Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/10987
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Dias, Albiane Carvalho | |
dc.date.accessioned | 2023-11-19T21:58:09Z | - |
dc.date.available | 2023-11-19T21:58:09Z | - |
dc.date.issued | 2021-11-30 | |
dc.identifier.citation | DIAS, Albiane Carvalho. Metabolismo de nitrogênio em plantas de milho inoculadas com dois gêneros de bactérias diazotróficas. 2021. 134 f. Tese (Doutorado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2021. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/10987 | - |
dc.description.abstract | Maize (Zea mays L) is one of the world’s leading produced cereals. Its inoculation with diazotrophic bacteria described as plant growth-promoters can reduce the demand for nitrogen fertilizers and at the same time the costs associated with this practice. This study investigated how inoculation of the diazotrophic bacteria Azospirillum brasilense, Azospirillum baldaniorum and Herbaspirillum seropedicae in maize plants would influence the modulation of root architecture and the parameters associated with the absorption rate of nutrients, especially nitrogen (N), under different conditions of availability of N. Experiments were developed in a hydroponic system and sterile substrate (sand+vermiculite) in a greenhouse, in order to verify the metabolism and expression of genes involved in the absorption and assimilation of N. For this purpose, nitrogen fractions, the activity of the enzymes nitrate reductase and glutamine synthetase, the gene expression of proton pump isoforms (ZmHA2 and ZmHA4), high-affinity nitrate transporters (NO3-) (ZmNRT2.3, ZmNRT2.5 and ZmNRT3.1A) and N-reduction and assimilation enzymes (ZmNR1, ZmNR2, ZmGS1.1, ZmGS1.5, ZmGS2 and ZmNADH-GOGAT) were evaluated. Parameters such as biomass accumulation, total N, N use efficiency (NUE), leaf area and chlorophyll index were also evaluated. The inoculation with A. baldaniorum (Ab)-Sp245 and H. seropedicae (Hs)-ZAE94 strains promoted the greatest changes in root architecture, with improvement in all parameters evaluated, which was in agreement with the increase in dry mass and accumulation of N, but they were dependent on the date of sampling and experiment. Increases in the accumulation of biomass and total N of up to 150 and 180%, respectively, were found in the treatment inoculated with Ab-Sp245 in relation to the control. Inoculation with both strains also promoted increments greater than 90% for length, volume and root área. The parameters improved due to greater availability of N. The Ab-Sp245 was more effective in the greater absorption of macronutrients, with higher speed of absorption of NO3- and provided a greater NUE under low N. The changes caused by inoculation in the gene expression profile were less consistent, only after 2 h of induction of the NO3- transport system did Hs-ZAE94 increase the expression of two high-affinity NO3- transporters (ZmNRT2.3 and ZmNRT2.5) and two isoforms of glutamine synthetase (ZmGS1.1 and ZmGS2) When compared to the control, but those found in the content of soluble metabolites and enzymatic activity indicated an improvement in the N assimilation process in the inoculated plants. The shift in root architecture and the maintenance of N uptake per unit of root area through inoculation with Ab-Sp245 was probably the main effect. | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.description.sponsorship | EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Azospirillum baldaniorum | por |
