Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11067
Full metadata record
DC FieldValueLanguage
dc.creatorAssunção, Shirlei Almeida
dc.date.accessioned2023-11-19T21:59:18Z-
dc.date.available2023-11-19T21:59:18Z-
dc.date.issued2020-02-18
dc.identifier.citationASSUNÇÃO, Shirlei Almeida. Caracterização química e funcional da matéria orgânica do solo e frações e formas de fósforo em diferentes sistemas de uso do solo. 2020. 60 f. Tese (Doutorado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11067-
dc.description.abstractDue to its importance in soils with a tropical climate, organic matter is considered an important indicator of soil quality. In addition to having a direct influence on the phosphorus (P) soil availability (P), especially in oxidic soils. The aim of this study was to evaluate changes in the chemical and functional structure of soil organic matter (SOM) and to evaluate how phosphorus forms depend on the soil mineralogy and the land use forms. Three systems were studied: no-tillage system (SPD), conventional tillage system (SPC) and permanent pasture (PA or P). An adjacent forest area was used as a natural soil condition. Total organic carbon (COT), oxidizable carbon determinate with potassium permanganate, total organic carbon (EstCOT) and total nitrogen (EstN) stocks, SOM chemical and densimetric fractions, natural 13C abundance were quantified, spectroscopic characterization using 13C-NMR CP / MAS in the humic acid (HA) fraction; phosphorus in equilibrium solution (P-rem), available phosphorus (PD), total phosphorus (PT) and 31P-NMR CP / MAS in humic acid (AH), in addition to the forms of iron and aluminum: soluble iron (Fe-S), iron dithionite (Fe-D), aluminum dithionite (Al-D), iron oxalate (Fe-O) and aluminum oxalate (Al-O). The results showed that in the forest area (F) high levels organic C (chemical and densimetric fractions) were quantified in superficial layer, and predominantly aliphatic HA were quantified. In SPD, despite the constant supply of biomass to the soil, there is a low occurrence of aliphatic structures in HA, indicating greater carbon mineralization. In the pasture area, there is the HA formation similar to those observed in the forest area. In the SPC, less incorporation of chemical and densimetric fractions, TOC and TN stock and the HA formation were found to be structurally different compared to the others. areas. It is possible to affirm that the more stabilized systems in tropical climate provide the formation of HA with compositional and structural similarity regardless of the carbon origin (C3 and C4). In SPD and SPC areas structurally different HA were observed in comparison to pasture areas and F. The results of Chapter II show that in the pasture area, the highest levels of iron forms (low and high crystallinity) were quantified. Higher levels of available P were quantified in the SPD and pasture area in all layers and higher levels of total phosphorus in 0-0.05 m layer, due to the higher toers of organic matter. The levels of P-Rem were low and similar in all areas, indicating a high buffer power of the soil. There was no relationship between P availability and soil Fe and Al forms. The spectra of 31P-NMR CP / MAS in the AH fraction showed a predominance of organic forms of P. The use with pasture favored the accumulation of P- diester. In the forest area there was the incorporation of nucleotides like sugars and in the areas of SPC and SPD, the structures of P-monoestrus accumulated in greater quantity. The higher cultivation intensity seems to favor the more recalcitrant organic P structures, indicating, therefore, that the cultivation systems with SPD and SPC provide the maintenance of less labile P form. The results of this study indicate that the use of the soil modifies the chemical and functional height of the SOM and the forms of Fe and Al, however there was no relationship between the forms of Fe and Al with the availability of P.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectFrações densimétricaspor
dc.subjectSubstâncias húmicaspor
dc.subjectBalanço de carbonopor
dc.subjectClima tropicalpor
dc.subject13C-RMN CP/MASpor
dc.subjectSoil organic mattereng
dc.subjectHumic substanceseng
dc.subjectCarbon balanceeng
dc.subjectTropical climateeng
dc.subjectWeatheringpor
dc.titleCaracterização química e funcional da matéria orgânica do solo e frações e formas de fósforo em diferentes sistemas de uso do solopor
dc.title.alternativeChemical and functional characterization of soil organic matter and fractions and forms of phosphorus in different land use systemseng
dc.typeTesepor
dc.contributor.advisor1Pereira, Marcos Gervasio
dc.contributor.advisor1ID874.292.767-68por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3657759682534978por
dc.contributor.advisor-co1García, Andrés Caldérin
dc.contributor.advisor-co2Rosset, Jean Sérgio
dc.contributor.referee1Pereira, Marcos Gervasio
dc.contributor.referee2Campos, David Vilas Boas de
dc.contributor.referee3Torres, José Luiz Rodrigues
dc.contributor.referee4Alves, Bruno José Rodrigues
dc.contributor.referee5Loss, Arcângelo
dc.creator.ID077.002.186-76por
