Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/11044
Full metadata record
DC FieldValueLanguage
dc.creatorVideira, Sandy Sampaio
dc.date.accessioned2023-11-19T21:58:53Z-
dc.date.available2023-11-19T21:58:53Z-
dc.date.issued2012-02-15
dc.identifier.citationVIDEIRA, Sandy Sampaio. Estudo da comunidade de bactérias diazotróficas associada a plantas de capim-elefante. 2012. 105 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2012.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11044-
dc.description.abstractIn this study, a fraction of the diazotrophs community associated with roots and shoots of different elephant grass genotypes (Pennisetum purpureum) was assessed by combined use of culture-dependent and -independent approaches. A total of 204 bacterial strains were isolated from Cameroon and CNPGL91F06-3 genotypes and genomically fingerprinted by BOX-PCR. From the cluster analysis generated from BOX-PCR profiles, 47 strains were selected for identification by partial 16S rRNA sequencing. Similarity analysis of the 16S rRNA gene fragments revealed that 36% of the sequences belonged to the Gluconacetobacter genus, 31% to Azospirillum spp and 21% to Enterobacter spp. These results were confirmed by nifH gene analysis, although bacteria identified as Gluconacetobacter showed sequences homologous to nifH gene from Enterobacter spp. Additionally, 204 strains were investigated for their ability to fix nitrogen, produce phytohormones and phosphate solubilization. Of the total, 75.5% had nitrogenase activity, 97% produced indole compounds, 22% solubilized phosphate and 15% showed all three characteristics together. To evaluate, under vessel experiment conditions, the response of Cameroon and Roxo genotypes to inoculation with Azospirillum, Klebsiella, Enterobacter and Gluconacetobacter strains previously characterized. The biomass yield, nutrient accumulation in the shoot as well as the protein content in elephant grass inoculated with diazotrophs were not significantly improved by inoculation, although increases in root dry weight and N and P have been detected. As the benefits to the host plant showed variation from strain to strain, and the analyzes were carried out punctually at 60 days after planting, it was not possible to determine if the inoculated strains were not able to penetrate into the tissues and which factors influenced the plant-bacterium interaction and the final production of the plants. The structural and functional diversity was assessed by PCR-DGGE from 16S rRNA and nifH sequences directly-obtained from root and stem of five elephant grass genotypes. The bacterial and diazotrophic community structure was more influenced by plant tissue than the genotypes, the root being considered a more complex niche in relation to the stem. The metabolically active bacterial population was identified in three of the five tested genotypes, and the groups most frequently detected were Proteobacteria, consisting of - (Leptothrix spp and Burkholderia spp), - (Bradyrhizobium spp, Methylobacterium spp and Rhizobium spp), - (Steroidobacter spp) and Actinobacteria (Actinoplanes spp, Conexibacter spp, Solirubrobacter spp and Amycolatopsis spp). In nifH-cDNA libraries, 26.4% of the fragments were related to different Bradyrhizobium spp. strains sequences. Less abundant sequences belonging to the genera Azospirillum, Burkholderia, Klebsiella and Enterobacter spp were also detected, but their distribution among the samples was at random.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectPennisetum purpureumpor
dc.subjectComunidade bacterianapor
dc.subjectPromoção de crescimento vegetalpor
dc.subjectPennisetum purpureumeng
dc.subjectBacterial communityeng
dc.subjectPlant growth promotingeng
dc.titleEstudo da comunidade de bactérias diazotróficas associada a plantas de capim-elefantepor
dc.title.alternativeCommunity analysis of diazotrophic bacteria associated with elephant grasseng
dc.typeTesepor
dc.contributor.advisor1Baldani, Vera Lúcia Divan
dc.contributor.advisor1ID058.898.198-28por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7445996639798624por
dc.contributor.advisor-co1Caballero, Segundo Sacramento Urquiaga
dc.contributor.advisor-co2Araújo, Jean Luiz Simões de
dc.contributor.referee1Santos, Leandro Azevedo
dc.contributor.referee2Alves, Bruno José Rodrigues
dc.contributor.referee3Zilli, Jerri Edson
dc.contributor.referee4Goi, Silvia Regina
dc.contributor.referee5Xavier, Deise Ferreira
dc.creator.ID092.655.887-05por
dc.creator.Latteshttp://lattes.cnpq.br/1627896730005167por
dc.description.resumoNeste estudo, uma fração da comunidade de bactérias diazotróficas associada a raízes e parte aérea de diferentes genótipos de capim-elefante (Pennisetum purpureum) foi analisada por métodos dependentes e independentes de cultivo. Duzentas e quatro estirpes bacterianas foram isoladas dos genótipos Cameroon e CNPGL91F06-3 e caracterizadas genotipicamente através de BOX-PCR. Das análises de agrupamento geradas a partir dos perfis de BOX-PCR, um total de 47 estirpes foram selecionadas para identificação taxonômica através do sequenciamento parcial do gene 16S rRNA. A análise de similaridade de fragmentos do gene 16S rRNA revelaram que 36% das sequências pertenciam ao gênero Gluconacetobacter, 31% a Azospirillum spp, 21% a Enterobacter spp. Estes resultados foram confirmados pela análise do gene nifH, embora, bactérias identificadas como Gluconacetobacter apresentaram sequências de nifH homólogas a Enterobacter spp. Adicionalmente, as 204 estirpes foram investigadas quanto à capacidade de fixar nitrogênio, produzir fitoreguladores e solubilizar fosfatos. Do total, 75.5% apresentaram atividade da nitrogenase, 97% produziram compostos indólicos, 22% solubilizaram fosfato e 15% apresentaram as três características. Para avaliar, sob condições de vaso, a resposta dos genótipos Cameroon e Roxo à inoculação com estirpes dos gêneros Azospirillum, Klebsiella, Enterobacter e Gluconacetobacter previamente caracterizadas. O rendimento de biomassa, o acúmulo de nutrientes na parte aérea, bem como o teor de proteína nos tecidos, não foram beneficiados significativamente pela inoculação com bactérias diazotróficas; embora incrementos na massa seca de raiz e acúmulo de N e P tenham sido detectados. Como os benefícios proporcionados à planta hospedeira apresentaram variação de estirpe para estirpe, e as análises foram realizadas pontualmente aos 60 dias após plantio, não foi possível determinar se as estirpes inoculadas apresentaram competência no estabelecimento e quais fatores influenciaram a interação planta-bactéria.A diversidade, estrutural e funcional, foi acessada pela técnica de PCR-DGGE a partir de sequências de 16S rRNA e nifH obtidas diretamente de amostras de raiz e colmo de 5 genótipos de capimelefante. A estrutura das comunidades, bacteriana e diazotrófica, foi mais influenciada pelo tecido vegetal do que pelos genótipos, sendo a raiz considerada um ambiente mais complexo em relação ao colmo. A população bacteriana metabolicamente ativa foi identificada em 3 dos 5 genótipos testados; e os grupos detectados com maior frequência foram Proteobacteria, constituido de - (Leptothrix spp e Burkholderia spp), - (Bradyrhizobium spp, Methylobacterium spp e Rhizobium spp), - (Steroidobacter spp) e Actinobacteria (Actinoplanes spp, Conexibacter spp, Solirubrobacter spp e Amycolatopsis spp). Nas bibliotecas construídas de nifH-cDNA, 26,4% do total de fragmentos foram relacionados com sequências de diferentes estirpes de Bradyrhizobium spp. Sequências menos abundantes pertencentes aos gêneros Azospirillum, Burkholderia, Klebsiella e Enterobacter spp também foram detectadas, mas sua distribuição entre as amostras foi aleatória.