dc.subject | Bactéria promotora de crescimento de planta | por |
dc.subject | Herbaspirillum seropedicae | por |
dc.subject | Nitrato | por |
dc.subject | Zea mays L. | por |
dc.subject | Plant growth-promoting bacteria | eng |
dc.subject | Nitrate | eng |
dc.title | Metabolismo de nitrogênio em plantas de milho inoculadas com dois gêneros de bactérias diazotróficas | por |
dc.title.alternative | Nitrogen metabolism in maize plants inoculated with two genera of diazotrophic bacteria | eng |
dc.type | Tese | por |
dc.contributor.advisor1 | Reis, Veronica Massena | |
dc.contributor.advisor1ID | 631.052.847-53 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9099587982889283 | por |
dc.contributor.advisor-co1 | Santos, Leandro Azevedo | |
dc.contributor.referee1 | Reis, Veronica Massena | |
dc.contributor.referee2 | Alves, Bruno José Rodrigues | |
dc.contributor.referee3 | Coelho, Irene da Silva | |
dc.contributor.referee4 | Vidal, Marcia Soares | |
dc.contributor.referee5 | Alves, Gabriela Cavalcanti | |
dc.creator.ID | 142.182.367-55 | por |
dc.creator.Lattes | http://lattes.cnpq.br/7875627543551810 | por |
dc.description.resumo | O milho (Zea mays L.) é um dos principais cereais produzidos no mundo. A sua inoculação com bactérias diazotróficas descritas como promotoras de crescimento de plantas pode reduzir a demanda por fertilizantes nitrogenados e ao mesmo tempo os gastos associados a essa prática. Este estudo investigou como a inoculação das bactérias diazotróficas Azospirillum brasilense, Azospirillum baldaniorum e Herbaspirillum seropedicae em plantas de milho influenciaria a modulação da arquitetura da raiz e os parâmetros associados à taxa de absorção de nutrientes, especialmente de nitrogênio (N), sob diferentes condições de disponibilidade de N. Foram desenvolvidos seis experimentos, quatro em sistema hidropônico e dois em substrato estéril (areia+vermiculita) em casa de vegetação, a fim de verificar o metabolismo e a expressão de genes envolvidos na absorção e assimilação de N. Para isso, foram avaliadas nos tecidos vegetais as frações nitrogenadas, açúcares solúveis, a atividade das enzimas nitrato redutase e glutamina sintetase, a expressão gênica de isoformas de bombas de prótons (ZmHA2 e ZmHA4), transportadores de alta afinidade de nitrato (NO3-) (ZmNRT2.3, ZmNRT2.5 e ZmNRT3.1A) e das enzimas de redução e assimilação de N (ZmNR1, ZmNR2, ZmGS1.1, ZmGS1.5, ZmGS2 e ZmNADH-GOGAT). Parâmetros como acúmulo de biomassa, N total, eficiência do uso de N (EUN), área foliar e índice de clorofila também foram avaliados. A inoculação com as estirpes de Azospirillum baldaniorum (Ab)-Sp245 e Herbaspirillum seropedicae (Hs)-ZAE94 promoveram as maiores mudanças na arquitetura radicular, com melhora em todos os parâmetros avaliados, o que estava de acordo com o aumento da massa seca e acúmulo de N, mas dependente da data de amostragem e do ensaio. Incrementos no acúmulo de biomassa e N total em até 150 e 180%, respectivamente, foram encontrados no tratamento inoculado com Ab-Sp245 em relação ao controle. A inoculação com ambas as estirpes também promoveu incrementos superiores a 90% para comprimento, volume e área radicular. Os parâmetros avaliados melhoraram em função da maior disponibilidade de N. A Ab-Sp245 foi mais efetiva na maior absorção de macronutrientes, com maior velocidade de absorção de NO3- e proporcionou uma maior