dc.creator.Latteshttp://lattes.cnpq.br/3592454473382052por
dc.description.resumoDevido a sua importância em solos de clima tropical, a matéria orgânica é considerada um importante indicador da qualidade do solo, influenciando na disponibilidade de fósforo (P) do solo, principalmente em solos oxídicos. O objetivo desse estudo foi avaliar as alterações na estrutura química e funcional da matéria orgânica do solo (MOS) e avaliar como as formas de fósforo em função da mineralogia do solo e das formas de uso. Foram estudados três sistemas: sistema plantio direto (SPD), sistema de preparo convencional (SPC) e pastagem permanente (PA ou P). Uma área de floresta adjacente a estas foi usada como condição natural do solo. Foram quantificados os teores de carbono orgânico total (COT), o carbono oxidável com permanganato de potássio, os estoques de carbono orgânico total (EstCOT) e nitrogênio total (EstN), as frações químicas e densimétricas da MOS, a abundância natural de 13C, caracterização espectroscópica com uso de 13C-RMN CP/MAS na fração ácido húmico (AH); fósforo remanescente (P-rem), fósforo disponível (PD), fósforo total (PT) e 31P-RMN CP/MAS no ácido húmico (AH), além das formas de ferro e alumínio: ferro solúvel (Fe-S), ferro ditionito (Fe-D),alumínio ditionito (Al-D), ferro oxalato (Fe-O) e alumínio oxalato (Al- O). Os resultados mostraram que na área de floresta (F) foram quantificados elevados teores de C orgânico em superfície (frações químicas e densimétricas), e AH predominantemente alifático. Na SPD, apesar do constante aporte de biomassa ao solo, observa-se baixa ocorrência de estruturas alifáticas nos AH, indicando maior mineralização do carbono. Na área de pastagem verifica-se a formação de AH semelhantes aos observados na área de F. Já no SPC constatou-se menor incorporação das frações químicas e densimétricas, estoque de COT e NT e a formação de AH distintos estruturalmente em comparação com as outras áreas. É possível afirmar que os sistemas pouco manejados e mais estabilizados em clima tropical propiciam a formação de AH com semelhança composicional e estrutural independente da origem do carbono (C3 e C4). Nas áreas de SPD e SPC, foram observados AH diferentes estruturalmente em comparação as áreas de pastagem e F. Os resultados do capítulo II demonstram que na área de uso com pastagem foram quantificados os maiores teores das formas de ferro (baixa e alta cristalinidade). Maiores teores de P disponível foram quantificados na área de SPD e de pastagem em todas as camadas e maiores teores de fósforo total nas camadas de 0-0,05 m, devido aos maiores toeres de matéria orgânica. Os teores de P- Rem foram baixos e semelhantes em todas as áreas, indicando um elevado poder tampão do solo. Não houve relação entre a disponibilidade de P e as formas de Fe e Al do solo. Os espectros de 31P-NMR CP/MAS na fração AH mostraram predomínio de formas orgânicas de P. O uso com pastagem favoreceu o acúmulo de P-diéster. Na área de F houve a incorporação de nucleotídeos tipo açúcares e nas áreas de SPC e SPD, as estruturas de P-monoéstrer se acumularam em maior quantidade. A maior intensidade de cultivo parece favorecer as estruturas de P orgânico mais recalcitrantes, indicando, portanto, que os sistemas de cultivo com SPD e SPC propiciam a manutenção de forma de P menos lábeis. Os resultados indicam que o uso do solo modifica a estrutura química e funcional da MOS e as formas de Fe e Al, porém não foi observada relação entre as formas de Fe e Al e a disponibilidade de P.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.references*** CAPÍTULO 1 *** ALVARES, C. A.; STAPES, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SP AROVEK, G. Koppen’ s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728. doi https://10.1127/0941-2948/2013/0507. 2014. AZIZ, I.; MAHMOOD, T.; ISLAM, K. R. Effect of long-term no-till and conventional tillage practices on soil quality. Soil & Tillage Research, v. 131, n. 7, p. 28-35. https://doi.org/10.1016/j.still.2013.03.002. 2015. BAES, A. U.; BLOOM, P. R. Diffuse reflectance and transmission fourier transform infrared (DRIFT) spectrocopy of humic and fulvic acids. Soil Science Society American Journal, v. 53, p. 695-700. doi https:// :10.2136/sssaj1989.03615995005300030008x. 1989. BEDROCK, C. N.; CHESHIRE, M. V.; CHUDEK, J. A.; GOODMAN, B. A.; SHAND, C. A. Use of 31P-NMR to study the forms of phosphorus in peat soils. Science of the Total Environment, v. 152, n. 1, p. 1-8, https://doi.org/10.1016/0048-96979490545-2. 1994. BENBI, D. K.; BRAR, K.; TOOR, A. S.; SINGH, P. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma, Amsterdam, v. 237- 238, n. 1, p. 149-158, 2015. BENITES, V. M.; MADARI, B.; MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo (Comunicado Técnico 16). Rio de Janeiro: Embrapa Solos. 2003. BLANCO‐MOURE, N.; GRACIA, R.; BIELSA, A. C.; LÓPEZ, M. V. Soil organic matter fractions as affected by tillage and soil texture under semiarid Mediterranean conditions. Soil and Tillage Research, v. 155, p. 381-389. https://doi.org/10.1016/j.still.2015.08.011. 