. T. Manual de Compostagem. Belo Horizonte: UNICEF, 1996. p. 56. PICCOLO, A. Humic Substances in Terrestrial Ecosystems. Amsterdam: Elsevier Science B.V., 1996. PICCOLO, A. The supramolecular structures of humic substances. Soil Science, v. 166, p.810-832, 2001. PICCOLO, A. The Supramolecular Structure of Humic Substances: A Novel Understanding of Humus Chemistry and Implications in Soil Science. Advances in Agronomy, v. 75, p. 57-134, 2002. PICCOLO, A.; CONTE, P.; TRIVELLONE, E.; VAN LAGEN, B.;BUURMAN, P. Reduced heterogeneity of a lignite humic acid by preparative HPSEC following interaction with an organic acid. Characterization of size-separates by PYRGC-MS and 1H-NMR spectroscopy. Environmental Science & Technology, v. 36, p. 76-84, 2002. PLAZA CAZÓN, J.; VIERA, M.; DONATI, E.; GUIBAL, E. Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. Journal of Environmental Management, v. 129, p. 423-434, 2013. POTTER, P.; RAMANKUTTY, N.; BENNETT, E. M.; DONNER, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact, v. 14, p. 1–22, 2010. PRASAD, M. N. V.; STRZAŁKA, K. Impact of heavy metals on photosynthesis. Heavy Metal Stress in Plants. Berlin: Springer-Verlag Berlin Heidelberg, 1999. PRIMO, D. C.; MENEZES, R. S. C.; DA SILVA, T. O. Substâncias húmicas da matéria orgânica do solo: uma revisão de técnicas analíticas e estudos no nordeste brasileiro. Scientia Plena, v. 7, n. 5, p. 1-13, 2011. PROVENZANO, M. R.; MALERBA, A. D.; PEZZOLLA, D.; GIGLIOTTI, G. Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Management, v. 34, p. 653–660, 2014. QIAO, Y.; CROWLEY, D.; WANG, K.; ZHANG, H.; LI, H. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environmental Pollution, v. 206, p. 636–643, 2016. RAHMAN, M. S.; HOSSAIN, M. B.; BABU, S. M. O. F., RAHMAN, M.; AHMEDA, A. S. S.; JOLLYA, Y. N.; CHOUDHURYA, T. R.; BEGUMA, B. A.; KABIRA, J.; AKTERA, S. Source of metal contamination in sediment, their ecological risk, and phytoremediation ability of the studied mangrove plants in ship breaking area, Bangladesh. Marine Pollution Bulletin, v. 141, p. 137-146, 2019. RASCIO, N.; NAVARI-IZZO, F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so intersting? Plant Science, v. 180, n. 2, p.169-81, 2011. RICE, J. Humim. Soil Science, v. 166, p. 848-857, 2001. ROCHA, J. C.; ROSA, A. H. Substâncias húmicas aquáticas: interação com espécies metálicas. São Paulo: Editora Unesp, 2003. RODRIGUES, A. C. D.; AMARAL SOBRINHO, N. M. B.; SANTOS, F. S.; SANTOS, A. M.; PEREIRA, A. C. C.; LIMA, E. S. A. Biosorption of Toxic Metals by Water Lettuce (Pistia stratiotes) Biomass. Water, Air, & Soil Pollution, v. 228, p. 156, 2017. RODRIGUES, A. C. D. Avaliação do potencial da alface-d’água (Pistia stratiotes) na descontaminação de soluções contaminadas por metais pesados. Tese (Doutorado em Agronomia – Ciência do Solos). Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016. 156p. RODRIGUES, A. C. D.; SANTOS, A. M.; SANTOS, F. S.; PEREIRA, A. C. C.; SOBRINHO, N. M. B. A. Mecanismos de Respostas das Plantas à Poluição por Metais Pesados: Possibilidade de Uso de Macrófitas para Remediação de Ambientes Aquáticos Contaminados. Revista Virtual de Química, v. 8, n. 1, p. 262-276, 2016. ROSA, A. H.; SIMÕES, M. L.; OLIVEIRA, L. C.; ROCHA, J. C.; MARTIN-NETO, L.; MILORI, D. M. B. P. Multimethod study of the degree of humification of humic substances extracted from different tropical soil profiles in Brazil’s Amazonian region. Geoderma, v.127, p. 1-10, 2005. ROZMAN, U.; KALČÍKOVÁ, G.; MAROLT, G.; SKALAR, T.; GOTVAJN, A. Ž. Potential