EUN sob baixo N. As mudanças provocadas pela inoculação no perfil de expressão gênica foram menos consistentes, somente após 2 h da indução do sistema de transporte de NO3- a Hs-ZAE94 aumentou a expressão de dois transportadores de alta afinidade de NO3- (ZmNRT2.3 e ZmNRT2.5) e duas isoformas de glutamina sintetase (ZmGS1.1 e ZmGS2) quando comparado ao controle, mas as encontradas no conteúdo de metabólitos solúveis e atividade enzimática indicaram melhoria no processo de assimilação de N nas plantas inoculadas. As mudanças na arquitetura radicular e a manutenção da absorção de N por unidade de área da raiz através da inoculação com Ab-Sp245 foi provavelmente o efeito principal. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Agronomia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | por |
dc.relation.references | ADESEMOYER, A. O.; KLOEPPER, J. W. Plant-microbes interactions in enhanced fertilizeruse efficiency. Applied Microbiology and Biotechnlogy, v. 85, n. 1, p. 1-12, 2009. ADESEMOYE, A.O.; TORBERT, H.A.; KLOEPPER J.W. Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, v. 58, p. 921-929, 2009. AMIOUR, N.; IMBAUD, S.; CLÉMENT, G.; AGIER, N.; ZIVY, M.; VALOT, B.; BALLIAU, T.; ARMENGAUD, P.; QUILLERÉ, I.; CANÃS, R.; TERCET-LAFORGUE, T.; HIREL, B. The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. Journal of Experimental Botany, v. 63, n. 14, p. 5017-5033, 2012. ASSOCIAÇÃO NACIONAL DOS PRODUTORES E IMPORTADORES DE INOCULANTES (ANPII) - Estatísticas. Disponível em: < http://anpii.org.br/estatisticas/>. Acesso em: 17 mai. 2021. ASSOCIAÇÃO NACIONAL PARA DIFUSÃO DE ADUBOS (ANDA)- Estatísticas. Disponível em: < http://anda.org.br/estatisticas/>. Acesso em: 10 mar. 2020. ALBAREDA, M.; RODRÍGUEZ-NAVARRO, D.N.; TEMPRANO, F.J. Soybean inoculation: dose, N fertilizer supplementation and rhizobia persistence in soil. Field Crops Research, v. 113, p. 352-356, 2009. ALVES, G.C. Estudo da Interação da Bactéria BR11417 de Herbaspirillum seropedicae com Plantas de Milho. 2011. 52 f. Tese (Doutorado em Agronomia-Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro, Instituto de Agronomia, Seropédica, RJ. ALVES, G.C. Efeito da inoculação de bactérias diazotróficas dos gêneros Herbaspirillum e Burkholderia em genótipos de milho. 2007. 54p. Dissertação (Mestrado em Agronomia- Ciência do solo) - Universidade Federal Rural do Rio de Janeiro, Instituto de Agronomia, Seropédica, RJ. ALVES, G.C.; VIDEIRA, S.S.; URQUIAGA, S.; REIS, V.M. Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant and Soil, v. 387, p. 307-321, 2015. ALVES, G.S.; SANTOS, C.L.R.; ZILLI, J.E.; REIS JUNIOR, F.B.; MARRIEL, I.E.; BREDA, F.A.F.; BODDEY, R.M.; REIS, V.M. Agronomic evaluation of Herbaspirillum seropedicae strain ZAE94 as an inoculant to improve maize yield in Brazil. Pedosphere, v. 31, n. 4, p. 583-595, 2021. ALVES, G.S.; SOBRAL, L.F.; REIS, V.M. Grain yield of maize inoculated with diazotrophic bacteria with the application of nitrogen fertilizer. Revista Caatinga, v. 33, n.3, p. 644-652, 2020. ARANGO, M.; GÉVAUDANT, F.; OUFATTOLE, M.; BOUTRY, M. The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta, v. 216, p. 355-365, 2003. ARAÚJO, F.F; FOLONI, J.S.S.; WUTZKE, M.; MELEGARI, A.S.; RACK, E. Híbridos e variedades de milho submetidos a inoculação de sementes com Herbaspirillum seropedicae. Semina, v. 34, n. 3, p. 1043-1054, 2013. ARAÚJO, E.O.; MARTINS, M.R.; VITORINO, A.C.T; MERCANTE, F.M.; URQUIAGA, S.S. Effect of