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesABD-ALLA, M.H. Use of organic phosphorus by Rhizobium leguminosarum biovar. viceae phosphatases. Biology and Fertility of Soils v.18, p.216-218,1994. AHEMAD, F.; AHMAD, I.; KHAN, M.S. Screening of free-living rhizobacteria for their multiple plant growth promoting activities. Microbiological Research, v.163, p.173-181, 2008. ALBINO, U.; SARIDAKIS, D.P.; FERREIRA, M.C.; HUNGRIA, M.; VINUESA, P.; ANDRADE, G. High diversity of diazotrophic bacteria associated with the carnivorous plant Drosera villosa var. villosa growing in oligotrophic habitats in Brazil. Plant and Soil , v.287, p.199-207, 2006. ALMEIDA, J.; COSTA, B.M.; PAIVA, J.A.J.; TAVARES, J.T.Q. Avaliação de fenos de campi-elefante cv. Roxo. Revista Bahia Agrícola, v.6, p.67-71, 2004. ALTSCHUL, S.F.; MADDEN, T. L,; SCHÄFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. GAPPED. BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, v.25, p.3389-3402, 1997. ALVES, B. J. R.; SANTOS, J. C. F. dos; URQUIAGA, S.; BODDEY, R. M. Métodos de determinação do nitrogênio em solo e planta. In: HUNGRIA, M.; ARAUJO, R.S., (Org.) Manual de métodos empregados em estudo de microbiologia agrícola. Brasília: Embrapa- SPI; Goiania: Embrapa-CNPAF; Londrina: Embrapa-CNPSo, 1994. p. 449-409. (Embrapa- CNPAF. Documentos, 46). ALVES, G. C. Efeito da inoculação de bactérias dos gêneros Herbaspirillum e Burkholderia na cultura do milho. Seropédica/RJ: Universidade Federal Rural do Rio de Janeiro, 2007. 63p. Dissertação Mestrado. AMANN, R.; SNAIDR, J.; WAGNER, M.; LUDWIG, W.; SCHLEIFER, K. -H. In situ visualization of high genetic diversity in a natural microbial community. Journal of Bacteriology, v.178, p.3496-3500, 1995. ANDO, S.; GOTO, M.; MEUNCHANG, S.; THONGRA-AR, P.; FUJIWARA, T.; HAYASHI, H.; YONEYAMA, T. Detection of nifH sequences in Sugarcane (Saccharum officinarum L.) andpineapple (Ananas comosus [L.] Merr.). Soil Science & Plant Nutrition, v.51, p.303–308, 2005. ANTOUN, H., PRE´ VOST, D., Ecology of plant growth promoting rhizobacteria. In: SIDDIQUI, Z.A. (Ed.), PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, p. 1– 38, 2005. APPLEBY, P.G.; OLDFIELD F. The assessment of of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia, v. 103, p. 29-35, 1983. ASEA, P.E.A.; KUCEY, R.M.N; STEWART, J.W.B. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, v.20, p.459-464, 1988. AVEIRO, A.R.; SIEWERDT, L.; SILVEIRA, J.R., P. Capim-elefante: efeitos da irrigação e das adubações mineral e orgânica. I - Teor e produção total de matéria seca. Revista da Sociedade Brasileira de Zootecnia, v.20, p.239-247, 1991. 83 AVIS, T.J.; GRAVEL, V.; ANTOUN, H.; TWEDDELL, R.J. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry, v.40, p. 1733-1740, 2008. AZEVEDO, J. L.; MACCHERONI JR.; W.; PEREIRA, J. O.; ARAÚJO, W. L. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Eletronic Journal of Biotechnology, v.3, p.40-65, 2000. BACA, B. E.; ELMERICH, C. Microbial Production of Plant Hormones. In: ELMERICH, C. e NEWTON, W. E. (Eds.) Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations, Springer: v. 5, 2007, p.111-137. BAKER D.D.; MULLIN, B.C Actinorhizal symbioses. In: STACEY, G; BURRIS, R.H.; EVANS, H.J. (eds) Biological Nitrogen Fixation. Routland, Chapman and Hall, 1992, p. 259–292. BALDANI, J.I.; BALDANI, V.L.D. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciências, v. 77, p.549-579, 2005. BALDANI, J.I.; BALDANI, V.L.D.; DOBEREINER, J. Genus III. Herbaspirillum. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (ed.) Bergey´s Manual of Systematic Bacteriology. 2nd ed. Newark: Springer, 2005, p. 629-636. BALDANI, J.I.; CARUSO, L.; BALDANI, V.L.D.; GOI, S.R.; DÖBEREINER, J. Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, v.29, p.911-922, 1997. BALDANI, V. L. D.; BALDANI, J. I.; DOBEREINER, J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biology and Fertility of Soils, v.30, p. 485–491, 2000. BALLY, R.; ELMERICH, C. Biocontrol of plant diseases by associative and endophytic nitrogen-fixing bacteria. In: ELMERICH C., NEWTON W.E. Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations. Springer, 2007, p. 171-190. BARMAN, M.; UNOLD, D.; SHIFLEY, K.; AMIR, E.; HUNG, K.; BOS, N.; SALZMAN, N.Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun ,v.76, p.907-915, 2008. BARRIUSO, MAICAS, J., RAMOS, SOLANO,B.GUTIÉRREZ, MAÑERO, F.J. Protection against pathogen and salt stress by four PGPR isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology, v.98, p. 666-672, 2008. BAR-YOSEF, B. Advances in fertigation. Advances in agronomy, v. 65, p.1-77, 1999. BASHAN, Y.; DE-BASHAN, L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth - a critical assessment. Advances in Agronomy, v.108, p.77-136, 2010. BECKER, R.; BEHRENDT, U.; HOMMEL, B.; KROPF, S.; ULRICH, A. Effects of transgenic fructan-producing potatoes on the community structure of rhizosphere and phyllosphere bacteria. FEMS Microbiology Ecology, v.66, p.411–425, 2008. BERGAMASCHI, H. et al. Maize yield and rainfall on different spatial and temporal scales in Southern Brazil. Pesquisa Agropecuária Brasileira, v. 42, p. 603-613, 2007. BERGMAN, B.; OSBORNE, B. The Gunnera-Nostoc symbiosis. Biology and Environment, v.122, p.35–39, 2002. 84 BERMAN-FRANK, I.; LUNDGREN, P.; FALKOWSKI, P.G. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria, Research in Microbiology, v.154, p.157– 164, 2003. BEVIVINO, A.; SARROCCO, S.; DALMASTRI, C.; TABACCHIONI, S.; CANTALE, C.; CHIARINI, C. Characterization of free-living maize rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology, v. 27, p. 225-237, 1998. BISHOP, PE, JARLENSKI ,DM, HETHERINGTON, DR. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proceedings of the National Academy of Sciences of the United States of America, v.77(12):p.7342–7346, 1980 BODDEY, R. M.; MACEDO, R.; TARRÉ, R. M.; FERREIRA, E.; OLIVEIRA, O. C.; REZENDE, C. de P.; CANTARUTTI, R. B.; PEREIRA, J. M.; ALVES, B. J. R.; URQUIAGA, S. Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agriculture, Ecosystems and Environment, v. 103, p. 389-403, 2004. BODDEY, R. M.; SOARES, L. H. B.; ALVES, B. J. R.; URQUIAGA, S. Bio-Ethanol Production in Brazil. In: PIMENTEL, D. (Ed.). Biofuels, solar and wind as renewable energy systems.: Springer, New York. p. 321-356, 2008. BODDEY, R.M e VICTORIA, R.L. Estimation of biological nitrogen fixation associated with Bachiaria, Paspalum notatun cv. batatais using 15N labelled organic matter and fertilizer. Plant and Soil, v. 90, p. 265-292, 1986. BODDEY, R.M. Biological nitrogen fixation in sugar cane: a key to energetically viable biofuel production. Critical Reviews in Plant Sciences,v.14, p. 263-279, 1995. BODDEY, R.M. Methods for quantification of nitrogen fixation associated with gramineae. Critical Reviews in Plant Sciences, v.6, p.209-266, 1987. BODDEY, R.M.; OLIVEIRA, O.C.; URQUIAGA, S.; REIS, V.M.; OLIVARES, F.L.; BALDANI, V.L.D.; DOBEREINER, J. Biological nitrogen fixation associated with sugar cane and rice: Contribution and prospects for improvements. Plant and Soil, v.174, p. 195- 209, 1995. BODDEY, R.M.; CLARK, P.M.; VICTORIA, R.L.; MATSUI, E.; DÖBEREINER, J. The use of the 15N isotope dilution technique to estimate the contribution of associated biological nitrogen fixation to the nitrogen nutrition of Paspalum notatum cv. batatais. Canadian Journal of Microbiology, v. 29, p. 1036-1045, 1983. BONILLA, G. A. E. Seleção de bactérias diazotróficas solubilizadoras de fósforo e seu efeito no desenvolvimento de plantas de arroz. Seropédica: UFRRJ, 2011 Dissertação. (Mestrado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica. BOOGAARD, R.; VAN DEN; VENEKLAAS, E.J.; LAMBERS, H. The association of biomass allocation with growth and water use efficiency of two Triticum aestivum cultivars. Australian Journal of Plant Physiology, v.23, p.751-761, 1996. BRADFORD, M.M. "Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding", Analytical Biochemistry, v.72, p. 248–254, 1976. BRASIL, M.S.; BALDANI, J.I.; BALDANI, V.L.D. Occurrence and diversity of diazotrophic bacteria associated to forage grasses of the Pantanal in the state of Mato Grosso do Sul. Revista Brasileira de Ciência do Solo, v.29, p.179-190, 2005. 85 BRONS, J.K.; VAN ELSAS, J.D.; Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers. Applied and Environmental Microbiology, v.74, p.2717–2727, 2008. BURBANO, C.S.; LIU, Y.; ROESNER, K.L.; REIS, V.M.; CABALLERO-MELLADO, J.; REINHOLD-HUREK, B.; HUREK, T. Predominant nifH transcript phylotypes related to Rhizobium rosettiformansin field-grown sugarcane plants and in Norway spruce. Environmental Microbiology Reports, v.3, p.383–389, 2011. BURKE, C.; THOMAS, T.; LEWIS, M.; STEINBERG, P.; KJELLEBERG, S. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME Journal, v.5, p.590–600, 2011. BYRT, C.S; GROF, C.P.L; FURBANK, R.T. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. Journal of Integrative Plant Biology, v. 53, p.120-135, 2011. CABALLERO-MELLADO, J.; ONOFRE-LEMUS, J.; ESTRADA-DE-LOS SANTOS, J.; MARTINEZ-AGUILAR L. 2007. The tomato rhizosphere, an environment rich in nitrogenfixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and Environmental Microbiology, v.73, p. 5308–5319. CABRAL, L. S.; BHERING, M.; ABREU, J. G. ; REVERDITO, R. ; PEREIRA, G. A. C. ; KAISER, J. ; MIRANDA, L.; ZERVOUDAKIS, J. T. ; SOUZA, A. L. . Teores de Proteína bruta e FDN do capim-elefante roxo obtido em diferentes idades de corte na baixada cuiabana. In: Anais do ZOOTEC 2006. Recife - PE, 2006. CANTERA, J.J.L.; KAWASAKI, H.; SEKI, T. The nitrogen-fixing gene (nifH) of Rhodopseudomonas palustris: a case of lateral gene transfer? Microbiology, v.150, p.2237– 2246, 2004. CARVALHO, M. M.; ALVIM, M. J.; XAVIER, D. F.; CARVALHO, L. de A. Capimelefante: produção e utilização, EMBRAPA-CNPGL - Coronel Pacheco, 1994.p .227. CASSÁN ,F, PERRIG, D, SGROY ,V., LUNA, V. Basic and technological aspects of phytohormone production by microorganisms: Azospirillum sp. as a model of plant growth promoting rhizobacteria In: MAHESHWARI D. K. Bacteria in Agrobiology: Plant Nutrient Management, p.141-182, 2011. CASSÁN, F.; BOTTINI, R.; SCHNEIDER, G,; PICCOLI, P Azospirillum brasilense and Azospirillum lipoferum hydrolize conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol v.125,p. 2053–2058, 2001. CATTELAN, A. J.; HARTEL, P. G.; FUHRMANN, J. J. Screening for plant growthpromoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, v.63, p.1670-1680, 1999. CAVALCANTE, V.A.; DÖBEREINER, J. A new acid tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil, v.108, p.23-31, 1988. CHELIUS, M.K.; TRIPLETT, E.W. The Diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microbial Ecology, v.41, p.252-263, 2001. CHEN, D.H.; RONALD, P.C. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Molecular Biology Reporter, v.17, p.53-57, 1999. CHI, F.; SHEN, S.H.; CHENG, H.P.; JING, Y.X.; YANNI, Y.G.; DAZZO, F.B. Ascending migration of endophyticrhizobia from roots to leaves, inside rice plants and assessment of 86 benefits to rice growth physiology. Applied and Environmental Microbiology, v.71, p.7271-7278, 2005. COELHO, M.R.R.; CARNEIRO, N.P.; MARRIEL, I.E.; SELDIN, L. Molecular detection of gene-containing in the rhizosphere of sorghum sown in Cerrado soil. Letters in Applied Microbiology, v.48, p.611-617, 2009. COLE, J.R.; WANG, Q.; CARDENAS, E.; FISH, J.; CHAI, B.; FARRIS, R.J.; KULAMSYED- MOHIDEEN, A.S.; MCGARRELL, D.M.; MARSH, T.; GARRITY, G.M.; TIEDJE, J.M.The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, v.37, p.141-145, 2009. COMPANT S.; CLÉMENT C.; SESSITSCH A. Colonization of plant growth-promoting bacteria in the rhizo- and endosphere of plants: importance, mechanisms involved and future prospects. Soil Biology & Biochemistry, v. 42, p.669–678, 2010 COOLEN, M.J.L.; OVERMANN, J. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Applied and Environmental Microbiology, v.64, p.4513-4521, 1998. CORSI, M., NUSSIO, L.G. Manejo do capim-elefante: correção e adubação do solo. In: Simpósio Sobre Manejo Da Pastagem, 10., Piracicaba, Anais... , Piracicaba: FEALQ, p. 87- 117, 1992. COUILLEROT, O.; POIRIER, M.A.; PRIGENT-COMBARET, C.; MAVINGUI, P.; CABALLERO-MELLADO, J.; MOËNNE-LOCCOZ, Y. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize. Journal of Applied Microbiology, v.109, p.528-38, 2010. CROZIER, A.; KAMIYA, Y.; BISHOP, G.; YOKOTA, T. Biosynthesis of hormones and elicitor molecules. In: BUCHANAN, B.; GRUISSEM, W.; JONES, R. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, p. 850–929, 2000. CURTIS, T.P.; SLOAN, W.T. Exploring microbial diversity – a vast below. Science, v.309, p.1331–1333, 2005. DALTON, H.; POSTATEJ, R. Growth and physiology of Azotobacter chroococcum in continuous culture. Journal of General Microbiology, v.56, p. 307-319,1969 DASTAGER, S.G.; DEEPA, C.K.; PUNEET, S.C.; NAUTIYAL, C.S.; PANDEY, A. Isolation and characterization of plant growth-promoting strain Pantoea NII-186. From Western Ghat forest soil, India. Letters in Applied Microbiology, v.49, p.20-25, 2009. DAUBARAS, D.L.; SAIDO, K.; CHAKRABARTY, A.M. Purification of hydroxyquinol 1,2- dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Applied and Environmental Microbiology, v. 62, p. 4276–4279, 1996. DEBROAS, D.; HUMBERT, J.F., ENAULT, F.; BRONNER, G.; FAUBLADIER, M.; CORNILLOT, E Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget–France). Environmental Microbiology, v.11, p.2412–2424, 2009. DEMBLA DIALLO, M.; REINHOLD-HUREK, B.; HUREK, T. Evaluation of PCR primers for universal nifH gene targeting and for assessment of transcribed nifH pools in roots of Oryza longistaminata with and without low nitrogen input. FEMS Microbiology Ecology, v.65, p.220–228, 2008. 87 DE-POLLI H; MATSUI E; DÖBEREINER J; SALATE E. Confirmation of nitrogen fixation in two tropical grasses 15N2 incorporation. Soil Biology & Biochemistry, v. 9, p.119-123, 1977. DESLIPPE, J.; EGGER, K. Molecular diversity of nifH genes from bacteria associated with high arctic dwarf shrubs. Microbial Ecology, v.51, p.516-525, 2006. DEUBEL A, GRANSEE A, MERBACH W Transformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate. Journal of Plant Nutrition and Soil Science, v.163, p.387-392, 2000. DIDONET, A.D.; LIMA, O.S.; CANDATEN, A.A.; RODRIGUES, O. Realocação de nitrogênio e de biomassa para os grãos, em trigo submetido a inoculação de Azospirillum. Pesquisa Agropecuária Brasileira, v.35, p. 401-411, 2000. DOBBELAERE, S.; VANDERLEYDEN, J.; OKON, Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, v.22, p.107-149, 2003. DOBBELAERE, Y.; OKON, Y. The plant growth promoting effect and plant responses. In: ELMERICH C.; NEWTON W.E., Eds, Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations, Kluwer Academic Publishers, The Netherlands, 2007, p. 1–26. DÖBEREINER, J. Fixação de nitrogênio em associação com gramíneas. In.: CARDOSO, E.J.B.N.; TSAI, S.M.;, NEVES, M.C.P. Microbiologia do solo. Campinas : SBCS, p. 173- 180, 1992. DÖBEREINER, J. Isolation and identification of root associated diazotrophs. Plant and Soil v.110, p.207-212, 1988. DÖBEREINER, J.; BALDANI, V.L.D.; BALDANI, J.I. Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa-SPI, Brasília, 1995. 60 p. DÖBEREINER, J.; DAY, J.M.; DART, P.J. Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-Azotobacter paspali association. Journal of General Microbiology, v.71, p.103-116, 1972. DOHLEMAN, F.G.; HEATON, E.A.; LEAKEY, A.D.B.; LONG, S.P. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of miscanthus relative to switchgrass? Plant, Cell & Environment, v. 32,p. 1525–37,2009 DOMMERGUYES, Y.; ALANDREAJU, B.; INAUDOG, R.; WEINHARD, P. Nonsymbiotic nitrogen fixation in the rhizospheres of rice, maize and different tropical grasses. Soil Biology and Biochemistry v.5, p. 83-89, 1973. DUINEVELD, B.M., KOWALCHUK, G.A.; KEIJZER, A.; VAN ELSAS, J.D.; VAN VEEN, J.A. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Applied and Environmental Microbiology, v.67, p.172–178, 2001. EADY, R.R.; ROBSON, R.L.; RICHARDSON, T.H.; MILLER, R.W.; HAWKINS, M. The vanadium nitrogenase of Azotobacter chroococcum: Purification and properties of the VFe protein. Biochemical Journal, v.15, p.197–207, 1987. ECKERT, B.; WEBER, O.B.; KIRCHHOF, G.; HALBRITTER, A.; STOFFELS, M.; HARTMANN, A. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. International Journal of Systematic and Evolutionary Microbiology, v 51, p.17–26. 2001. 