2016. BONANOMI, G.; INCERTI, G.; GIANNINO, F.; MINGO, A.; LANZOTTI, V.; MAZZOLENI, S. Litter quality assessed by solid state 13C-NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biology and Biochemistry, v. 56, p. 40-48. https://doi.org/10.1016/j.soilbio.2012.03.003. 2013. BOURKE, D.; KURZ, I.; DOWDING, P.; O’REILLY, C.; TUNNEY, H.; DOODY, D. G.; JEFFREY, D. W. Characterisation of organic phosphorus in overland flow from grassland plots using 31P nuclear magnetic resonance spectroscopy. Soil Use and Management, v. 25, n. 3, p. 234-242, https://doi.org/10.1111/j.1475-2743.2009.00229.x. 2009. BUSATO, J. G.; CANELLAS, L. P.; RUMJANEK, V. M.; VELLOSO, A. C. X. Phosphorus in an Inceptsoil under long-term sugarcane. II - Humic acid analysis by NMR 31P. Revista Brasileira de Ciência do Solo, v. 29, p. 945, http://dx.doi.org/10.1590/S0100- 06832005000600012. 2005. CHIODEROLI, C. A. Consorciação de braquiárias com milho outonal em sistema plantio direto como cultura antecessora da soja de verão na integração agricultura-pecuária. 2010. (Mestrado em Agricultura) - Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, 2010. CONCEIÇÃO, P. C.; DIECKOW, J.; BAYER, C. Combined role of no-tillage and cropping systems in soil carbon stocks and stabilization. Soil and Tillage Research, v. 129, 4p. 0-47, https://doi.org/10.1016/j.still.2013.01.006. 2013. COSTA, E. A.; GOEDERT, W.; SOUSA, D. M. G. Qualidade de solo submetido a sistemas de cultivo com preparo convencional e plantio direto. Pesquisa Agropecuária Brasileira, v. 41, n.7, p.1185-1191, jul. 2006. CULMAN, S. W.; SNAPP, S. S.; FREEMAN, M. A.; SCHIPANSKI, M. E.; BENISTON, J.; LAL, R.; LEE, J. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Science Society of America Journal, v. 76, n. 2, p. 494-504. doi: https://https://10.2136/sssaj2011.0286. 2012. D’ANDRÉA, A. F.; SILVA, M. L. N.; CURI, N.; GUILHERME, L. R. G. Estoque de carbono e nitrogênio e formas de nitrogênio mineral em um solo submetido a diferentes sistemas de manejo. Pesquisa Agropecuária Brasileira, v. 39, p. 179-186. http://dx.doi.org/10.1590/S0100-204X2004000200012. 2004. DAVIS, W. M.; ERICKSON, C. L.; JOHNSTON, C. T.; DELFINO, J. J.; PORTER, J. E. Quantitative fourier transform infrared spectroscopic investigation of humic substance functional group composition. Chemosphere, v. 38, p. 2913-2928, 1999. DESHMUKH, A. P.; SIMPSON, A. J.; HADAD, C. M.; HATCHER, P. G. Insights into the structure of cutin and cutan from Agave americana leaf cuticle using HRMAS NMR spectroscopy. Organic Geochemistry, v. 36, p. 1072-1085. https://doi.org/10.1016/j.orggeochem.2005.02.005. 2005. DORADO, J.; ALMENDROS, G.; GONZÁLEZ-VILA, F. J. Response of humic acid structure to soil tillage management as revealed by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, v. 117, p. 56-63. https://doi.org/10.1016/j.jaap.2015.12.016. 2016. ELLERT, B. H.; BETTANY, J. R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal Soil Science, v. 75, p. 529-538. https://doi.org/10.4141/cjss95-075. 1995. EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análises de Solo. 2a ed. Rio de Janeiro: Embrapa, 212 p. 1997. ERHAGEN, B.; ÖQUIST, M.; SPARRMAN, T.; HAEI, M.; ILSTEDT, U.; HEDENSTRÖM, M.; NILSSON, M. B. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material. Global Change Biology, v. 19, n. 12, p. 3858-3871. https://doi.org/10.1111/gcb.12342. 2013. ESBENSEN, K. H.; GUYOT, D.; WESTAD, F.; HOUMOLLER, L. P. Multivariate data analysis: in practice: an introduction to multivariate data analysis and experimental design. Multivariate Data Analysis. 2002. FERRARI, E.; FRANCIOSO, O.; NARDI, S.; SALADINI, M.; DAL FERRO, N.; MORARI, F. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers. Journal of Molecular Structure, v. 998, n. 1-3, p. 216-224. https://doi.org/10.1016/j.molstruc.2011.05.035. 2011. GARCÍA, A. C.; DE SOUZA, L. G. A.; PEREIRA, M. G.; CASTRO, R. N.; GARCÍA- MINA, J. M.; ZONTA, E.; BERBARA, R. L. L. Structure-property-function relationship in humic substances to explain the biological activity in plants. Scientific Reports, v. 6, 20798. http://dx.doi.org/10.1038/srep20798. 2016. GOMES, T. M.; BERBARA, R, L, L.; PEREIRA, M, G.; SEGUNDO, S, U.; TAVARES, O. C. H.; ASSUNÇÃO, S. A.; ZONTA, E.; SOBRINHO, N. M. B. A.; GARCÍA, A. C. Effects of farmed managements in sandy soils on composition and stabilization of soil humic substances. Land Degradation & Development, v. 29, p. 68-79. https://doi.org/10.1002/ldr.2839. 2018. GUARDINI, R.; COMIN, J. J.; SCHIMITT, D. E.; TIECHER, T.; BENDER, M. A.; RHEINHEIMER, D. S.; MEZZARI, C. P.; OLIVEIRA, B. S.; GATIBONI, L. C.; BRUNETTO, G. Accumulation of phosphorus fractions in typic Hapludalf soil after long- term application of pig slurry and deep pig litter in a no-tillage system. Nutrient Cycling in Agroecosystems, v. 93, p. 215-225, https://doi.org/10.1007/s10705-012-9511-3. 2012. GUENET, B.; NEILL, C.; BARDOUX, G.; ABBADIE, L. Is there a linear relationship between priming effect intensity and the amount of organic matter input? Applied Soil Ecology, v. 46, p. 436-442. https://doi.org/10.1016/j.apsoil.2010.09.006. 