of waste fungal biomass for lead and cadmium removal: Characterization, biosorption kinetic and isotherm studies. Environmental Technology & Innovation, v. 18, p. 100742, 2020. RUŽIČIĆ, S. Sorption of metal ions on soils, batch experiments. Encyclopedia Water, 2019. SÁ, J. M.; JANTALIA, C. P.; TEIXEIRA, P. C.; POLIDORO, J. C.; BENITES, V. M.; ARAÚJO. A. P. Agronomic and P recovery efficiency of organomineral phosphate fertilizer from poultry litter in sandy and clayey soils. Pesquisa Agropecuária Brasileira, v. 52, n. 9, p. 786-793, 2017. SAGER, M. Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biology and Biochemistry, v. 39, p. 1383-1390, 2007. SAHA, G. C.; HOQUE, M. I. U.; MIAH, M. A. M.; HOLZE, R.; CHOWDHURY, D. A.; KHANDAKER, S.; CHOWDHURY, S. Biosorptive removal of lead from aqueous solutions onto Taro (Colocasia esculenta (L.) Schott) as a low cost bioadsorbent: Characterization, equilibria, kinetics and biosorption-mechanism studies. Journal of Environmental Chemical Engineering, v. 5, p. 2151-2162, 2017. SAID-PULLICINO, D.; KAISER, K.; GUGGENBERGER, G.; GIGLIOTTI, G. Changes in the chemical composition of water-extractable organic matter during composting: distribution between stable and labile organic matter pools. Chemosphere, v. 66, p. 2166–2176, 2007. SÁNCHEZ-MONEDERO, M. A.; ROIG, A.; CEGARRA, J.; BERNAL, M. P. Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology, v. 70, p. 193–201, 1999. SÁNCHEZ-MONEDERO, M. A.; ROIG, A.; PAREDES, C.; BERNAL, M. P. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of composting mixtures. Bioresource Technology, v. 78, p. 301-308, 2001. SANTOS, C. A.; AMARAL SOBRINHO, N. M. B.; GONÇALVES, R. G. M.; COSTA, T. G. A.; CARMOS, M. G. F. Toxic Metals in Broccoli by Combined Use of Acidity Correctives and Poultry Litter Under Mountain Tropical Conditions. Archives of Environmental Contamination and Toxicology, v. 80, p. 507-518, 2021. SANTOS, A. M.; SANTOS, F. S.; AMARAL SOBRINHO, N. M. B.; PEREIRA, A. C. C. Mecanismos de tolerância de plantas a metais pesados. In: FERNANDES, M. S., SOUZA, S. R.; SANTOS, L. A. (eds.). Nutrição Mineral de Plantas. Viçosa: Sociedade Brasileira de Ciência do solo, 2018. p. 649-670. SANTOS, H. C. Cinética de sorção e disponibilidade de fósforo em função do tempo de contato do fósforo com o solo. Tese (Doutorado em Agronomia). Universidade Federal da Paraíba, Areia, PB, 2010. 56p. SANTOS, F.S. Remediação da Contaminação com Metais Pesados Provenientes da Disposição de Resíduos Perigosos da Produção de Zinco. 2005. 85 f. Tese (Doutorado) - Curso de Pós-Graduação em Agronomia Ciência do Solo, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2005. SANTOS, T. M. B.; LUCAS JR, J. Utilização de resíduos da avicultura de corte para a produção de energia. In: ZOOTEC, 2003; Anais... CONGRESSO NACIONAL DE ZOOTECNIA, Uberaba, 2003. p. 131-141. SCHNEIDER, I. A. “Biossorção de Metais Pesados com a Biomassa de Macrófitos Aquáticos”. 1995. SCHNITZER, M. Humic Substances: chemistry and reactions. In: SCHNITZER, M.; KHAN, S. U. (orgs.). Soil Organic Matter. Amsterdam: Elsevier, 1978. p. 1-64. SCHNITZER, M. Soil organic matter – The next 75 years. Soil Science, v. 151, p. 41-58, 1991. SCHNITZER, M.; HANSEN, E. H. Organi-metallic interactions in soils: 8. An evaluation of methods for the determination os stability constants of metal-fulvic acid complexes. Soil Science, v. 109, p. 333-340, 1970. SENESI, N.; LOFFREDO, E. Soil humic substances. In: STEINBÜCHEL, A. (org.). Biopolymers. Hoboken: Wiley, 2005. SHAH, G. M.; UMM-E-AIMAN; IMRAN, M.; BAKHAT, H. F.; HAMMAD, H. M.; AHMAD, I.; RABBANI, F.; KHAN, Z. U. H. Kinetics and equilibrium study of lead bio‑sorption from contaminated water by compost and biogas residues. International Journal of Environmental Science and Technology, v. 16, p. 3839-3850, 2019. SHAH, S. B.; HUTCHISON, K. J.; HESTERBERG, D. L.; GRABOW, G. L.; HUFFMAN, R. L.; HARDY, D. H.; PARSONS, J. T. Leaching of nutrients and trace elements from stockpiled Turkey litter into soil. Journal of Environmental Quality, v. 38, p. 1-13, 2006a. SHAH, S.; WESTERMAN, P.; PARSONS, J. Poultry Litter Amendments. North Carolina: North Carolina Cooperative Extension Service, 2006b. SHARMA, V.; CANDITELLI, M.; FORTUNA, F.; CORNACCHIA, G. Processing of urban and agro-industrial residues by aerobic composting. Energy Conversion and Management, v. 38, p. 453-478, 1997. SHOBAA, V. N.; CHUDNENKO, K. V. Ion Exchange Properties of Humus Acids. Eurasian Soil Science, v. 47, n. 8, p. 761-771, 2014. SILVA, M. E. F.; DE LEMOS, L. T.; NUNES, O. C.; CUNHA-QUEDA, A. C. Influence of the composition of the initial mixtures on the chemical composition, physicochemical properties and humic-like substances content of composts. Waste Management, v. 34, p. 21-27, 2014. SILVA, F. C. (Ed.). Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Embrapa Informação Tecnológica, 2009. SILVA, I. R.; MENDONÇA. E. S. Matéria Orgânica do Solo. In: NOVAIS, R. F.; ALVAREZ V., V. H.; BARROS, N. F.; FONTES, R. L. F.; CANTARUTTI, R. B.; NEVES, J. C. L. (orgs.). Fertilidade do Solo. Viçosa: SBCS, 2007. p. 275-374. SILVEIRA, M. L. A.; ALLEONI, L. R. F. Copper adsorption in tropical oxisols. Brazilian Archives of Biology and Technology, v. 46, n. 4, p. 529-536, 2003. SIMPSON, A. J.; KINGERY, W. L.; HATCHER, P. G. The identification of plant derived structures in humic materials using three-dimensional NMR spectroscopy. Environmental Science & Technology, v. 37, p. 337-342, 2003. SIMS, J. T.; WOLF, D. C. Poultry waste management: Agricultural and environmental issues. Advances in Agronomy, v. 52, p. 1-82, 1994. SINGER, R. S.; WILLIAMS-NGUYEN, J. Human health impacts of antibiotic use in agriculture: a push for improved causal inference. Current Opinion in Microbiology, v. 19, p. 1-8, 2014. SINGH, J.; KALAMDHAD, A. S. Concentration and speciation of heavy metals during water hyacinth composting. Bioresource Technology, v. 124, p. 169-179, 2012. SINGH, B.; SINGH, B. P.; COWIE, A. L. Characterization and evaluation of biochars for their applications as a soil amendment. Australian Journal of Soil Research, v. 48, p. 516-525, 2010. SOARES, M. R. Coeficiente de distribuição (Kd) de metais pesados em solos do estado de São Paulo. 2004. Dissertação (Mestrado) - Universidade de São Paulo, Saõ Paulo, 2004. SONG, G.; NOVOTNY, E. H.; SIMPSON, A. J.; CLAPP, C. E.; HAYES, M. H. B. Sequential exhaustive extraction of a Mollisol soil, and character- izations ofhumic components, including humin, by solid and solu- tion state NMR. European Journal of Soil Science, v. 59, p. 505-516, 2008. SONG, G.; HAYES, M. H. B.; NOVOTNY, E. H.; SIMPSON, A. J. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid. Naturwissenschaften, v. 98, p. 7-13, 2011. SOM, M. -P.; LEMÉE, L.; AMBLÉS, A. Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresource Technology, v. 100, p. 4404-4416, 2009. SOUSA, F. F.; CARMO, M. G. F.; LIMA, E. S. A.; SOUZA, C. C. B.; AMARAL SOBRINHO, N. M. B. Lead and Cadmium Transfer Factors and the Contamination of Tomato Fruits (Solanum lycopersicum) in a Tropical Mountain Agroecosystem. Bulletin of Environmental Contamination and Toxicology, v. 105, p. 325-331, 2020. SOUZA, C. C. B.; AMARAL SOBRINHO, N. M. B.; LIMA, E. S. A.; LIMA, J. O.; CARMO, M. G. F.; GARCÍA, A. C. Relation between changes in organic matter structure of poultry litter and heavy metals-nutrients solubility during composting. Journal of Environmental Management, v. 247, p. 291-298, 2019. SOUZA, C. C. B.; BREDA, F. A. F.; LIMA, E. S. A.; GARCÍA, A. C.; AMARAL SOBRINHO, N. M. B. Substâncias húmicas no processo de compostagem: Gênese, caracterização e aplicação. Seropédica: Edur, 2021. No prelo. SPACCINI, R.; PICCOLO, A. Molecular Characterization of Compost at Increasing Stages of Maturity. 2. Thermochemolysis-GC-MS and 13C-CPMAS-NMR. Journal of Agricultural and Food Chemistry, v. 55, p. 2303-2311, 2007. SPACCINI, R.; PICCOLO, A. Spectroscopic Characterization of Compost at Different Maturity Stages. Clean, v. 36, n. 2, p. 152-157, 2008. SPACCINI, R.; PICCOLO, A. Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biology & Biochemistry, v. 41, p. 1164–1172, 2009. SPARKS, D. L. Fundamentals of Soil Chemistry. Encyclopedia Water, 2019. SPARKS, D.L. Environmental soil chemistry. San Diego: Academic Press, 1995. SPOSITO, G. The chemistry of soils. 2. ed. New York: Oxford University Press, 2008. SPOSITO, G. The chemistry of soils. New York: Oxford University Press, 1989. SPOSITO, G.; LUND, L. J.; CHANG, A. C. Trace metal chemistry in arid-zonefield soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci. Soc Am. J., v. 46, p. 260-264, 1982. STAUNTON, S. Usefulness and limitations of the distribution coefficient, Kd, in understanding and predicting the fate of trace metals in soil. In Symposium of environmental biogeochemistry. Annals… Wroclaw: Polish Society of Humic Substances (PTSH), 2001. STEELINK, C. Implications of elementar characteristics of humic substances. In: AIKEN, G. R.; McKNIGHT, D. M.; WERSHAW, R. L; MacCATHY, P. (eds.). Humic substances in soil, sediment, and water. Geochemistry, isolation and characterization. New York: Wiley, Interscience, 1985. STEPHENSON, A. H.; MCCASKEY, T. A.; RUFFIN, B. G. A. Survey of broiler litter composition and potential value as a nutrient resource. Biological Wastes, v. 34, p. 1-9, 1990. STEVENSON, F. J. Humus Chemistry: Genesis, Composition, Reactions, second ed. J. New York: Wiley, 1994. STEVENSON, F. J. Nature of divalent transition metal complexes of humic acids as revealed by a modified potentiometric titration method. Soil Science, v. 123, p. 10-17, 1977. STEVENSON, F. J. Stability Constants of Cu2+, Pb2+, and Cd2+ Complexes with Humic Acids. Soil Science Society of America Journal, v. 40, p. 665-672, 1976. STEVENSON, F. J.; GOH, K. M. Infrared spectra of humic acids and related substances. Geochimica et Cosmochimica Acta, v. 35, p. 471-483, 1971. STRASSER, R. J.; TSIMILLI-MICHAEL, M.; SRIVASTAVA, A. Analysis of the chlorophyll a fluorescence transient. In: PAPAGEORGIOU, G.C.; GOVINDJEE (eds.). Advances in photosynthesis and respiration, Vol. 19. Berlin: Springer, 2004. p. 321-362. STRASSER, B. J.; STRASSER, R. J. Measuring fast fluorescence transients to address environmental question: The JIP test. In: MATHIS, P. (ed.). Photosynthesis: From Light to Biosphere. Dordrecht: Kluwer Academic Publisher, vol. V, 1995. p. 977-980. STRAUS, E. L.; MENEZES L. V. T. Minimização de Resíduos, Congresso Brasileiro de Engenharia Sanitária e Ambiental, 17, Natal, 1993, Anais... Rio de Janeiro, ABES. 1993, v.2: p.212 - 225, 1993. SU, D.; WONG, J. W. C. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environment International, v. 29, n. 7, p. 895-900, 2004. SUD, D.; MAHAJAN, G.; KAUR, M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresource Technology, v. 99, p. 6017–6027, 2008. SUDHARSAN VARMA, V.; KALAMDHAD, A. S. Evolution of chemical and biological characterization during thermophilic composting of vegetable waste using rotary drum composter. International Journal of Environmental Science and Technology, v. 12, p. 2015-2024, 2014. SUÑE, N.; SÁNCHEZ, G.; CAFFARATTI, S.; MAINE, M. A. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environmental Pollution, v. 145, p. 467-473, 2007. SWIFT, R. Organic matter characterization. Madison: Soils Science Society of America, 1996. p. 1011-1069. SYEDA, H. I.; SULTAN, I.; RAZAVI, K. S.; YAP, P-S. Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review. Journal of Water Process Engineering, v. 46, p. 102446, 2022. SZCZYGŁOWSKA, M.; PIEKARSKA, A.; KONIECZKA, P.; NAMEISNIK, J. Use of Brassica plants in the phytoremediation and biofumigation processes. International Journal of Molecular Sciences, v. 12, p. 7760-7771, 2011. TAGLIAFERRO, G. V.; PEREIRA, P. H. F.; ÁLVARES, L.; LÚCIA, M.; PINTO, C. Adsorção de chumbo, cádmio e prata em óxido de nióbio (v) hidratado preparado pelo método da precipitação em solução homogênea. Quimíca Nova, v. 43, p. 101-105, 2011. TAM, N. F. Y.; WONG, Y. S. Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environmental Pollution, v. 94, p. 283-91, 1996. TAN, K. H.; Humic Matter in Soil and the Environment: Principles and Controversies. New York: CRC Press, 2014. TANDY, S.; BARBOSA, V.; TYE, A.; PRESTON, S.; PATON, G.; ZHANG, H.; MCGRATH, S. Comparison of different microbial bioassays to assess metal-contaminated soils. Environmental Toxicology and Chemistry, v. 24, p. 530-536, 2005. TANG, J.; ZHANG, L.; ZHANG, J.; REN, L.; ZHOU, Y.; ZHENG, Y.; LOU, L.; YANG, Y.; HUANG, H.; CHEN, A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment, v. 701, p. 134751, 2020. TMECC. Organic and biological properties - 05.08 respirometry. In: THOMPSON, W. H., LEEGE, P. B.; MILLNER, P. D.; WILSON, M. E. (eds.). Test Methods for the Examination of Composting and Compost United States Department of Agriculture, and Composting Council Research and Education Foundation, Holbrook, NY, 2002. p. 05.08-1-05.07-24. TORRENTS, A.; JAYASUNDERA, S.; SCHMIDT, W. J. Influence of the polarity of organic matter on the sorption of acetamide pesticides. Journal of Agriculture Food Chemistry, v. 45, p. 3320-3325, 1997. TSIMILLI-MICHAEL, M.; STRASSER, R. J. In vivo assessment of plants vitality: applications in detecting and evaluating the impact of Mycorrhization on host plants. In: VARMA, A. (ed). Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Dordrecht: Springer, 2008. p. 679-703. TUNALI AKAR, S.; ARSLAN, D.; ALP, T. Ammonium pyrrolidine dithiocarbamate anchored Symphoricarpus albus biomass for lead (II) removal: Batch and column biosorption study. Journal of Hazardous Materials, v. 227-228, p. 107-117, 2012. TURIEL, E.; PEREZ-CONDEA, C.; MARTIN-ESTEBAN, A. Assessment of the cross-reactivity and binding sites characterisation of a propazin imprinted polymer using the Langmuir-Freundlich isotherm. The Analyst, v. 128, p.137-141, 2003. URE, A. M.; QUEVAUVILLER, P.; MUNTAU, H.; GRIEPINK, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities. International