88 El-BASSAM, N. Energy plant species: Their use and impact on environment and development. In: EL BASSAM N., BEHL R.K., PROCHNOW B (Eds.) Sustainable Agriculture for Food, Energy and Industry. James and James (Science Publishers) Ltd., UK, 167-171, 1998. ELSAYED, M.A.; MATTHEWS, R.; MORTIMER, N.D. Production of ethanol from sugar beet (Appendix Q). In: ELSAYED, M. A.; MATTHEWS, R.; MORTIMER, N. D. Carbon and energy balance for a range of biofuels options. Sheffield: Sheffield Hallam University, 2003. 341 p. ERCOLI, L.; MARIOTTI, M.; MASONI, A.; BONARI, E. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Research, v.63, p. 2–11,1999. FAY, P. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiology and Molecular Biology Reviews, v.56, p.340–373, 1992. FERREIRA, J. S. Qualidade de inoculante, inoculação e reinoculação de Herbaspirillum seropedicae em duas variedades de arroz irrigado. 2008. 83f. Tese de (Doutorado em Agronomia). Universidade Federal Rural do Rio de Janeiro, Seropédica, 2008. FISCHER, D.; PFITZNER, B.; SCHMID, M.; SIMÕES-ARAÚJO, J.L.; REIS, V.M.; PEREIRA, W.; ORMEÑO-ORRILLO, E.; HOFMANN, A.; MARTINEZ-ROMERO, E.; BALDANI, J.I.; HARTMANN, A. Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant and Soil DOI 10.1007/s11104-011-0812-0. 2011. FOLLETT, J.R.; FOLLETT, R.F. Utilization and metabolism of nitrogen by humans. In: FOLLETT, R.; HATFIELD, J.L. (eds), Nitrogen in the Environment: Sources, Problems and Management. Elsevier, New York, 2001. p. 65–92. FRANKE-WHITTLE, I.H.; FEGAN, M.; HAYWARD, C.; LEONARD, G.; STACKEBRANDT, E.; SLY, L.I. Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. International Journal of Systematic Bacteriology, v.49, p.1681- 1693, 1999. FRANKE-WHITTLE, I.H.; O'SHEA, M.G.; LEONARD, G.J.; WEBB, R.I.; SLY, L.I. Investigation into the ability of Gluconacetobacter sacchari to live as an endophyte in sugarcane. Plant and Soil v.271, p. 285-295, 2005. FURUSHITA, M.; SHIBA, T.; MAEDA, T.; YAHATA, M.; KANEOKA, A.; TAKAHASHI, Y.; TRII, K.; HASEGAWA, T.; OHTA, M. Similarity of tetracycline resistance genes applied isolated from fish farm bacteria to those from clinical isolates. Applied and Environmental Microbiology, v.69, p.5336–5342, 2003. GAMALERO, E.; GLICK, B. R. Ethylene and Abiotic Stress Tolerance in Plants In: AHMAD, P.; PRASAD, M.N.V. Environmental adaptations and stress tolerance of plants in the era of climate change, 2012.p. 395-412. GAUTHIER, D.L.; DIEM, H.G.; DOMMERGUES, Y. I In vitro nitrogen fixation by two actinomycete strains isolated from Casuarina nodules. Applied and Environmental Microbiology,v.14, p.306-308, 1981. GIRAUD, E.; MOULIN, L.; VALLENET, D.; BARBE, V.; CYTRYN, E.; AVARRE, J.C.; JAUBERT, M.; SIMON, D.; CARTIEAUX, F.; PRIN, Y.; BENA, G.; HANNIBAL, L.; FARDOUX, J.; KOJADINOVIC, M.; VUILLET, L.; LAJUS, A.; CRUVEILLER, S.; ROUY, Z.; MANGENOT, S.; SEGURENS, B.; DOSSAT, C.; FRANCK, W.L.; CHANG, W.S.; 89 SAUNDERS, E.; BRUCE, D.; RICHARDSON, P.; NORMAND, P.; DREYFUS, B,.;PIGNOL, D.; STACEY, G.; EMERICH, D.; VERMÉGLIO, A.; MÉDIGUE, C.; SADOWSKY, M. Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science, v.316, p.1307–1312, 2007. GLICK, B.R.; PATTEN, C.L.; HOLGIN, G.; PENROSE, D.M. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, 1999. p. 267. GLICK, B.R.; TODOROVIC, B.;CZARNY, J.; CHENG, Z.; DUAN, J.; MCCONKEY, B. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences,v.26 p. 227–242, 2007. GONÇALVES, C.A.; COSTA, L.C. Adubação orgânica, frequência de corte de capimelefante (Pennisetum purpureum. Schum, cv. Cameroon) em Porto Velho, Rondônia. Revista Lavoura Arrozeira, v. 44, p.27-29, 1991. GOVINDARAJAN, M.; BALANDREAU, J.; KWON, S. W.; WEON, H.Y.; LAKSHMINARASIMHAN, C. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology, v.55, p. 21-37, 2008. GUIMARÃES, S. L.; CAMPOS, D. T. S.; BALDANI, V. L. D.; JACOB-NETO, J.Bactérias diazotróficas e adubação nitrogenada em cultivares de arroz. Revista Caatinga. Mossoró, v. 23, n. 4, p. 32-39, 2010 GYANESHWAR, P.; KUMAR, G.N.; PAREKH, L.J.; POOLE, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, v.245,p.83-93, 2002 GYANESHWAR, P.; JAMES, E.K.; MATHAN, N.; REDDY, P.M.; REINHOLD-HUREK, B.; LADHA, J.K. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Journal of Bacteriology, v.183, p. 2634-2645, 2001. HALLMANN, J.; QUADT-HALLMANN, A.; MAHAFFEE, W.F.; KLOEPPER, J.W. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, v.43, p.895- 914, 1997. HAMEEDA, B.; RUPELA, O.P.; REDDY, G.; SATYAVANI, K. Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of Pearl millet (Pennisetum glaucum L.). Biology and Fertility of Soils, v.43,p. 221-227, 2006. HARDOIM, P.R.;. ANDREOTE, F.D.; REINHOLD-HUREK, B.; SESSITSCH, A.; VAN OVERBEEK, L.S.; VAN ELSAS, J.D. Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiology Ecology, v.77, p.154–164, 2011. HARTMANN, A.; BASHAN, Y. Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB). European Journal of Soil Biology, v.45, p.1-122, 2009. HATCH, MD. C4 photosynthesis, a unique blend of modified biochemistry, anatomy and unltrastructure. Biochim. Biochimica et Biophysica Acta, v.895,p.81–106,1987. HAVLIN, J.; BEATON, J. D.; TISDALE, S. L.; NELSON, W. L. Soil fertility and fertilizers: an introduction nutrient management. Upper Saddle River: Prentice Hall. 1999. p.499. HEFFER, D.M.; PRUD’HOMME 79th IFA Annual Conference, Montreal, May 2011“Fertilizer Outlook 2011 - 2015” Disponível em www.fertilizer.org HILL, G.M.; GATES, R.N.; WEST, J.W.; BURTON, G.W. Tifton 85 bermudagrass utilization in beef, dairy, and hay production. In: workshop sobre o potencial forrageiro do gênero Cynodon, Anais... Juiz de Fora: Embrapa-CNPGL, p.140-150,1996. 90 HUNGRIA M. Inoculação com Azospirillum brasiliense: inovação em rendimento a baixo custo . – Londrina: Embrapa Soja, 2011. 36p. – (Documentos / Embrapa Soja) HUREK, T.; HANDLEY, L.; REINHOLD-HUREK, B.; PICHÉ, Y. Azoarcus, grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Molecular Plant- Microbe Interactions, v.15, p.233–242, 2002. HUREK, T.; WAGNER, B.; REINHOLD-HUREK, B.; Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Applied and Environmental Microbiology, v.63, p.4331-4339, 1997. IDRIS, R.; TRIFONOVA, R.; PUSCHENREITER, M.; WENZEL, W.W.; SESSITSCH, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, v.70, p.2667–2677, 2004. IKEDA ,S.; KANEKO, T.; OHKUBO, T.; RALLOS, L.E.; EDA, S.; MITSUI, H.; SATO, S.; NAKAMURA, Y.; TABATA, S.; MINAMISAWA, K. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. FEMS Microbiology Ecology, v.58, p.703-714, 2009. ILMER, P.; SCHINNER, F. Solubilization of inorganic calcium phosphates - solubilization mechanisms. Soil Biology & Biochemistry, v.27, p. 257-263, 1995. NCEOGLU, Ö.; AL-SOUD, W.A.; SALLES, J.F.; SEMENOV, A.V.; VAN ELSAS, J.D. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE, v.6, e23321. doi:10.1371/journal.pone.0023321, 2011. IPCC. Intergovernmental Panel on Climate Change. Greenhouse Gas Inventory Programme. Guidelines for national greenhouse gas inventories. Hayama, Japan: Institute for Global Environmental Strategies, 2006. Disponível em: <http://www.ipcc-nggi.iges.or.jp/ public/2006gl> ISLAM, M.R.; MADHAIYAN, M.; BORUAH, H.P.D.; YIM, W.; LEE. G.; SARAVANAN. V.S.; FU, Q.; HU, H.; SA, T. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. Journal of Microbiology and Biotechnology, v.19, p.1213–1222, 2009. JACQUES, A.V.A. Caracteres morfo-fisiológicos e suas implicações com o manejo. In: Capim-elefante: Produção e Utilização. Coronel Pacheco, T: EMBRAPA, CNPGL, p.31- 48, 1994. JAMES E.K.; OLIVARES F.L. Infection and colonization of sugarcane and other graminaceous plants by endophytic diazotrophs. Critical Reviews in Plant Sciences, v.17, p.77–119, 1998. JHA, B.; THAKURA, M. C.; GONTIA, I.; ALBRECHT, V.; STOFFELS, M.; SCHMID, M.; HARTMANN, A. Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. European Journal of Soil Biology, v.45, p.62-72, 2009. JOERGER, R.D.; BISHOP, P.E. Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. Journal of Bacteriology, v. 170, p. 1475- 1487, 1988. JURAEVA, D.; GEORGE, E.; DAVRANOV, K.; RUPPEL, S. Detection and quantification of the nifH gene in shoot and root of cucumber plants. Canadian Journal of Microbiology, v.52, p.731-739, 2006. 91 KAMKE, J.; TAYLOR, M.W.; SCHMITT, S. Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME Journal, v.4, p.498– 508, 2010. KANG, S.C.; HA, C.G.; LEE, T.G.; MAHESHWARI, D.K. Solubilization of insoluble inorganic phosphates by a soil inhabiting fungus Fomitopsis sp. PS 102. Current Science, v.82, p.439-442, 2002. KASCHUK, G.; HUNGRIA, M.; ANDRADE, D.S.; CAMPO, R.J. Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Applied Soil Ecology, v.32, p. 210–220, 2006. KATIVU, S, MITHEN, R. Pennisetum in Southern Africa. Plant Genetic Resources, v. 73, p. 1-8,1987. KAUTER, D.; LEWANDOWSKI, I.; CLAUPEIN, W. Quantity and quality of harvestable biomass from Populus short rotation coppice for solid fuel use – a review of the physiological basis and management influences. Biomass and Bioenergy, v. 24, p.411–427, 2003. KEMBEL, S.W.; EISEN, J.A.; POLLARD, K.S.; GREEN, J.L. The Phylogenetic Diversity of Metagenomes. PLoS ONE v. 6, e23214. 2011 doi:10.1371/journal.pone.0023214 KHAN, M.S.; ZAIDI, A.; WANI, P.A.; AHEMAD, M.; OVES, M. Functional diversity among plant growth-promoting rhizobacteria. In: KHAN, M.S.; ZAIDI, A.; MUSARRAT, J. (ed) Microbial Strategies for Crop Improvement, Springer, Berlin, 2009. pp 105-132. KIM, K.Y.; JORDAN, D.; MCDONALD, G.A. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry, v.30, p.995-1003, 1998. KIM, S.; DALE, B.E."Life cycle assessment of fuel ethanol derived from corn grain via dry milling." Bioresource Technology, v. 99, p. 5250- 5260, 2008. KIRCHHOF, G.; ECKERT, B.; STOFFELS, M.; BALDANI, J. I.; REIS, V. M.; HARTMANN, A. Herbaspirillum frisingense sp. nov., a new nitrogen-fixing a bacterial species that occurs in C4-fibre plants. International Journal of Systematics Evolutionary Microbiology, v. 51, p. 157-168, 2001. KIRCHHOF, G.; REIS, V.M.; BALDANI, J.I.; ECKERT, B.; DÖBEREINER, J.; HARTMANN, A. Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant and Soil, v.104, p.45-55, 1997a. KIRCHHOF, G.; SCHLOTER, M.; ABMUS, B.; HARTMANN, A. Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biology e Biochemistry, v.29, p.853-862, 1997b. KNAUTH, S.; HUREK, T.; BRAR, D.; REINHOLD-HUREK, B. Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environmental Microbology, v.7, p.1725-1733, 2005. KNEIP, C.; LOCKHART, P.; VOß, C.; MAIER, U.G. Nitrogen fixation in eukaryotes – new models for symbiosis. BMC Evolutionary Biology, v.7, p.55, 2007. KNUPP, A.M.; MARTINS., C.M.; FARIA., J.C. de; RUMJANEK, N.G.; XAVIER, G.R Comunidade bacteriana como indicadora do efeito de feijoeiro geneticamente modificado sobre organismos não alvo. Pesquisa Agropecuária Brasileira, v.44, pp. 1692-1699, 2009. KONGSHAUG, G. 1998. Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production. IFA Technical Conference, Marrakech, Morocco, 1998, 18pp. 92 KUMAR, V.; NARULA, N. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum. Biology and Fertility of Soils, v. 27, 301– 305, 1999. LADHA, J.K.; SO, R.B. Numerical taxonomy of photosynthetic rhizobia nodulating Aeschynomene species. International Journal of Systematic Bacteriology, v.44, p.62-73, 1994. LANE, D.J. 16S/23S rRNA sequencing. In: STACKEBRANDT, E.; GOODFELLOW, M., eds., Nucleic acid techniques in bacterial systematics. New York, NY, 1991. pp. 115-175. LEACH, A.W.; MUMFORD, J.D. Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environmental Pollution v.151, p.139–147, 2008. LERNER, A.; VALVERDE, A.; CASTRO-SOWINSKI, S.; LERNER. H.; OKON, Y.; BURDMAN, S. Phenotypic variation in Azospirillum brasilense exposed to starvation. Environmental Microbiology, v.2, p.1758-2229, 2010. LI, Y.H.; LIU, Q.F.; LIU, Y.; ZHU, J.N.; ZHANG, Q. Endophytic bacterial diversity in roots of Typha angustifolia L. in the constructed Beijing Cuihu Wetland (China) Research in Microbiology, v.162, p.124-131, 2011. LILLIS, L.; DOYLE, E.; CLIPSON, N. Comparison of DNA and RNA-based bacterial community structures in soil exposed to 2,4-dichlorophenol. Journal of Applied Microbiology, v.107, p.1883–1893, 2009. LINDSTRÖM, K.; MURWIRA, M.; WILLEMS, A.; ALTIER, N. The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Research in Microbiology, v.161, p.453–463, 2010. LOGANATHAN, P.; SUNITA, R.; PARIDA, A.K.; NAIR, S. Isolation and characterization of two genetically distant groups of Acetobacter diazotrophicus from a new host plant Eleusine coracana L. Journal of Applied Microbiology, v.87, p.167-172, 1999. LÓPEZ-LÓPEZ, A.; ROGEL, M.A.; ORMENO-ORRILLO, E.; MARTINEZ-ROMERO, J.; MARTINEZ-ROMERO, E. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Systematic and Applied Microbiology, v.33, p.322–327, 2010. LOVELESS, T.M.; SAAH, J.R.; BISHOP, P.E. Isolation of nitrogen-fixing bacteria containing molybdenum-independent nitrogenases from natural environments. Applied and Environmental Microbiology, v.65, p. 4223-4226, 1999. LOVELL, C.R.; DECKER, P.V.; BAGWELL, C.E.; THOMPSON, S.; MATSUI, G.Y. Analysis of a diverse assemblage of diazotrophic bacteria from Spartina alterniflora using DGGE and clone library screening. Journal of Microbiological Methods, v.73, n.2, p.160- 171. 2008. MAGNANI, G.S.; DIDONET, C.M.; CRUZ, L.M.; PICHETH, C.F.; PEDROSA, F.O.; SOUZA, E..M Diversity of endophytic bacteria in Brazilian sugarcane. Genetics and Molecular Research, v.9, p.250–258, 2010. MÅRTENSSON, L.; DÍEZ, B.; WARTIAINEN, I.; ZHENG, W.W.; EL-SHEHAWY, R.; RASMUSSEN, U. Diazotrophic diversity, nifH gene expression and nitrogenase activity in a rice paddy field in Fujian, China. Plant and Soil, v.325, p.207–218, 2009. 93 MARTINELLI, L.A.; VICTORIA, R.L.; TRIVELIN, P.C.O.; DEVOL, A.H.; RICHEY, J.E. 15N natural abundance in plants of the Amazon river floodplain and potential atmospheric N2 fixation. Oecologia, v.90, p.591-596, 1992. MASSON-BOIVIN C, GIRAUD E, PERRET X, BATUT J Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends in Microbiology, v.17, p.458–466, 2009. MEHNAZ, S.; LAZAROVITS, G. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecology, v.51, p.326-335, 2006. MEHTA, S.; NAUTIYAL, C.S. An efficient method for qualitative screening of phosphatesolubilizing bacteria. Current Microbiology, v.43, p.51-56, 2001. MENDES, I.C.; REIS JUNIOR, F.B. Microrganismos e disponibilidade de Fósforo (P) nos solos: uma análise crítica.: Documentos 85. Embrapa Cerrados,Planaltina -DF, 2003. MENGONI, A.; TATTI, E.; DECOROSI, F.; VITI, C.; BAZZICALUPO, M.; GIOVANNETTI, L. Comparison of 16S rRNA and 16S rDNA T-RFLP approaches to study bacterial communities in soil microcosms treated with chromate as perturbing agent. Microbial Ecology, v.50, p.375-84, 2005. MIYAMOTO, S.T.; LOMBARDI JR, I.; BERG, K.O.; RAMOS, L.R.; NATOUR, J. Brazilian version of the Berg balance scale. Brazilian Journal of Medical and Biological Research, v. 37, p. 1411-1421, 2004. MONTEITH, J.L. Reassessment of maximum growth rates of C3 and C4 crops. Experimental Agriculture, v.14, p. 1–5, 1978. MOORE, F.P.; BARAC, T.; BORREMANS, B.; OEYEN, L.; VANGRONSVELD, J.; VAN DER LELIE, D.; CAMPBELL, D.; MOORE, E.R.B. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Systematic and Applied Microbiology, v.29, p.539–556, 2006. MORAIS, R.F.; QUESADA, D. M.; REIS, V. M.; URQUIAGA, S.; ALVES, B. J. R.; BODDEY, R. M. Contribution of biological nitrogen fixation to Elephant grass (Pennisetum purpureum Schum.) Plant Soil DOI 10.1007/s11104-011-0944-2. 2011. MORAIS, R. F.; SOUZA, B.J.; LEITE, J.M.; SOARES, L.H.; ALVES, B.J.R.; BODDEY, R.M.; URQUIAGA, S. Elephant grass genotypes for bioenergy production by direct biomass combustion. Pesquisa Agropecuária Brasileira, v.44, p.133-140, 2009. MOREIRA, F.M.S.; SIQUEIRA, J.O. Microbiologia e bioquímica do solo. Lavras: UFLA, 2002. 626p. MOZZER, O.L. 1993. Capim-elefante - Curso de Pecuária Leiteira. Coronel Pacheco: EMBRAPA/CNPGL. 2.ed. (Documentos n. 43). MUÑOZ-ROJAS, J.; CABALLERO-MELLADO, J. Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microbial Ecology, v. 46, p.454-464, 2003. MUTHUKUMARASAMY, R.; KANG, U. G.; PARK, K. D.; JEON, W.-T.; PARK, C. Y.; CHO, Y. S.; KWON, S.-W.; SONG, J.; ROH, D.-H.; REVATHI, G. Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. Journal of Applied Microbiology, v.102, p.981–991, 2007. 