nitrogen fertilization associated with diazotrophic bacteria inoculation on nitrogen use efficiency and its biological fixation by corn determined using 15N. African Journal of Microbiology Research, v. 9, n. 9, p. 643-650, 2015. ARDAKANI, M.R.; MAZAHERI, D.; MAFAKHERI, S.; MOGHADDAM, A. Absorption efficiency of N, P, K through triple inoculation of wheat (Triticum aestivum L.) by Azospirillum brasilense, Streptomyces sp., Glomus intraradices and manure application. Physiology and Molecular Biology of Plants, v. 17, n. 2, p. 181-192, 2011. ARKHIPOVA, T.N.; PRINSEN, E.; VESELOV, S.U.; MARTINENKO, E.V.; MELENTIEV, A.I.; KUDOYAROVA, G.R. Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil, v. 292, p. 305-315, 2007. AWIKA, J.M. Major cereal grains production and use around the world. ACS Symposium series, v. 1089, Chapter 1, p. 1-13, 2011. AZEVEDO, I.G.; OLIVARES, F.L.; RAMOS, A.C.; BERTOLASI, A.A.; CANELLAS, L.P. Humic acids and Herbaspirillum seropedicae change the extracelular H+ flux and gene expression in maize roots seedlings. Chemical and Biological Technologies in Agriculture, v. 6, n. 8, p. 1-10, 2019. BABALOLA, O.O. Beneficial bacteria of agricultural importance. Biotechnological Letters, v. 32, p. 1559-1570, 2010. BABALOLA, O.O.; SANNI, A.I.; ODHIAMBO, G.D. TORTO, B. Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and delectable amounts of ethylene are produced. World Journal of Microbiology and Biotechnology, v. 23, p. 747-752, 2007. BALDANI, J.I.; BALDANI, V.L.D.; SELDIN, L.; DÖBEREINER, J. Characterization of Herbaspirillum seropedicae gen. nov.: a root-associated nitrogen-fixing bacterium. International Journal of Systematic Bacteriology, v. 36, n. 1, p. 86-93, 1986b. BALDANI, V.; ALVAREZ, M.; BALDANI, J.I.; DÖBEREINER, J. Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant and Soil, v. 90, p. 35-46, 1986a. BALDANI, J. I.; CARUSO, L. V.; GOI, S.R.; DÖBEREINER, J. Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, v. 29, p. 911-922, 1997. BALDANI, J.I.; BALDANI, V.L.D.; SELDIN, L.; DÖBEREINER, J. Characterization of Herbaspirillum seropedicae gen. nov. sp. nov. a root associated nitrogen fixing bacterium. International Journal os Systematic Evolutionary Bacteriology, v.29, p.911-922, 1997. BALDANI, J.I.; GUEDES, H.V.; VIDAL, M.S.; SCHWAB, S.; TEIXEIRA, K.R.S.; CRUZ, L.M.; ARAUJO, J.L.S. Base de dados genômica de estirpes que compõem o inoculante de cana-de-açúcar e milho. Seropédica, Rio de Janeiro, 2011. (Embrapa Agrobiologia, Documentos, 282). BALDANI, J.I.; REIS, V.M.; VIDEIRA, S.S.; BODDEY, L.H.; BALDANI, V.L.D. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil, v. 384, p. 413-431, 2014. BALDOTTO, M.A.; BALDOTTO, L.E.B.; SANTANA, R.B.; MARCIANO, C.R. Initial performance of maize in response to NPK fertilization combined with Herbaspirillum seropedicae. Revista Ceres, v. 59, n. 6, p. 841-849, 2012. BARAK, R.; NUR, I.; OKON, Y. Detection of chemotaxis in Azospirillum brasilense. Journal of Applied Bacteriology, v. 53, p. 399-403, 1983. BARASSI, C.A.; SUELDO, R.J.; CREUS, C.M.; CARROZZI, L.E.; CASANOVAS, W.M.; PEREYRA, M.A. Potencialidad de Azospirillum en optimizer el crecimiento vegetal bajo condiciones adversas. In: CASSÁN, F.D.; GARCIA DE SALAMONE, I. (Ed.) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asociación Argentina de Microbiologia, p. 49-59, 2008. BASHAN, Y. Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biology and Biochemistry., v. 18, n. 3, p. 297-301, 1986. BASHAN Y. Short exposure to Azospirillum brasilense Cd inoculation enhanced proton efflux of intact wheat roots. Canadian Journal of Microbiology, v. 36, p. 419-425, 1990. BASHAN, Y.; BUSTILLOS, J.J.; LEYVA, L.A.; HERNANDEZ, J.-P.; BACILIO, M. Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biology and Fertility of Soils, v. 42, p. 279-285, 2006. BASHAN, Y.; DE-BASHAN, L. How the plant growth-promoting bacterium Azospirillum promotes plant growth. A critical assessment. Advances in Agronomy, v. 108, p. 77-136, 2010. BASHAN, Y.; DE-BASHAN, L.; PRABHU, S.R.; HERNANDEZ J.P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant and Soil, v. 378, p. 1-33, 2014. BASHAN, Y.; LEVANONY, H.; MITIKU, G. Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd. Canadian Journal of Microbiology, v. 35, p. 691- 697, 1989. BASHAN, Y.; LEVANONY, H. Current status of Azospirillum inoculation technology: Azospirillum as challenge for agriculture. Canadian Journal of Microbiology, v. 36, p. 591- 608, 1990. BASHAN, Y.; HOLGUIN, G.; DE-BASHAN, L.E. Review: Azospirillum plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, v. 50, p. 521-577, 2004. BASHAN, Y.; HOGUIN, G. Azospirillum-plant relationship: environmental and physiological advances (1990-1996). Canadian Journal of Microbiology, Ottawa, v. 43, p. 103-121, 1997. BARBIERI, P.; ZANELLI, T.; GALLI, E.; ZANETTI, G. Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiology Letters, v. 36, n. 1, p. 87-90, 1986. BARBIERI, P.; GALLI, E. Effect on wheat root development of inoculation with na Azospirillum brasilense mutante with altered indole-3-acetic acid production. Research in Microbiology, v. 144, n. 1, p. 69-75, 1993. BORÉM, A.; GALVÃO, J.C.C.; PIMENTEL, M.A. Milho: do plantio à colheita. Ed UFV, 351p., 2015. BORGES, E.A.; FERNANDES, M.S.; LOSS, A.; SILVA, E.E.; SOUZA, S.R. Acúmulo e remobilização de nitrogênio em variedades de milho. Revista Caatinga, v. 19, n. 3, p. 278- 286, 2006. BORGES, E.A.; LOSS, A.; SILVA, E.E.; SOUZA, S.R.; FERNANDES, M.S. Cinética de absorção de amônio e efluxo de prótons em variedades de milho. Semina: Ciências Agrárias, v. 30, n. 3, p. 513-526, 2009. BOTTINI, R.; FULCHIERI, M.; PEARCE, D.; PHARIS, R.P. Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiology, v. 90, p. 45-47, 1989. BOUWMAN, A.F; BOUMANS, L.J.M.; BATJES, N.H. Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycle, v. 16, p. 1058, 2002. BREDA, F.A.F.; ALVES, G.C.; REIS, V.M. Produtividade de milho na presença de doses de N e de inoculação de Herbaspirillum seropedicae. Pesquisa Agropecuária Brasileira, v. 51, n. 1, p. 45-52, 2016. BREDA, F.A.F.; ALVES, G.C.; LOPEZ, B.D.O.; ARAGÃO, A.R.; ARAUJO, A.P.; REIS, V.M. Inoculation of diazotrophic bacteria modifies the growth rate and grain yield of maize at different levels of nitrogen supply. Archives Agronomy Soil Science, v. 1, p. 1-15, 2019a. BREDA, F.A.F.; SILVA, T.R.F.; SANTOS, S.G.; ALVES, G.C.; REIS, V.M. Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae. Archives of Microbiology, v. 201, p. 547-558, 2019b. BREDEMEIER, C.; MUNDSTOCK, C.M. Regulação da absorção e assimilação do nitrogênio nas plantas. Ciência Rural, v. 30, n. 2, p. 365-372, 2000. BREMNER, J.M.; MULVANEY, C.S. Nitrogen Total. In: PAGE, A.L.; MILLER, R.H.; KEENEY, D.R. (Ed.). Methods of soil Analysis, Part 2. Chemical and Microbiological Properties. Agronomy Monograph no. 9. 