Journal of Environmental Analytical Chemistry, v. 51, p. 135-151, 1993. USEPA – UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Method 3051A - Microwave assisted acid digestion of sediments, sludges, soils, and oils. Wasington, DC, 2007a. 30p. USEPA – UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Integrated Risk Information System (IRIS). Wasington, DC, 2007b. USEPA – UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Method 3050B - Acid digestion of sediments, sludges, and soils. Wasington, DC, 1996. 12p. USMAN, A. R. A.; MOHAMED, H. M. Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere, v. 76, p. 893-899, 2009. VALENTE, B. S.; XAVIER, E. G.; MORSELLI, T.; JAHNKE, D. S. Fatores que afetam o desenvolvimento da compostagem de resíduos orgânicos. Archivos de Zootecnia, v. 58, n. 1, p. 59-85, 2009. VAN DOORSLAER, X.V.; DEWULF, J.; LANGENHOVE, H.V.; DEMEESTERE, K. Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Science of the Total Environment, v. 500-501, p. 250-269. 2014. VAN KREVELEN, D. W. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel, v. 29, p. 269-284, 1961. VASQUES ANDRESSA REGINA. Caracterização e Aplicação de Adsorvente para Remoção de Corantes de Efluentes Têxteis em Batelada e Colunas de Leito Fixo. p. 153, 2008. VEEKEN, A.; NIEROP, K.; WILDE, V.D.; HAMELERS, B. Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresource Technology, v. 72, p. 33-41, 2000. VOLESKY, B. Biosorption and me. Water Research, v. 41, p. 4017-4029, 2007. VOLLÚ, R. E.; COTTA, S. R.; JURELEVICIUS, D.; LEITE, D. C. A.; PARENTE, C. E. T.; MALM, O.; MARTINS, D. C.; RESENDE, A. V.; MARRIEL, I. E.; SELDIN, L. Response of the Bacterial Communities Associated With Maize Rhizosphere to Poultry Litter as an Organomineral Fertilizer. Frontiers in Environmental Science, v. 6, p. 118. 2018. WAKSMAN, S. A. Contribution to our knowledge of the chemical nature and origin of humus: I. on the synthesis of the “Humus Nucleus”. Soil Science, v. 34, p. 43-70, 1932. WANDER, M. M.; TRAINA, S. J. Organic fractions from organically and conventionally managed soils: II Characterization. Soil Science Society of America Journal, v. 60, p.1087-1094, 1996. WANG, K.; HE, C.; YOU, S.; LIU, W.; WANG, W.; ZHANG, R.; QI, H.; REN, N. Transformation of organic matters in animal wastes during composting. Journal of Hazardous Materials, v. 300, p. 745-753, 2015a. WANG, X.; CUI, H.; SHI, J.; ZHAO, X.; ZHAO, Y.; WEI, Z. Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Bioresource Technology, v. 198, p. 395-402, 2015b. WANG, C.; TU, Q.; DONG, D.; STRONG, P. J.; WANG, H.; SUN, B.; WU, W. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J. Hazard. Mater. Journal of Hazardous Materials, v. 280, p. 409-416, 2014. WANG, H.; DONG, Y.; YANG, Y.; TOOR, G. S.; ZHANG, X. Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. Journal of Environmental Sciences, v. 25, p. 2435-2442, 2013a. WANG, L. M.; ZHANG, Y. M.; LIAN, J. J.; CHAO, J. Y.; GAO, Y. X.; FEI, Y.; ZHANG, L. L. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Bioresource Technology, v. 136, n. 5, p. 281-287, 2013b. WEI, Z.; XI, B.; ZHAO, Y.; WANG, S.; LIU, H.; JIANG, Y. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere, v. 68, p. 368-374, 2007. WEI, Y.; YUE, Z.; QIAN, L.; CAO, Z.; WEI, Z. Organophosphorus-degrading bacterial community during composting from different sources and their roles in phosphorus transformation. Bioresource Technology, v. 264, p. 277-284, 2018. WEI, L.; LI, J.; XUE, M.; WANG, S.; LI, Q.; QIN, K.; JIANG, J.; DING, J.; ZHAO, Q. Adsorption behaviors of Cu2+, Zn2+ and Cd2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS: Sorption properties and mechanisms. Bioresource Technology, v. 291, p. 121868, 2019. WHITESIDE, L.L. Poultry litter land application rate study for Nacagdoches county, Texas. 