94 MUYZER, G.; DE WAAL E.C.; UITTERLINDEN A.G. Profiling of complex microbial communities by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, v. 59, p.695–700, 1993. MUYZER, G.; SMALLA, K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, v.73, p.127-141, 1998. NAYAK, B.S.; BADGLEY, B.; HARWOOD, V.J. Comparison of genotypic and phylogenetic relationships of environmental Enterococcus isolates by BOX-PCR typing and 16S rRNA gene sequencing. Applied and Environmental Microbiology, v.77, p.5050-5055, 2011. NICOL, G.W.; GLOVER, L.A.; PROSSER, J.I. The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil. Environmental Microbiology, v.5, p.152–162, 2003. NOUIOUI, I.; GHODHBANE-GTARI, F.; BEAUCHEMIN, N.J.; TISA, L.S.; GTARI, M. Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek. v.100, p.579-87, 2011. NUNES, F.S.; RAIMONDI, A.C.; NIEDWIESKI, A.C. Fixação de nitrogênio: estrutura, função e modelagem bioinorgânica das nitrogenases. Química Nova. v.26, p.872-879, 2003. NZOUE A, MICHE L, KLONOWSKA A, LAGUERRE G, DELAJUDIE P.; MOULIN, L. Multilocus sequence analysis of bradyrhizobia isolated from Aeschynomene species in Senegal. Systematic and Applied Microbiology, v.32, p.400–412, 2009. OKON, Y., LABANDERA-GONZALEZ, C.A. Agronomic applications of Azospirillum. In: RYDER, M.H., STEPHENS, P.M., BOWEN, G.D. (Eds.), Improving Plant Productivity with Rhizosphere Bacteria. Common wealth Scientific and Industrial Research Organization, Adelaide, Australia, 1994. p. 274–278. OKON, Y.; VANDERLEYDEN, J. Root-associated Azospirillum species can stimulate plants, Applied and Environmental Microbiology, v.63, p.366-370, 1997. OLIVARES F.L., JAMES E.K. Endophytic establishment of diazotrophic bacteria in sugar cane plants. In: PEDROSA, FO, HUNGRIA, M, YATES, T, NEWTON, WE, eds. Nitrogen fixation: from molecules to crop productivity. Dordrecht: Kluwer, p.413–414, 2000. OLIVARES, F. L. Taxonomia, ecologia e mecanismos envolvidos na infecção e colonização de plantas de cana-de-açúcar (Saccharum sp. Híbrido) por bactérias endofíticas do gênero Herbaspirillum. 1997. Tese (Doutorado em Agronomia-Ciência do Solo). Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 1997. OLIVARES, F. L. Bactérias promotoras de crescimento vegetal. Boletim Informativo da Sociedade Brasileira de Ciência do Solo, p. 33 - 34, 2009. OLIVEIRA, A.L.M.; URQUIAGA, S.; DOBEREINER, J.; BALDANI, J.I. The effect of inoculating endophitic N2 –fixing bacteia on micropropagated sugarcane plants. Plant and soil, v. 242, p. 205-215, 2002. OLSEN, G.J.; WOESE, C.R,.;OVERBEEK, R The winds of (evolutionary) change: breathing new life into microbiology. Journal of Bacteriology, v.176, p.1-6, 1994. ORR, C.; JAMES, A.; LEIFERT, C.; COOPER, J.M.; CUMMINGS, S.P. Diversity and function of free-living nitrogen fixing bacteria and total bacteria in organic and 95 conventionally managed soil. Applied and Environmental Microbiology, v.77, p.911-919, 2011. OSBORNE, C.A.; GALIC, M.; SANGWAN, P.; PANSSEN, P.H. PCR-generated artefact from 16S rRNA gene-specific primers. FEMS Microbiology Letters, v.248, p.183–187, 2005. OSORIO, N.W. Effectiveness of phosphate solubilizing microorganisms in increasing plant phosphate uptake and growth in tropical soils In: MAHESHWARI D.K. (ED). Bacteria in Agrobiology: Plant Nutrient Management (Volume III). Springer-Verlag Berlin, 2011. P.65-80. PACE, N. A molecular view of microbial diversity and the biosphere. Science, v.274, p.734 - 740, 1997. PARIONA-LLANOS, R.; IBAÑEZ DE SANTI, F.F.F.; SOTO GONZALES, H.H.; BARBOSA, H.R. Influence of organic fertilization on the number of cultivable diazotrophic endophytic bacteria isolated from sugarcane. European Journal of Soil Biology, v.46, p.387- 393, 2010. PARK, J. H., BOLAN, N., MEGHARAJ, M., & NAIDU, R. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). Journal of Environmental Management, v.92, p.1115–1120, 2011. PATTEN, C.L.; GLICK, B.R. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, v.42,p. 207-220,1996. PATTEN, C.L.; GLICK, B.R. The role of bacterial indoleacetic acid in the development of the host plant root system. Applied and Environmental Microbiology, v. 68, p. 3795-3801, 2002. PEDRAZA, R.O.; RAMÍREZ-MATA, A.; XIQUI, M.; BACA, B.E. Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiology Letters, v.233, p.15–21. 2004. PENG, G.; ZHANG, W.; LUO, H.; XIE, H.; LAI, W.; TAN, Z. Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. International Journal of Systematic and Evolutionary Microbiology, v.59, p.1650-1655, 2009. PEREIRA E SILVA, M.C.; SEMENOV, A.V.; VAN ELSAS, J.D.; SALLES, J.F. Seasonal variations in the diversity and abundance of diazotrophic communities across soils. FEMS Microbiology Ecology, v.77, p.57–68, 2011. PEREIRA, A.V. Escolha de variedade de capim-elefante. In: Simpósio sobre manejo de pastagem, 10, Piracicaba. Anais... Piracicaba: ESALQ, l993. p.47-62. PERIN, L.; MARTINEZ-AGUILAR, L.; PAREDES, V. G.; BALDANI, J.I.; ESTRADA-DE LOS SANTOS, P.; REIS, V. M.; CABALLERO-MELLADO, J. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugarcane and maize. International Journal of Systematic and Evolutionary Microbiology, v.56, p.1931-1937, 2006. PERRINE-WALKER, F.; GHERBI, H.; IMANISHI, L.; HOCHER, V.; GHODHBANEGTARI, F.; LAVENUS, J.; BENABDOUN, F.M.; NAMBIAR-VEETI, M.; SVISTOONOFF, S.; LAPLAZE, L. Symbiotic signaling in actinorhizal symbioses. Current Protein & Peptide Science, v.12, p.156–164, 2011. PICENO, Y.M.; NOBLE, P.A.; LOVELL, C.R. Spatial and temporal assessment of diazotroph assemblage composition in vegetated salt marsh sediments using denaturing gradient gel electrophoresis analysis. Microbial Ecology, v.38, p.157–167, 1999. 96 PODILE, A.R.; KISHORE, G.K. Plant growth promoting rhizobacteria. In: GNANAMANICKAM, S.S. E(D) Plant Associated Bacteria. Netherlands: Springer. pp. 195–230, 2006. POLY, F.; MONROZIER, L.J.; BALLY, R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, v.152, p.95–103, 2001. PRAKAMHANG, J.; MINAMISAWA, K;. TEAMTAISONG, K.; BOONKERD, N.; TEAUMROONG, N. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied Soil Ecology, v.42, p.141-149, 2009. QUESADA D.M., Parâmetros quantitativos e qualitativos da biomassa de genótipos de Capim-elefante (Pennisetum purpureum Schum.) com potencial para uso energético, na forma de carvão vegetal. 2005. 65f. Tese (Doutorado em Agronomia Ciência do Solo) Universidade Federal Rural do Rio de Janeiro, Seropédica. 2005 RADWAN, T.E.E.; MOHAMED, Z.K.; REIS, V.M. Production of indole-3-acetic acid by different strains of Azospirillum and Herbaspirillum spp. Symbiosis, v. 32, p.39–54, 2002. RASCHE F, TRONDL R, NAGLREITER C, REICHENAUER TG, SESSITSCH A Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum annum L.). Canadian Journal of Microbiology, v.52, p.1036–1045, 2006. RAYMOND, J.; SIEFERT, J.L.; STAPLES, C.R. BLANKENSHIP, R.E. The natural history of nitrogen fixation. Molec. Molecular Biology and Evolution, v.21, p.541-554, 2004. REHDER, D. Structure and function of vanadium compounds in living organisms. Biometals, v.5, p. 3–12,1992. REINHOLD-HUREK, B.; HUREK, T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology, v.50, p.649-659, 2000. REINHOLD-HUREK, B.; HUREK, T. Living inside plants: bacterial endophytes. Current Opinion in Plant Biology, v.4, p.435-43, 2011. REIS JUNIOR, F. B. Ecologia e diversidade de bactérias do gênero Azospirillum em associação com pastagens de Brachiaria spp.. 2002. 97p. Tese (Doutorado em Agronomia – Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. REIS, V. M.; REIS JUNIOR, F.B.; SALES, J.F.; SCHLOTER, M. Characterisation of different polyclonal antisera to quantify Herbaspirillum spp. in Elephant grass (Pennisetum purpureum Schum.). Symbiosis, v. 29, p.139–150, 2000. REIS, V. M.; URQUIAGA, S.; PEREIRA, W.; SILVA, M. F.; HIPOLITO, G.; OLIVEIRA, R. P.; MORAES, R. F.; LEITE, J. M.; SCHUTZ, N.; BAPTISTA, R B. Eficiência agronômica do inoculante de cana-de-açúcar aplicado em três ensaios conduzidos no Estado do Rio de Janeiro durante o primeiro ano de cultivo. Seropédica: Embrapa Agrobiologia, 2009, 22 p. (Embrapa Agrobiologia. Boletim de pesquisa e desenvolvimento, 45). REIS, V.M.; CRUZ, G.B.; FERREIRA, A.; FERREIRA, M.F.; FERREIRA, A.C.; REIS JÚNIOR, F.B.; SALLES, J.F.; WEBER, O.B. Produção e caracterização de soros policlonais para a detecção de bactérias diazotróficas. Seropédica, RJ: EMBRAPACNPAB, 1997. 