2010. HAWKESD, G. E.; POWLSON, D. S.; RANDALL, E. W.; TATE, K. R. 31P nuclear magnetic resonance study of the phosphorus species in alkali extracts of soils from long-term fields experiments. Journal of Soil Science, v. 35, p. 35-45, https://doi.org/10.1111/j.1365- 2389.1984.tb00257.x. 1984. HICKMANN, C.; COSTA, L. M. Estoque de carbono no solo e agregados em Argissolo sob diferentes manejos de longa duração. Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, p. 1055-1061. http://dx.doi.org/10.1590/S1415-43662012001000004. 2012. IPCC. Intergovernmental Panel on Climate Change. Carbon and other biogeochemical cycles. Climate change: the physical science basis. contribution of Working Group I to the Fifth Assessment Report of the Cambridge University. Cambridge/New York: Cambridge University Press. 2013. JANTÁLIA, C. P.; RESCK, D. V. S.; ALVES, B. R. J.; ZOTARELLI, L.; URQUIAGA, S.; BODDEY, R. M. Tillage effect on Cstocks of a clayey Oxisol under a soybean-based croprotation in the Brazilian Cerrado region. Soil & Tillage Research, v. 95, p. 97-109. https://doi.org/:10.1016/j.still.2006.11.005. 2007. JOHNSON, C. E.; SMERNIK, R. J.; SICCAMA, T. G.; KIEMLE, D. K.; XU, Z.; VOGT, D. J. Using 13C nuclear magnetic resonance spectroscopy for the study of northern hardwood tissues. Canadian Journal of Forest Research, v. 35, p. 1821-1831. https://doi.org/10.1139/x05-122. 2005. KANG, X.; HAO, Y.; LI, C.; CUI, X.; WANG, J.; RUI, Y.; NIU, H.; WANG Y. Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China. Journal Soils Sediments, v. 11, p. 562-576. https://doi.org/10.1007/s11368-011-0339- 2. 2011. KOTZÉ, E.; LOKE, P. F.; AKHOSI-SETAKA, M. C.; DU PREEZ, C. C. Land use change affecting soil humic substances in three semi-arid agro-ecosystems in South Africa. Agriculture, Ecosystems & Environment, v. 216, p. 194-202. https://doi.org/10.1016/j.agee.2015.10.007. 2016. LIU, S.; ZHANG, X.; LIANG, A.; ZHANG, J.; MÜLLER, C.; CAI, Z. Ridge tillage is likely better than no tillage for 14-year field experiment in black soils: Insights from a 15N-tracing study. Soil & Tillage Research, v. 179, p. 38-46 https://doi.org/10.1016/j.still.2018.01.011. 2018. LOSS, A.; PEREIRA, M. G.; GIÁCOMO, S. G.; PERIN, A.; ANJOS, L. H. C. Agregação, carbono e nitrogênio em agregados do solo sob plantio direto com integração lavoura pecuária. Pesquisa Agropecuária Brasileira, v. 46, n. 10, p. 1269-1276, 2011. LOSS, A.; PEREIRA, M. G.; PERIN, A.; BEUTLER, S. J.; ANJOS, L. H. C. Oxidizable carbon and humic substances in rotation systems with brachiaria/livestock and pearl millet/no livestock in the Brazilian Cerrado. Spanish Journal of Agricultural Research, v. 11, p. 217- 231, 2013. MAO, J.; CAO, X.; OLK, D. C.; CHU, W.; SCHMIDT-ROHR, K. Advanced solid-state NMR spectroscopy of natural organic matter. Progress in Nuclear Magnetic Resonance Spectroscopy, v. 100, p. 17-51. https://doi.org/10.1016/j.pnmrs.2016.11.003. 2017. MARTINS, T.; SAAB, S. D. C.; MILORI, D. M. B. P.; BRINATTI, A. M.; ROSA, J. A.; CASSARO, F. A. M.; PIRES, L. F. Soil organic matter humification under different tillage managements evaluated by Laser Induced Fluorescence (LIF) and C/N ratio. Soil and Tillage Research, v. 111, n. 2, p. 231-235. https://doi.org/10.1016/j.still.2010.10.009. 2011. MAZURANA, M., FINK, J. R., CAMARGO, E., SCHMITT, C., ANDREAZZA, R., CAMARGO, F. A. O. Estoque de carbono e atividade microbiana em sistema de plantio direto consolidado no Sul do Brasil. Revista de Ciências Agrárias, v. 36, n. 3, p. 288-296. 2013. NIEMEYER, J.; CHEN, Y.; BOLLAG, J. M. Characterization of humic acids, composts, and peat by diffuse reflectance fourier transform infrared spectroscopy. Soil Science Society of America Journal, v. 56, p. 135-140. https:// doi:10.2136/sssaj1992.03615995005600010021x. 1992. NOVOTNY, E. H.; BLUM, W. E. H.; GERZABEK, M. H.; MANGRICH, A. S. Soil management system effects on size fractionated humic substances. Geoderma, v. 92, p. 87- 109. https://doi.org/10.1016/S0016. 1999. OLIVEIRA, J. T.; MOREAU, A. M. S. S.; PAIVA, A. Q.; MENEZES, A. A.; COSTA, O. V. Características físicas e carbono orgânico de solos sob diferentes tipos de uso da terra. Revista Brasileira de Ciência do Solo, v. 32, p. 2821-2829, 2008. PÉREZ, M. G.; MARTIN-NETO, L.; SAAB, S. C.; NOVOTNY, E. H.; MILORI, D. M.; BAGNATO, V. S.; KNICKER, H. Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C-NMR, FTIR and fluorescence spectroscopy. Geoderma, v. 118 n. 3-4, p. 181-190. https://doi.org/10.1016/j.still.2010.10.009. 2004. PICOLLO, A.; SPACCINI, R.; DROSOS, M.; VINCI, G.; COZZOLINO, V. Chapter 4 - The Molecular Composition of Humus Carbon: Recalcitrance and Reactivity in Soils. The Future of Soil Carbon, p. 87-124. https://doi.org/10.1016/B978-0-12-811687-6.00004-3. 2018. PRESTON, C. M. Applications of NMR to soil organic matter analysis: history and prospects. Soil Science, v. 161, p. 144-166. 1996. RAZAFIMBELO, T. M.; ALBRECHT, A.; OLIVER, R.; CHEVALLIER, T.; CHAPUIS- LARDY, L.; FELLER, C. Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems. Soil and Tillage Research, v. 98, p. 140-149. https://doi.org/10.1016/j.still.2007.10.012. 2008. ROSSET, S. J.; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM, L.; SARTO, M. V. M. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, v. 51, n. 9. http://dx.doi.org/10.1590/s0100-204x2016000900052. 2016. ROSSET, S. J.; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM, L.; SARTO, M. V. M.; SEIDEL, E. P. Estoque de carbono, propriedades químicas e físicas do solo em sistemas de manejo com diferentes tempos de implantação na Região Oeste do Paraná, Brasil. Semina: Ciências Agrárias, v. 35, n. 6. http://dx.doi.org/10.5433/1679- 0359.2014v35n6p3053. 2014. SÁ, J. C. M.; SÉGUY, L.; TIVET, F.; LAL, R.; BOUZINAC, S.; BORSZOWSKEI, R.; BRIEDIS, C.; SANTOS, J. B.; HARTMAN, D. C.; BERTOLINI, C. G.; ROSA, J.; FRIEDRICH, T. Carbon depletion by plowing and its restoration by no-till cropping systems in oxisols of subtropical and tropical agro-ecoregions in Brazil. Land degradation & Development, v. 26, p. 531-543. doi: https://doi.org/10.1002/ldr.2218. 2013. SANTOS, H. G.; JACOMINE, P. K. T.; DOS ANJOS, L. H. C.; DE OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; DE OLIVEIRA, J. B. Sistema Brasileiro de Classificação de Solos. 3a ed. 353 p. 2013. SARKER, T. C.; INCERTI, G.; SPACCINI, R.; PICCOLO, A.; MAZZOLENI, S.; BONANOMI, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biology and Biochemistry, v. 117, p. 175-184. https://doi.org/10.1016/j.soilbio.2017.11.011. 2018. SCOTT, D. T.; MCKNIGHT, D. M.; BLUNT-HARRIS, E. L.; KOLESAR, S. E.; LOVLEY, D. R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology, v. 32, n. 19, p. 2984-2989. https://doi.org 10.1021/es980272q. 1998. SHRESTHA, B. M.; SINGH, B. R.; FORTE, C.; CERTINI, G. Long-term effects of tillage, nutrient application and crop rotation on soil organic matter quality assessed by NMR spectroscopy. Soil Use and Management, v. 31, p. 358-366. https://doi.org/10.1111/sum.12198. 2015. SHRESTHA, B. M.; CERTINI, G.; FORTE. C.; SINGH, B. R. Soil organic uses in a mountain Water shed of Nepal. Soil Science Society of America Journal, v. 72, p. 1563- 1569. https://doi.org 10.2136/sssaj2007.0375. 2008. SIQUEIRA NETO, M., DE CÁSSIA PICCOLO, M., COSTA JUNIOR, C., CLEMENTE CERRI, C., BERNOUX, M. Emissão de gases do efeito estufa em diferentes usos da terra no bioma Cerrado. Revista Brasileira de Ciência do Solo, v. 35, n. 1. 2011. SISTI, C. P. J.; SANTOS, H. P.; KOHHANN, R.; ALVES, B. J. R.; URQUIAGA, S.; BODDEY, R. M. Change in carbon and nitrogen stocks under 13 years of conventional or zero tillage in southern Brazil. Soil Tillage Research, Amsterdam, v. 76, p. 39-58. https://doi.org/10.1016/j.still.2003.08.007. 2000. SMITH, B. N.; EPSTEIN, S. Two categories of 13C/12C ratios for higher plants. Plant Physiology, v. 47, 3p. 80-384. https://doi.org/10.1104/pp.47.3.380. 1971. SOARES, B. E. M.; SILVA, I. R. R. F.; NOVAIS, Y.; HU, K.; SCHMIDT-ROHR. Alterations in Molecular Composition of Humic Substances from Eucalypt Plantation Soils Assessed by 13C-NMR Spectroscopy. Soil Science Society. American Journal. v. 77, p. 293-306. https://doi.org/10.2136/sssaj2011.0070. 2012. SOHI, S. P.; MAHIEU, N.; ARAH, J. R. M.; POWLSON, D. S.; MADARI, B.; GAUNT, J. L. A procedure for isolating soil organic matter fractions suitable for modeling. Soil Science Society American Journal, v. 65, p. 1121-1128. doi: https://10.2136/sssaj2001.6541121x. 2001. SONG, G.; NOVOTNY, E. H.; MAO, J. D.; HAYES, M. H. Characterization of transformations of maize residues into soil organic matter. Science of the Total Environment, v. 579, 1p. 843-1854. https://doi.org/10.1016/j.scitotenv.2016.11.169. 2017. SONG, G.; NOVOTNY, E. H.; SIMPSON, A. J.; CLAPP, C. E.; HAYES, M. H. B. Sequential exhaustive extraction of a mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. European Journal of Soil Science, v. 59, p. 505-516. https://doi.org/10.1111/j.1365‐2389.2007.01006. x. 2008. SPACCINI, R.; MBAGWU, J. S. C.; CONTE, P.; PICCOLO, A. Changes of humic substances characteristics from forested to cultivated soils in Ethiopia. Geoderma, v. 132, p. 9-19. https://doi.org/10.1016/j.geoderma.2005.04.015. 2006. SPACCINI, R.; PICCOLO, A. Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biol Biochemistry, v. 41, p. 1164-1172. https://doi.org/10.1016/j.soilbio.2009.02.026. 2009. SPAIN, A. V.; TIBBETT, M.; RIDD, M.; MCLAREN, T. I. Phosphorus dynamics in a tropical forest soil restored after strip mining. Plant and Soil, p. 1-19, https://doi.org/10.1007/s11104-018-3668-8. 2018. STEVENSON, F. J. Humus chemistry: genesis, composition, reactions. 2nd ed. New York: J. Wiley, p. 496, 1994. SWIFT, R. S. Organic matter characterization. In: SPARKES, D. Methods of soil analysis, III Chemical methods. Soil Science Society of America Journal, p. 1018-1020. 1996. TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análises de solo, plantas e outros materiais. Universidade Federal do Rio Grande do Sul, Porto Alegre: Boletim Técnico 5. 2a ed, 174p. 1995. TELES, A. P. B.; RODRIGUES, M.; BEJARANO HERRERA, W. F.; SOLTANGHEISI, A.; SARTOR, L. R.; WITHERS, P. J. A.; PAVINATO, P. S. Do cover crops change the lability of phosphorus in a clayey subtropical soil under different phosphate fertilizers? Soil Use and Management, v. 33, n. 1, p. 34-44, https://doi.org/10.1111/sum.12327. 