1996. 156 f. Tese (Doutorado) - Stephen F. Austin State University, Nacagdoches, 1996. WICHUK, K. M.; McCARTNEY, D. Compost stability and maturity evaluation - a literature review. Journal of Environmental Engineering and Science, v.8, n.5, p. 601-620, 2013. WINARSO, S.; PANDUTAMA, M. H.; PURWANTO, L. D. Effectivity of humic substance extracted from palm oil compost as liquid fertilizer and heavy metal bioremediation. Agriculture and Agricultural Science Procedia, v. 9, p. 146-157, 2016. WOOD, B. H.; WOOD, C. W.; YOO, K. H.; YOON, K. S.; DELANEY, D. P. Nutrient accumulation and nitrate leaching under broiler litter amended corn fields. Communication in Soil Science and Plant Analysis, v. 27, p. 2875-2894, 1996. WU, J.; ZHAO, Y.; ZHAO, W.; YANG, T.; ZHANG, X.; XIE, X.; CUI, H.; WEI, Z. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting. Bioresource Technology, v. 226, p. 191-199, 2017a. WU, S.; SHEN, Z.; YANG, C.; ZHOU, Y.; LI, X.; ZENG, G.; AI, S.; HE, H. Effects of C/N ratio and bulking agent on speciation of Zn and Cu and enzymatic activity during pig manure composting. International Biodeterioration & Biodegradation, v. 119, p. 429-436, 2017b. WU, J.; ZHAO, Y.; QI, H.; ZHAO, X.; YANG, T.; DU, Y.; ZHANG, H. Identifying the key factors that affect the formation of humic substance during different materials composting. Bioresource Technology, v. 244, p. 1193-1196, 2017c. XI, B. D.; ZHAO, X. Y.; HE, X. S.; HUANG, C. H.; TAN, W. B.; GAO, R. T.; ZHANG, H.; LI, D. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting[J]. Bioresource Technology, v. 219, p. 204-211, 2016. XIONG, X.; LI, Y. X.; YANG, M.; ZHANG, F. S.; LI, W. Increase in complexation ability of humic acids with the addition of ligneous bulking agents during sewage sludge composting. Bioresource Technology, v. 101, p. 9650-9653, 2010. XU, L.; LU, A. X.; WANG, J. H.; MA, Z. H.; PAN, L. G.; FENG, X. Y.; LUAN, Y. X. Accumulation status, sources and phytoavailablility of metals in greenhousevegetable production systems in Beijing, China. Ecotoxicology and Environmental Safety, v. 122, p. 214-220, 2015. YANG, F.; LI, G. X.; YANG, Q. Y.; LUO, W. H. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere, v. 93, p. 1393–1399, 2013. YANG, L.; HUANG, B.; HU, W.; CHEN, Y.; MAO, M. C.; YAO, L. P. The impact ofgreenhouse vegetable farming duration and soil types on phytoavailability ofheavy metals and their health risk in eastern China. Chemosphere, v. 103, p. 121-130, 2014. YANG, X.; LI, Q.; TANG, Z.; ZHANG, W.; YU, G.; SHEN, Q.; ZHAO, F. Heavy metal concentrations and arsenic speciation in animal manure compost in China. Wast Management, v. 64, p. 333-339, 2017. YANG, G.; ZHU, G.; LI, H.; HAN, X.; LI, J.; MA, Y. Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments. Journal of Integrative Agriculture, v. 17, n. 8, p. 1861-1870, 2018. YEH, T. Y.; LIN, C. L.; CHEN, C. W.; PAN, C. T. Heavy metal biosorption properties of four harvested macrophytes. Journal of Hazardous, Toxic, and Radioactive Waste, v. 15, p. 108-113, 2011. YOON, J.; CAO, X.; ZHOU, Q.; MA, L. Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, v. 368, p. 456-464, 2006. YUSUF, M. A.; KUMAR, D.; RAJWANSHI, R.; STRASSER, R.J.; TSIMILLIMICHAEL, M.; GOVINDJEE; SARIN, N. B. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica Acta, v. 1797, p. 1428-1438, 2010. ZACCHEO, P.; CABASSI, G.; RICCA, G.; CRIPPA, L. Decomposition of organic residues in soil: experimental technique and spectroscopic approach. Organic Geochemistry, v. 33, p. 327-345, 2002. ZANG, X.; VAN HEEMST, J. D. H.; DRIA, K. J.; HATCHER, P. G. Encapsulation of protein in humic acid from Histosols as an explanation for the oc- currence of organic nitrogen in soil and sediment. Organic Geochemistry, v. 31, p. 679-695, 2000. ZANIN, L.; TOMASI, N.; CESCO, S.; VARANINI, Z.; PINTON, R. Humic Substances Contribute to Plant Iron Nutrition Acting as Chelators and Biostimulants. Frontiers in Plant Science, v. 10, p. 1-10, 2019. ZAPATA, R. D. El compostaje y los índices para evaluar su estabilidad. In: MARÍN, M.; ARCILA, P. J. (orgs.). Materia Orgánica, Biología del Suelo y Productividad Agrícola. Armenia: Sociedad Colombiana de la Ciencia del Suelo, 2009. p. 33-42. ZHANG, H. Animal Manure Can Raise Soil pH. Production technology, Department of Plant and Soil Sciences, v. 10, n. 7, 1998. ZHANG, Y.; YUE, D.; MA, H. Darkening mechanism and kinetics of humification process in catechol-Maillard system. Chemosphere, v. 130, p. 40-45, 2015. ZHANG, L.; SUN, X. Addition of fish pond sediment and rock phosphate enhances the composting of green waste. Bioresource Technology, v. 233, p. 116-126, 2017. ZHANG, Z.; ZHAO, Y.; YANG, T.; WEI, Z.; LI, Y.; WEI, Y.; CHEN, X.; WANG, L. Effects of exogenous protein-like precursors on humification process during lignocellulose-like biomass composting: Amino acids as the key linker to promote humification process. Bioresource Technology, v. 291, p. 121882, 2019. ZHAO, S. L.; SHANG, X. J.; DUO, L. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. Environmental Science and Pollution Research, v. 20, n. 2, p. 967-975, 2013. ZHELJAZKOV, V. D.; WARMAN, P. R. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops. Environmental Pollution, v. 131, p. 187-195, 2004. ZHOU, Y.; SELVAM, A.; WONG, J. W. C. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresource Technology, v. 168, p. 229-234, 2014. ZIECHMANN, W. Humic substances. Mannheim: George August Universität Göttingen, Bibliographischer Institut, Wissenschaftsverlag, 1994. ZUCCONI, F.; DE BERTOLDI, M. Compost specifications for the production and characterization of compost from municipal solid waste. In: DE BERTOLDI, M.; FERRANTI, M. P.; L’HERMITE, P.; ZUCCONI, F. (orgs.). Compost: Production, Quality and Use. Barking: Elsevier, 1987. p. 30-50. | por |
dc.subject.cnpq | Agronomia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/72576/2021%20-%20Camila%20da%20Costa%20Barros%20de%20Souza.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6428 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-03-17T14:37:13Z No. of bitstreams: 1 2021 - Camila da Costa Barros de Souza.pdf: 4606760 bytes, checksum: c87ad7c826bb13676d5c630c0ca35090 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-03-17T14:37:13Z (GMT). No. of bitstreams: 1 2021 - Camila da Costa Barros de Souza.pdf: 4606760 bytes, checksum: c87ad7c826bb13676d5c630c0ca35090 (MD5) Previous issue date: 2021-09-13 | eng |
Appears in Collections: | Doutorado em Agronomia - Ciência do Solo |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021 - Camila da Costa Barros de Souza.pdf | 2021 - Camila da Costa Barros de Souza | 4.5 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.