11p. (EMBRAPA-CNPAB. Documentos, 30) 97 REIS, V.M.; ESTRADA-DE LOS SANTOS, P.; TENORIO-SALGADO, S.; VOGEL, J.; STOFFELS, M.; GUYON, S.; MAVINGUI, P.; BALDANI, V.L.D.; SCHMID, M.; BALDANI, J.I.; BALANDREAU, J.; HARTMANN, A.; CABALLERO-MELLADO, J. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. International Journal of Systematic and Evolutionary Microbiology, v.54, p.2155–2162, 2004. REIS, V.M.; OLIVEIRA, A.L.M.; BALDANI, V.L.D.; OLIVARES, F.L.; BALDANI, J.I. Fixação biológica de nitrogênio simbiótica e associativa. In: FERNANDES, M.S., ed. Nutrição mineral de plantas. Viçosa, Sociedade Brasileira de Ciências do Solo. 2006. p.153-172. REIS, V.M.; REIS JUNIOR, F.B.; QUESADA, D.M.; OLIVEIRA, O.C.A.; ALVES, B.J.R.; URQUIAGA, S.; BODDEY, R.M. Biological nitrogen fixation associated with tropical pasture grasses. Australian Journal of Plant Physiology, v.28. p.837-844, 2001. RIGGS, P.J.; CHELIUS, M.K.; INIGUEZ, A.L.; KAEPPLER, S.M.; TRIPLETT, E.W. Enhanced maize productivity by inoculation with diazotrophic bacteria. Australian Journal of Plant Physiology, v. 28, p. 829-836, 2001. RODRIGUES, E.P. Isolamento e caracterização de mutantes de Gluconacetobacter diazotrophicus defectivos na produção de auxinas. Tese (Doutorado em Agronomia, área de concentração em Biotecnologia vegetal) - Universidade Federal do Rio de Janeiro, Rio de Janeiro. p.142,. 2008. RODRIGUES, L. da S.; BALDANI, V.L.D.; REIS, V.M.; BALDANI, J.I. Diversity of endophytic diazotrophic bacteria of the genus Herbaspirillum and Burkholderia in wetland rice. Pesquisa agropecuária brasileira, v.41, p.275-284, 2006. RODRÍGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances,v.17, p.319-339, 1999. ROESCH, L.F.W.; OLIVARES, F.L.; PASSAGLIA, L.M.P.; SELBACH, P.A.; SA, E.L.S.; CAMARGO, F.A.O. Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen supply. World Journal of Microbiology and Biotechnology, v.22, p.967-974, 2006. ROESCH, L.F.W.; CAMARGO, F.A.O.; BENTO, F.M.; TRIPLETT, E.W. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant and Soil, v.302, p.91–104, 2008. ROY, B.D.; DEB, B.; SHARMA, G.D. Role of acetic acid bacteria in biological N2 fixation- A Review. Biofrontiers, v.1, p.47-57. 2010. SABINO, D.C.C. Interação planta-bactéria diazotrófica na cultura do arroz. 2007. 71p. Tese (Doutorado em Agronomia – Ciência do solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica. SAHARAN, B.S.; NEHRA, V. Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sciences and Medicine Research, v.21, p.1-30, 2011. SAIKIA, S.P.; JAIN, V. Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Current Science, v.92, p.317–322, 2007. SALA, V.M.R.; CARDOSO, E.J.B.N.; FREITAS, J.G.; SILVEIRA, A.P.D. Response of wheat genotypes to inoculation with diazotrophic bacteria under field conditions. Pesquisa Agropecuária Brasileira, v.42, p.833-842, 2007. 98 SALAMONE, I.E.G. de; DI SALVO, L.P.; ORTEGA, J.S.E.; BOA SORTE, P.M.F.; URQUIAGA, S.; TEIXEIRA, K.R. dos S. Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant and Soil, v.336,p.351-362, 2010. SALLES, J.F.; DE SOUZA, F.A.; VAN ELSAS, J.D. Molecular method to assess the diversity of Burkholderia species in environmental samples. Applied and Environmental Microbiology, v.68, p.1595–1603, 2002. SAMSON, R.; MANI, S.; BODDEY, R.; SOKHANSANJ, S.; QUESADA, D.; URQUIAGA, S.; REIS, V.; HO LEM, C. The potential of C4 perennial grasses for developing a global BIOHEAT industry. Critical reviews in plant sciences, v.24, p.1-35, 2005. SANTOS, C.J.A. Composição mineral, valor protéico e fatores fisiológicos de 4 cultivares de capim-elefante (Pennisetum purpureum, Schum.), submetidos a duas idades de corte. Recife: UFRPE, 1994. 107p. Dissertação (Mestrado em Produção Animal) - Universidade Federal Rural de Pernambuco, 1994. SARWAR, M.; KREMER, R.J. Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant and Soil, v.172, p. 261- 269, 1995. SASHIDHAR, B.; PODILE, A.R. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway glucose dehydrogenase. Journal of Applied Microbiology, v.109, p.1-12, 2010. SCHLOSS, P.D.; WESTCOTT, S.L.; RYABIN, T.; HALL, J.R.; HARTMANN, M.; HOLLISTER, E.B.; LESNIEWSKI, R.A.; OAKLEY, B.B.; PARKS, D.H.; ROBINSON, C.J.; SAHL, J.W.; STRES, B.; THALLINGER, G.G.; VAN HORN, D.J.; WEBER, C.F. Introducing MOTHUR: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, v.75, n.23, p.7537-7541, 2009. SCHMER, M.R.; VOGEL, K;P.; MITCHEL, R.B.; PERRIN, R.K. Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, v.105, p.464–469, 2008. SESHADRI, S.; MUTHUKUMARASAMY, R.; LAKSHMINARASIMHAN, C.; IGNACIMUTHU, S. Solubilization of inorganic phosphates by Azospirillum halopraeferans. Current Science, v.79, p.565-567, 2000. SESSITSCH, A.; REITER, B.; PFEIFER, U.; WILHELM, E. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiology Ecology, v.39, p.23- 32, 2002. SHANKAR, M.; PONRAJ, P.; ILAKKIAM, D.; GUNASEKARAN, P. Root colonization of a rice growth promoting strain of Enterobacter cloacae. Journal of Basic Microbiology, v.51, p.523-30, 2011. SILVA, M.M.P.; REIS, V.M.; URQUIAGA, S.; BODDEY, R.M.; XAVIER, D.F.; DÖBEREINER, J. Screening Pennisetum ecotypes (Pennisetum purpureum, Schum.) for biological nitrogen fixation. In: BODDEY RM, RESENDE AS (ed.) Int. Symp. of Sustainable Agriculure for the Tropics - The Role of Nitrogen Fixation. Angra dos Reis, Brazil, 1995. pp 236–237. SILVA, J.G.; SERRA, G.E. Energy balance for ethyl alcohol production from crops. Science, v.201(8), p. 903–906., 1978. 99 SIMPSON, F.B.; BURRIS, R.H. A nitrogen pressure of 50 atmospheres does revent evolution of hydrogen by nitrogenase. Science, v.224, p.1095-1097, 1984. SOARES, R.A.; ROESCH, L.F.R.; ZANATTA, G.; CAMARGO, F.A.O.; PASSAGLIA, L.M.P. Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Applied Soil Ecology, v.33. p.221-234, 2006. SOMERVILLE, C.; YOUNGS, H.; TAYLOR, C.; DAVIS, S.C.; LONG, S.P. Feedstocks for lignocellulsic biofuels. Science, v.329, p.790–792, 2010. SPAEPEN, S.; VANDERLEYDEN, J.; OKON, Y.; Plant Growth-Promoting Actions of Rhizobacteria. In VAN LOON, L. C. (ed) Advances in Botanical Research, Burlington: Academic Press, v. 51, p.283-320, 2009. SPRENT J. I.; SPRENT P. Nitrogen fixing organisms: pure and applied aspects. Chapman and Hall, London , p 266, 1990. SPRING, S.; KÄMPFER, P.; LUDWIG, W.; SCHLEIFER, K.H. Polyphasic characterization of the genus Leptothrix: new descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend. Systematic and Applied Microbiology, v.19, p.634–643, 1996. STAAL, M.; TE LINTEL-HEKKERT, S.; HARREN, F.; STAL, L. Nitrogenase activity in cyanobacteria measured by the acetylene reduction assay: a comparison between batch incubation and on-line monitoring. Environmental Micobiology, v.3, p. 343-351, 2001. EVANS, H.J.; BURRIS, R.H. Highlights in Biological nitrogen fixation during the last 50 years. In: STACEY, G.; BURRIS, R.H.; EVANS, H.J. eds. Biological Nitrogen Fixation. New York: Chapman and Hall, 1992. p.1-42. SUMAN, A.; A. GAUR; A.K. SHRIVASTAVA.; R.L. YADAV, 2005. Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regulation, v.47, p. 155-162. SUNDARA, B.; NATARAJAN, V.; HARI, K. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research, v. 77, p. 43-49, 2002. SUR, S.; BOTHR, A.K.; SEM, A. Symbiotic nitrogen fixation-A bioinformatics perspective. Biotechnology, v.9 p. 257-273 , 2010. TAGHAVI, S.; GARAFOLA, C.; MONCHY, S.; NEWMAN, L.; HOFFMAN, A.; WEYENS, N.; BARAC, T.; VANGRONSVELD, J.; VAN DER LELIE, D. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and Environmental Microbiology, v.75, p.748–757, 2009. TAKEI, K.; SAKAKIBARA, H.; TANIGUCHI, M.; SUGIYAMA, T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant and Cell Physiology, v.42, p.85-93, 2001. TAMURA, K.; PETERSON, D.; PETERSON, N.; STECHER, G.; NEI, M.; KUMAR, S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, v.28, p.2731-2739, 2011. 100 TAYLOR, S.H.; HULME, S.P.; REES, M.; RIPLEY, B.S.; WOODWARD, F.I.; OSBORNE, C.P. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytologist, v.185, p. 780–791, 2010. TCACENCO, F. A.; BOTREL, M. A. Identificação e avaliação de acessos e cultivares de capim-elefante. In: CARVALHO, M. M.; ALVIM, M. J.; XAVIER, D. F.; CARVALHO, L.A. Capim-elefante: produção e utilização.: EMBRAPA-CNPGL, Juiz de Fora, p. 1-30, 1997. TEIXEIRA, K.R.S.; MARIN, V.A.; BALDANI, J.I. Nitrogenase: bioquímica do processo de FBN. Documentos 84; Embrapa Agrobiologia , Seropédica:, p.25,1998. TERAKADO-TONOOKA, J.; OHWAKI, Y.; YAMAKAWA, H.; TANAKA, F.; YONEYAMA, T.; FUJIHARA, S. Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes and Environments, v.23, p.89– 93, 2008. THAWEENUT, N.; HACHISUKA, Y.; ANDO, S.; YANAGISAWA, S, YONEYAMAT. Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids):expression of nifH genes similar to those of rhizobia. Plant and Soil, v.338, p.435–449, 2011. TRINGE, S.G.; HUGENHOLTZ, P.A renaissance for the pioneering 16S rRNA gene. Current Opinion in Microbiology, v.11, p.442–446, 2008. TRIVEDI, P.; ZHILI, H.; VAN NOSTRAND, J.D.; ALBRIGO, G.; ZHOU, J.; WANG, N. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere ISME Journal, v.6, p.363–383, 2012. TRUJILLO, M.E.; WILLEMS, A.; ABRIL, A.; PLANCHUELO, A.M.; RIVAS, R.; LUDENA, D.; MATEOS, P.F.; MARTINEZ-MOLINA, E. VELASQUEZ, E. Nodulation of Lupinus albus by Strains of Ochrobactrum lupine. Applied and Environmental Microbiology,v. 71, p.1318-1327, 2005. TURNBAUGH, P.J.; HAMADY, M.; YATSUNENKO, T.; CANTAREL, B.L.; DUNCAN, A.; LEY, R.E.; SOGIN, M.L.; JONES, W.J.; ROE, B.A.; AFFOURTIT, J.P.; EGHOLM, M.; HENRISSAT, B.; HEATH, A.C.; KNIGHT, R.; GORDON, J.I. A core gut microbiome in obese and lean twins. Nature, v.57, p.480-484, 2009. UEDA, T.; SUGA, Y.; YAHIRO, N.; MATSUGUCHI T. Remarkable N2 –fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. Journal of Bacteriology, v.177, p.1414-1417, 1995. VADAS, P.A.; BARNETT, K.H.; UNDERSANDER, D.J. Economics and energy of ethanol production from alfalfa, corn and switchgrass in the Upper Midwest, USA. BioEnergy Research, v.1, p.44-55, 2008. VASSILEV, N.; VASSILEVA, M. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Applied Microbiology and Biotechnology, v.61, p.435–440, 2003. VEIGA, J. B.; MOTT, G. D.; RODRIGUES, L. R. A. et al. Capim-elefante anão sob pastejo. I. Produção de forragem. Pesquisa Agropecuária Brasileira, v.20, n.8, p.929-936, 1985. VERSALOVIC, J.; SCHNEIDER, M.; DE BRUIJN, F.J.; LUPSKI, J.R. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, v.5, p.25-40. 1994. 101 VESSEY, J. K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, v. 255, p.571-586, 2003. VESSEY, J.K.; PAWLOWSKI, K.; BERGMAN, B. Root-based N2–fixing symbiosis: Legumes, actinorhizal plants, Parasponia sp. and Cycads. Plant and Soil, v.266, p 205-230, 2004. VIDEIRA, S.S.; ARAÚJO, J.L.S.; RODRIGUES, L.S.; BALDANI, V.L.D.; BALDANI, J.I. Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiology Letters, v.293, p.11-19, 2009. VIDEIRA, S.S.; OLIVEIRA, D.M.; MORAIS, R.F.; BORGES, W.L.; BALDANI, V.L.D.; BALDANI, J.I. Genetic diversity and plant growth promoting traits of diazotrophic bacteria isolated from two Pennisetum purpureum Schum. genotypes grown in the field. Plant and Soil (2011) DOI: 10.1007/s11104-011-1082-6 VOLLÚ, R.E.; BLANK, A.F.; SELDIN, L.; COELHO, M.R.R. Molecular diversity of nitrogen-fixing bacteria associated with chrysopogon zizanioides (L.) Roberty (vetiver). an assential oil producer plant.Plant and Soil, 2011. DOI: 10.1007/s11104-011-0801-3 VON CAEMMERER, S.; FURBANK, R.T. The C4 pathway: an efficient CO2 pump. Photosynthesis Research, v. 77, p.191–2003, 2003. WAGNER, R. The regulation of ribosomal RNA synthesis and bacterial cell growth. Archives of Microbiology, v.161, p.100–109, 1994. WANG, Q.; GARRITY, G.M.; TIEDJE, J.M.; COLE, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, v.73, p.5261-5267, 2007. WANG, R.F.; CAO, W.W.; CERNIGLIA, C.E. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation. International Journal of Systematic Bacteriology, v.46, p.341-343, 1996. WARTIAINEN, I.; ERIKSSON, T.; ZHENG, W.; RASMUSSEN, U. Variation in the active diazotrophic community in rice paddy-nifH PCR-DGGE analysis of rhizosphere and bulk soil. Applied Soil Ecology, v.39, p.65-75, 2008. WEINERT, N.; PICENO, Y.; DING, G.C.; MEINCKE, R.; HEUER, H.; BERG, G.; SCHLOTER, M.; ANDERSEN, G.; SMALLA, K. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiology Ecology, v.75, p.497-506, 2011. WELCH, S.A.; TAUNTON, A.E.; BANFIELD, J.F. Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal, v. 19, p.343-367, 2002. WU, S.C.; CAO, Z.H.; LI, Z.G.; CHEUNG, K.C.; WONG, M.H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, v.125, p.155–166, 2005. XAVIER, D.F.; BOTREL MA; VERNEQUE, R.S.; FREITAS, V.P.; BODDEY, R.M. Estabilidade da produção de forragem de cultivares de capim-elefante em solo com baixa disponibilidade de nitrogênio. Pasturas tropicales, v.20 p.35–40, 1998. XIN, G.; ZHANG, G.Y.; KANG, J.W.; STALEY, J.T.; DOTY, S.L. A diazotrophic, indole-3- acetic acid-producing endophyte from wild cottonwood. Biology and Fertility of Soils, v.45, p.669–674, 2009. YAMADA, Y.; HOSHINO, K.; ISHIKAWA, T. The phylogeny of acetic acid bacteria based on the partial sequences of 16s ribosomal RNA: the elevation of the subgenus 102 Gluconoacetobacterium to generic level. Bioscience Biotechnology e Biochemistry, 61:1244-1251, 1997. YANG, C.H.; CROWLEY D.E.; BORNEMAN, J.; NKEEN, T. Microbial phyllosphere populations are more complex than previously realized. Proceedings of the National Academy of Sciences of the United States of America, v.98, p.3889-3894, 2001. YANO, D.M.Y.; FARRIS, M.G.; UMINO, C.Y.; COUTINHO, H.L.C.; CANHOS, V.P. Técnicas para cultivo, identificação e preservação de bactérias. Campinas: Fundação Tropical de Pesquisas e Tecnologia “André Tosello”, 1993. 64p. YAZDANI, A.; A.R. ANITA; K.S. HAYATI ; M.Y. ADUN, 2009. Association between awkward posture and musculoskeletal symptom among automobile assembly line workers in Malaysia. Proceeding of the National Symposium on Advancements in Ergonomics and Safety (Ergosym), Dec. 1-2, Universiti Malaysia Perlis, Venue. http://publicweb.unimap.edu.my/~ergosym2009/callforpapers.htm ZEHR, J.P. Nitrogen fixation by marine cyanobacteria. Trends in Microbiology, v.19, p.162- 732, 2011. ZEHR, J.P.; BENCH, S.R.; MONDRAGON, E.A.; MCCARREN, J.; DELONG, E.F. Low genomic diversity in tropical oceanic N2-fixing cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, v.104, p.17807–17812, 2007. ZEHR, J.P.; McREYNOLDS, L.A. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Applied and Environmental Microbiology, v.55, p.2522–2526, 1989. ZHANG, G.X.; PENG, G.X.; WANG, E.T.; YAN, H.;·YUAN, Q.H.; ZHANG, W.; LOU, X.; WU, H.; TAN, Z.Y. Diverse endophytic nitrogen-fixing bacteria isolated from wild rice Oryza rufipogon and description of Phytobacter diazotrophicus gen. nov. sp. nov. Archives of Microbiology, v.188, p. 431-9, 2007. ZILLI, J.É.; BOTELHO, G.R.; NEVES, M.C.P.; RUMJANEK, N.G. Efeito de glyphosate e imazaquin na comunidade bacteriana do rizoplano de soja (Glycine max (L.) Merrill) e em características microbiológicas do solo. Revista Brasileira de Ciência do Solo, v.32, p.633- 642, 2008. ZUCKERMANN, H.; STAAL, M.; STAL, L. J.; REUSS, J.; HEKKERT S TE, L., HARREN F.; PARKER, D. On-line monitoring of nitrogenase activity in Cyanobacteria by sensitive laser photoacoustic detection of ethylene Applied and Environmental Microbiology, v.63, p.4243 - 4251, 1997.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/60750/2012%20-%20Sandy%20Sampaio%20Videira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3647
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-06-18T22:19:09Z No. of bitstreams: 1 2012 - Sandy Sampaio Videira.pdf: 6638879 bytes, checksum: f8948f450c10e31be903f25ddc06684f (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-06-18T22:19:09Z (GMT). No. of bitstreams: 1 2012 - Sandy Sampaio Videira.pdf: 6638879 bytes, checksum: f8948f450c10e31be903f25ddc06684f (MD5) Previous issue date: 2012-02-15eng
Appears in Collections:Doutorado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2012 - Sandy Sampaio Videira.pdf2012 - Sandy Sampaio Videira6.48 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.