2017. THOMSEN, M.; LASSEN, P.; DOBEL, S.; HANSEN, P. E.; CARLSEN, L.; MOGENSEN, B. B. Characterisation of humic materials of different origin: a multivariate approach for quantifying the latent properties of dissolved organic matter. Chemosphere, v. 49, n. 10, p. 1327-1337. 2002. ULLOA, L. M.; VELDKAMP, E.; DE KONING G. H. J. Soil Carbon Stabilization in Converted Tropical Pastures and Forests Depends on Soil Type. Soil Science Society American Journal, v. 69, p. 1110-1117.2005. https://doi:10.2136/sssaj2004.0353. 2005. VON LÜTZOW, M.; KÖGEL‐KNABNER, I.; LUDWIG, B.; MATZNER, E.; FLESSA, H.; EKSCHMITT, K.; KALBITZ, K. Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. Journal of Plant Nutrition and Soil Science, v. 171, n. 1, p. 111-124. https://doi.org/10.1002/jpln.200700047. 2008. WEIL, R. R.; ISLAM, K. R; STINE, M. A.; GRUVER, J. B.; SAMSON-LIEBIG, S. E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture, v. 18, n. 1, p. 3-17 https://doi:10.1079/ajaa2003003. 2003. WIESMEIER, M.; SPÖRLEIN, P.; GEUß, U.; HANGEN, E.; HAUG, S.; REISCHL, A.; KÖGEL‐KNABNER, I. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology, v. 18, n. 7, p. 2233-2245. https://doi.org/10.1111/j.1365-2486.2012.02699.x. 2012. YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, v. 19, p. 1467-1476. https://doi.org/10.1080/00103628809368027. 1998. ZAMUNER, E. C.; PICONE, L. I.; ECHEVERRIA, H. E. Organic and inorganic phosphorus in Mollisol soil under different tillage practices. Soil & Tillage Research, Amsterdam, v. 99, p. 131-138, 2008. *** CAPÍTULO 2 *** ALVARES, C. A.; STAPES, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SP AROVEK, G. Koppen’ s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728. doi https://10.1127/0941-2948/2013/0507. 2014. ALVAREZ, V.; V. H.; FONSECA, D. M. Definição de doses de fósforo para determinação da capacidade máxima de adsorção de fosfatos e para ensaios em casa de vegetação. Revista Brasileira de Ciência do Solo, v. 14, p. 49-55. 1990. ASSUNÇÃO, S. A.; PEREIRA, M. G.; ROSSET, J. S.; BERBARA, R. L. L.; GARCÍA, A. C. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Science of The Total Environment, v. 658, p. 901-911, https://doi.org/10.1016/j.scitotenv.2018.12.271. 2019. BEDROCK, C. N.; CHESHIRE, M. V.; CHUDEK, J. A.; GOODMAN, B. A.; SHAND, C. A. Use of 31P-NMR to study the forms of phosphorus in peat soils. Science of the Total Environment, v. 152, n. 1, p. 1-8, https://doi.org/10.1016/0048-96979490545-2. 1994. BOURKE, D.; KURZ, I.; DOWDING, P.; O’REILLY, C.; TUNNEY, H.; DOODY, D. G.; JEFFREY, D. W. Characterisation of organic phosphorus in overland flow from grassland plots using 31P nuclear magnetic resonance spectroscopy. Soil Use and Management, v. 25, n. 3, p. 234-242, https://doi.org/10.1111/j.1475-2743.2009.00229.x. 2009. BRAGA, J. M.; DEFELIPO, B. V. Determinação espectrofotométrica de fósforo em extratos de solo e material vegetal. Revista Ceres, v. 21, p. 73-85. 1974. BUSATO, J. G.; CANELLAS, L. P.; RUMJANEK, V. M.; VELLOSO, A. C. X. Phosphorus in an Inceptsoil under long-term sugarcane. II - Humic acid analysis by NMR 31P. Revista Brasileira de Ciência do Solo, v. 29, p. 945, http://dx.doi.org/10.1590/S0100- 06832005000600012. 2005. CADE-MENUN, B. J.; PRESTON, C. M. A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Science, v. 161, n. 11, p. 770-785. 1996. CAMPOS, J. B.; SILVEIRA FILHO, L. Série Ecossistema Paranaenses – Floresta Estacional Semidecidual. Governo do Estado do Paraná, 5, 8p. 2010. CARNEIRO, L. F.; VILELA DE RESENDE, A.; FURTINI NETO, A. E.; LOPES SANTOS, J. Z.; CURI, N.; PEREIRA REIS, T. H.; RIBEIRO DO VALLE, L. A. Soil phosphorus fractions in response to phosphate fertilization in an Oxisol under different land uses. Revista Brasileira de Ciência do Solo, v. 35, p. 483-491, http://dx.doi.org/doi:180218547017. 2011. CORNEJO, J.; HERMOSÍN, M. C. Interaction of humic substances in soil clays. In: Piccolo, A. Humic substances in terrestrial ecosystems. Elsevier, v. 5, p. 95-624, https://doi.org/10.1016/B978-044481516-3/50016-5. 1996. 50 CORNELL, R. M.; SCHWERTMNN, U. The Iron Oxides: structure, properties, reactions, occurrence and uses. John Wiley & Sons, 573p. 2003. COSTA, F. D. S.; ALBUQUERQUE, J. A.; BAYER, C.; FONTOURA, S. M. V.; WOBETO, C. Physical properties of a south brazilian oxisol as affected by no-tillage and conventional tillage systems. Revista Brasileira de Ciência do Solo, v. 27, n. 3, p. 527-535. 2003. COSTA, J. M.; ROSA JUNIOR, E. J.; ROSA, Y. B.; SOUZA, L. C. F.; ROSA, C. B. J. Latossol chemical and physical attributes affected by tillage system and gypsum effect. Acta Scientiarum. Agronomy, v. 29, n. 5, p. 701-708, http://dx.doi.org/10.4025/actasciagron.v29i5.751. 2007. DALCHIAVON, F. C.; CARVALHO, M. D. P.; ANDREOTTI, M.; MONTANARI, R. Spatial variability of the fertility attributes of Dystropheric Red Latosol under a no tillage system. Revista Ciência Agronômica, v. 43, p. 453-461, http://dx.doi.org/10.1590/S1806- 66902012000300006. 2012. DEISS, L.; DE MORAES, A.; DIECKOW, J.; FRANZLUEBBERS, A. J.; GATIBONI, L. C.; LANZI SASSAKI, G.; CARVALHO, P. C. Soil phosphorus compounds in integrated crop- livestock systems of subtropical Brazil. Geoderma, v. 274, p. 88-96, https://doi.org/10.1016/j.geoderma.2016.03.028. 2016. DIECKOW, J.; BAYER, C.; CONCEIÇÃO, P. C.; ZANATTA, J. A.; MARTIN‐NETO, L.; MILORI, D. B. M.; HERNANI, L. C. Land use, tillage, texture and organic matter stock and composition in tropical and subtropical Brazilian soils. European Journal of Soil Science, v. 60, n. 2, p. 240-249, https://doi.org/10.1111/j.1365-2389.2008.01101.x. 2009. DONAGEMMA, G. K.; CAMPOS, D. V. B.; DE CALDERANO, S. B.; TEIXEIRA, W. G.; VIANA, J. H. M. Manual de Métodos de Análise de Solo - Revisada e ampliada. Brasília, DF: Embrapa, 3ed, 353. 2017. EBERHARDT, D. N.; SIQUEIRA VENDRAME, P. R.; BECQUER, T.; GUIMARÃES, M. D. F. Influence of soil texture and mineralogy on phosphorus retention in Cerrado oxisols under pasture. Revista Brasileira de Ciência do Solo, v. 32, n. 3, p. 1009-1016, http://dx.doi.org/10.1590/S0100-06832008000300010. 2008. GUARDINI, R.; COMIN, J. J.; SCHIMITT, D. E.; TIECHER, T.; BENDER, M. A.; RHEINHEIMER, D. S.; MEZZARI, C. P.; OLIVEIRA, B. S.; GATIBONI, L. C.; BRUNETTO, G. Accumulation of phosphorus fractions in typic Hapludalf soil after long- term application of pig slurry and deep pig litter in a no-tillage system. Nutrient Cycling in Agroecosystems, v. 93, p. 215-225, https://doi.org/10.1007/s10705-012-9511-3. 2012. GUARESCHI, R. F.; PEREIRA, M. G.; PERIN, A. Adsorption of P and forms of iron in no- tillage areas in the'Cerrado'biome. Acta Scientiarum. Agronomy, v. 37,1, p. 109-116, http://dx.doi.org/doi:10.4025/actasciagron.v37i1.17686. 2015. GHIDIN, A. A.; MELO, V. F.; LIMA, V. C.; LIMA, J. M. J. C. Topossequências de Latossolos originados de rochas basálticas no paraná. I - Mineralogia da fração argila. Revista Brasileira de Ciência do Solo, v. 30, p. 293-306, http://dx.doi.org/10.1590/S0100- 06832006000200010. 2006. HAWKESD, G. E.; POWLSON, D. S.; RANDALL, E. W.; TATE, K. R. 31P nuclear magnetic resonance study of the phosphorus species in alkali extracts of soils from long-term fields experiments. Journal of Soil Science, v. 35, p. 35-45, https://doi.org/10.1111/j.1365- 2389.1984.tb00257.x. 1984. HAYGARTH, P. M.; HINSINGER, P.; BLACKBURN, D. Organic phosphorus: potential solutions for phosphorus security. Plant and Soil, v. 427, p. 1-3, https://doi.org/10.1007/s11104-018-3675-9. 2018. INDA JUNIOR, A. V.; KÄMPF, N. Evaluation of pedogenic iron oxide extraction procedures with sodium dithionite-citrate-bicarbonate. Revista Brasileira de Ciência do Solo, v. 27, n. 6, p. 1139-1147, http://dx.doi.org/10.1590/S0100-06832003000600018. 2003. INDA JUNIOR, A. V.; TORRENT, J.; BARRÓN, V.; BAYER, C. Aluminum hydroxy- interlayered minerals and chemical properties of a subtropical brazilian oxisol under no-tillage and conventional tillage. Revista Brasileira de Ciência do Solo, v. 34, n. 1, p. 33-41, http://dx.doi.org/10.1590/S0100-06832010000100004. 2010. MAHARJAN, M.; MARANGUIT, D.; KUZYAKOV, Y. Phosphorus fractions in subtropical soils depending on land use. European Journal of Soil Biology, v. 87, p. 17-24, https://doi.org/10.1016/j.ejsobi.2018.04.002. 2018. MEHRA, O. P.; JACKSON, M. L. Iron oxide removal from soils and clays by a dithionite- citrate system buffered with sodium bicarbonate. In Clays and clay minerals. Pergamon. p. 317-327. 2013. MIKUTTA, R.; ZANG, U.; CHOROVER, J.; HAUMAIER, L; KALBITZ, K. Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms. Geochim Cosmochim Acta, v. 75, p. 313-554, https://doi.org //10.1021/es204471x. 2011. OKSANEN, J.; BLANCHET, F. G.; KINDT, R.; LEGENDRE, P.; MINCHIN, P. R.; O’HARA, R. B.; WAGNER, H. Vegan: Community ecology package. R Package Version, p. 117-118. 2011. OMOIKE. A.; CHOROVER. J. Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochim Cosmochim Acta, v. 70, p. 827-38. https://doi.org/10.1016/j.gca.2005.10.012. 2006. 2006. PEDROTTI, A.; FERREIRA, M. M.; CURI, N.; SILVA, M. L. N.; LIMA, J. M. D.; CARVALHO, R. Relationship between physical attributes, clay fraction mineralogy and aluminum forms in soil. Revista Brasileira de Ciência do Solo, v. 27, n. 1, p. 1-9, http://dx.doi.org/10.1590/S0100-06832003000100001. 2003. PEREIRA, M. G.; LOSS, A.; BEUTLER, S. J.; TORRES, J. L. R. Carbon, light organic matter and remaining phosphorus in different soil management systems. Pesquisa Agropecuária Brasileira, v. 45, p. 508-514. 2010. PICCIN, R.; KAMINSKI, J.; CERETTA, C. A.; TIECHER, T.; GATIBONI, L. C.; BELLINASO, R. J. S.; BRUNETTO, G. Distribution and redistribution of phosphorus forms in grapevines. Scientia Horticulturae, v. 218, p. 125-131, https://doi.org/10.1016/j.scienta.2017.02.023. 2017. POMBO, L. C. A.; KLAMT, E.; KUNRATH, L; GIANLUPPI, D. I. Identificação de óxidos de ferro na fração argila de Latossolo roxo. Revista Brasileira de Ciência do Solo, v. 6, n. l, p. 13-7, 1982. PRADO, P. I.; LEWINSOHN, T. M.; CARMO, R. L.; HOGAN, D. J. Multivariate ordering in ecology and its use in environmental sciences. Ambiente e Sociedade, v. 10, p. 69-83, http://dx.doi.org/10.1590/S1414-753X2002000100005. 2002. PRAKASH, D.; BENBI, D. K.; SAROA, G. S. Land-use effects on phosphorus fractions in Indo-Gangetic alluvial soils. Agroforestry Systems, v. 92, n. 2, p. 437-448, https://doi.org/10.1007/s10457-016-0061-6. 2018. RESENDE, J. C. F.; BUSTAMANTE, M. M. C.; MARKEWITZ, D., KLINK, C. A.; DAVIDSON, E. A. Phosphorus cycling in a small watershed in the Brazilian Cerrado: impacts of frequente burning. Biogeochemistry, v. 105, p. 105-118, https://doi.org/10.1007/s10533-010-9531-5. 2011. RHEINHEIMER, D. S.; ANGHINONI, I.; FLORES, A. Organic and inorganic phosphorus as characterized by phosphorus-31 nuclear magnetic resonance in subtropical soils under management systems. Communications in Soil Science and Plant Analysis, v. 33, n. 11-12, p. 1853-1871. https://doi.org/10.1081/CSS-120004827. 2002. SANTOS, H. G.; JACOMINE, P. K. T.; DOS ANJOS, L. H. C.; DE OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; DE OLIVEIRA, J. B. Sistema Brasileiro de Classificação de Solos. 3a ed. 353 p. 2013. SCHWERTMANN, U. Solubility and dissolution of iron oxides. Plant and Soil, v. 130, n. 1- 2, p. 1-25, https://doi.org/10.1007/BF00011851. 1991. SILVA NETO, L. D. F. D., INDA JUNIOR, A. V., BAYER, C., DICK, D. P., TONIN, A. T. Iron oxides in tropical and subtropical brazilian oxisols under long-term no-tillage. Revista Brasileira de Ciência do Solo, v. 32, n. 5, p. 1873-1881, http://dx.doi.org/10.1590/S0100- 06832008000500008. 2008. SOLOMONS, D.; LEHMANN, J.; MAMO, T.; FRITZSCHE, F.; ZECH, W. Phosphorus forms and dynamics as influenced by land use changes in the sub-humid Ethiopian highlands. Geoderma, v. 105, p. 21-48, https://doi.org/10.1016/S0016-7061(01)00090-8. 2002. SOUZA, R. F. D.; FAQUIN, V.; LIMA SOBRINHO, R. R.; OLIVEIRA, E. A. B. D. Influence of cattle manure and limestone on residual effects of phosphorus fertilizer in Brachiaria brizantha grown after common bean. Revista Brasileira de Ciência do Solo, v. 34, n. 1, p. 143-150. http://dx.doi.org/10.1590/S0100-06832010000100015. 2010. SPAIN, A. V.; TIBBETT, M.; RIDD, M.; MCLAREN, T. I. Phosphorus dynamics in a tropical forest soil restored after strip mining. Plant and Soil, p. 1-19, https://doi.org/10.1007/s11104-018-3668-8. 2018. SUMMAN, M.; AMELUNG, W.; HAUMAIER, L.; ZECH, W. Climatic effects on organic phosphorus in the North American Great Plants identified by phosphorus-31 nuclear magnetic resonance. Soil Science America Journal, v. 62, p. 1580-1586, doi:10.2136/sssaj1998.03615995006200060015x. 1998. SWIFT, R. S. Organic matter characterization. In: SPARKES, D. Methods of soil analysis, III Chemical methods. Soil Science Society of America Journal, p. 1018-1020. 1996. TCHIENKOUA, M.; ZECH, W. Chemical and spectral characterization of soil phosphorus under three land uses from an Andic Palehumult in West Cameroon. Agriculture, Ecosystems & Environment, v. 100, p. 193-200, https://doi.org/10.1016/S0167- 8809(03)00195-6. 2003. TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análises de solo, plantas e outros materiais. Universidade Federal do Rio Grande do Sul, Porto Alegre: Boletim Técnico 5. 2a ed, 174p. 1995. TELES, A. P. B.; RODRIGUES, M.; BEJARANO HERRERA, W. F.; SOLTANGHEISI, A.; SARTOR, L. R.; WITHERS, P. J. A.; PAVINATO, P. S. Do cover crops change the lability of phosphorus in a clayey subtropical soil under different phosphate fertilizers? Soil Use and Management, v. 33, n. 1, p. 34-44, https://doi.org/10.1111/sum.12327. 2017. TOKURA, A. M.; FURTINI, A. E.; CARNEIRO, L. F.; CURI, N.; SANTOS, J. Z. L.; ALOVISI, A. A. Dynamics of phosphorus forms in soils with contrasting texture and mineralogy cultivated with rice. Acta Scientiarum Agronomy, v. 33, p. 171-179, https://doi.org/10.4025/actasciagron.v33i1.1435. 2001. ULLOA, L. M.; VELDKAMP, E.; DE KONING G. H. J. Soil Carbon Stabilization in Converted Tropical Pastures and Forests Depends on Soil Type. Soil Science Society American Journal, v. 69, p. 1110-1117.2005. https://doi:10.2136/sssaj2004.0353. 2005. VENDRAME, P. R. S.; EBERHARDT, D. N.; BRITO, O. R.; MARCHÃO, R. L.; QUANTIN, C.; BECQUER, T. Iron and aluminum forms and their relationship with texture, mineralogy and organic carbon in the Cerrado Oxisol. Semina: Ciências Agrárias, v. 32, p. 1657-1666, http://dx.doi.org/10.5433/1679-0359.2011v32n4Sup1p1657. 2011. XIAO, Y.; TANG, J. L.; WANG, M. K.; ZHAI, L. B.; ZHANG, X. F. Impacts of soil properties on phosphorus adsorption and fractions in purple soils. Journal of Mountain Science, v. 14, n. 12, p. 2420-2431. https://doi.org/10.1007/s11629-017-4545-2. 2017.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72258/2020%20-%20Shirlei%20Almeida%20Assun%c3%a7%c3%a3o.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6342
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-02-18T15:58:33Z No. of bitstreams: 1 2020 - Shirlei Almeida Assunção.pdf: 2212457 bytes, checksum: dad8a7c90965abd664653deb2a385928 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-02-18T15:58:33Z (GMT). No. of bitstreams: 1 2020 - Shirlei Almeida Assunção.pdf: 2212457 bytes, checksum: dad8a7c90965abd664653deb2a385928 (MD5) Previous issue date: 2020-02-18eng
Appears in Collections:Doutorado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Shirlei Almeida Assunção.pdf2.16 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.