2nd ed. Madison: American Society of Agronomy, 1983. p. 595-624. BROUWER, R. Functional equilibrium: sense or nonsense?. Netherlands Journal of Agricultural Science, v. 31, n. 4, p. 335-348, 1983. BUGBEE, B. Nutrient management in recirculating hydroponic culture. Acta Horticulturae, v. 648, p. 99-112, 2004. BUCHANAN, R. B.; GRUISSEM, W. & JONES, R. L. Biochemistry and Molecular Biology of Plants. 4. ed. Rockville, Maryland. 2000. 1367p. BULGARELLI, D.; SCHLAEPPI, K.; SPAEPEN, S.; VER LOREN VAN THEMAAT, E.; SCHULZE-LEFERT, P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, v. 64, p. 807-838, 2013. CALZAVARA, A.K.; PAIVA, P.H.G.; GABRIEL, L.C.; OLIVEIRA, A.L.M.; MILANI, K.; OLIVEIRA, H.C.; BIANCHINI, E.; PIMENTA, J.A.; OLIVEIRA, M.C.N.; DIAS-PEREIRA, J.; STOLF-MOREIRA, R. Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels. Plant Biology, v. 20, p. 870-878, 2018. CAMILIOS-NETO, D.; BONATO, P.; WASSEM, R.; TADRA-SFEIR, M.Z.; BRUSAMARELLO-SANTOS, L.C.; VALDEMERI, G.; DONATTI, L.; FAORO, H.; WEISS, V.A.; CHUBATSU, L.S.; PEDROSA, F.O.; SOUZA, E.M. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics, v. 15, p. 378, 2014. CANELLAS, L.P.; BALMORI, D.M.; MÉDICI, L.O.; AGUIAR, N.O.; CAMPOSTRINI, E.; ROSA, R.C.C.; FAÇANHA, A.R.; OLIVARES, F.L. A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant and Soil, v. 366, p. 119-132, 2013. CANGAHUALA-INOCENTE, G.C.; AMARAL, F.P.; FALEIRO, A.C.; HUERGO, L.F.; ARISI, A.C.M. Identification of six differentially accumulated proteins of Zea mays seedlings (DKB240 variety) inoculated with Azospirillum brasilense strain FP2. European Journal of Soil Biology, v. 58, p. 45-50, 2013. CANTÚ, T.; VIEIRA, C.E.; PIFFER, R.D.; LUIZ G.C.; SOUZA, S.G.H. Transcriptional modulation of genes encoding nitrate reductase in maize (Zea mays) grown under aluminum toxicity. African Journal of Biotechnology, v. 15, n.43, p.2465-2473, 2016. CAO, Y.; FAN, X.R.; SUN, S.B.; XU, G.H.; HU, J.; SHEN, Q.R. Effect of nitrate on activities and transcript levels of nitrate reductase and glutamine synthetase in rice. Pedosphere, v. 18, n. 5, p. 664-673, 2008. CARVALHO, T.L.G.; BALSEMÃO-PIRES, E.; SARAIVA, R.M.; FERREIRA, P.C.G.; HEMERLY, A.S. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. Journal of Experimental Botany, v. 65, n.19, p. 5631-5642, 2014. CASANOVAS, E.M.; BARASSI, C.A.; SUELDO, R.J. Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Research Communications, v. 30, p. 343-350, 2002. CASSÁN, F.; DIAZ-ZORITA, M. Azospirillum sp. In current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, v. 103, p. 117-130, 2016. CASSÁN, F.; PERRIG, D.; SGROY, V.; MASCIARELLI, O.; PENNA, C.; LUNA, V. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, v. 47, n. 1, p. 28-35, 2009. CASSÁN, F.; VANDERLEYDEN, J.; SPAEPEN, S. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Plant Growth Regulation, v. 33, p. 440-459, 2014. CATALDO, D.; HARRON, M.; SCHARADER, L.E.; YOUNGS, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communication in Soil Science and Plant Analysis, v. 6, p. 853-855, 1975. CHIBEBA, A.M.; KYEI-BOAHEN, S.; GUIMARÃES, M.F.; NOGUEIRA, M.A.; HUNGRIA, M. Feasibility of transference of inoculation-related technologies: a case study of evaluation of soybean rhizobial strains under the agro-climatic conditions of Brazil and Mozambique. Agriculture, Ecosystems & Environment, v. 261, p. 230-240, 2018. COHEN, A.C., TRAVAGLIA, C.N., BOTTINI, R., PICCOLI, P.N. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany, v. 87, p.455-462, 2009. COMETTI, N.N. Nutrição Mineral da Alface (Lactuca sativa L.) em Cultura Hidropônica - Sistema NFT. 2003. Tese (Doutorado em Agronomia-Ciência do solo) - Universidade Federal Rural do Rio de Janeiro, Instituto de Agronomia, Seropédica, RJ. CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos. Safra 2020/21. Nono levantamento. Brasília, DF, 2021. 120 p. CONCEIÇÃO, P.M.; VIEIRA, H.D.; CANELLAS, L.P.; OLIVARES, F.O.; CONCEIÇÃO, P.S. Efeito dos ácidos húmicos na inoculação de bactérias diazotróficas endofíticas em sementes de milho. Ciência Rural, v. 39, n. 6, p. 1880-1883, 2009. COOKSON, S.J.; WILLIAMS, L.E.; MILLER, A.J. Light–dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiology, v. 138, p. 1097-1105, 2005. CORUZZI, G.; LAST, R.; DUDAREVA, N.; AMRHEIN, N. Amino acids. In: BUCHANAN B.B.; GRUISSEM, W.; JONES, R.L. (editors). Biochemistry and molecular biology of plants. 2 ed. Rockville: American Socity of Plant Physiologists, John Wiley & Sons; 2015. p. 289-336. COSGROVE, D.J. Loosening of plant cells walls by expansins. Nature, v. 407, p. 321-326, 2000. COSTA, C.; DWYER, L.M.; ZHOU, X.; DUTILLEUL, P.; HAMEL, C.; REID, L.M.; SMITH, D.L. Root morphology of contrasting maize genotypes. Agronomy Journal, v. 94, n. 1, p. 96- 101, 2002. COUILLEROT, O.; POIRIER, M.A.; PRINGET-COMBARET, C.; MAVINGUI, P.; CABALLERO-MELLADO, J.; MOËNNE-LOCCOZ, Y. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize. Journal of Applied Microbiology, v. 109, n. 2, p. 528- 538, 2010a. COUILLEROT, O.; BOUFFAUD, M.L.; BAUDOIN, E.; MULLER, D.; CABALLEROMELLADO, J.; MOËNNE-LOCCOZ, Y. Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biology and Biochemistry, v. 42, n. 12, p. 2298-2305, 2010b. CRAWFORD, N.M. Nitrate: Nutrient and signal for plant growth. The Plant Cell, v. 7, p. 859- 868, 1995. CRUZ, J.C.; MAGALHÃES, P.C.; PEREIRA FILHO, I.A.; MOREIRA, J.A.A. Milho: O produtor pergunta, a Embrapa responde. Embrapa Informação Tecnológica, 2011, 338p. CROZIER A., KAMIYA Y., BISHOP G., YOKOTA T. Biosynthesis of hormones and elicitor molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology, Rockville, p. 850-929, 2000. CROZIER, A.; ARRUDA, P.; JASMIM, J.M.; MONTEIRO, A.M.; SANDBERG, G. Analysis of indole-3-acetic acid and related indóis in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Applied and Environmental Microbiology, v. 54, p. 2833-2837, 1988. CUNHA, E.T.; PEDROLO, A.M.; PALUDO, F.; SCARIOT, M.C.; ARISI, A.C.M. Azospirillum brasilense viable cells enumeration using propidium monoazide-quantitative PCR. Archives of Microbiology, n. 202, p. 1653-1662, 2020. CUNHA, F.; SILVA, N.; BASTOS, F.; CARVALHO, J.; MOURA, L.; TEIXEIRA, M.; ROCHA, A.; SOUCHIE, E. Efeito da Azospirillum brasilense na produtividade de milho no sudoeste goiano. Revista Brasileira de Milho e Sorgo, v. 13, p. 261-272, 2014. DARTORA, J.; GUIMARÃES, V. F.; MARINI, D.; SANDER, G. Adubação nitrogenada associada à inoculação com Azospirillum brasilense e Herbaspirillum seropedicae na cultura do milho. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, p. 1023- 1029. DARTORA, J.; MARINI, D.; GONCALVES, E.D.V.; GUIMARÃES, V.F. Co-inoculation of Azospirillum brasilense and Herbaspirillum seropedicae in maize. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, n. 6, p. 545-550, 2016. DAVIES, P.J. The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones. Physiology, biochemistry and molecular biology. Kluwer, Dordrecht, p. 1-12, 1995. DAUGHTRY, C.S.T; WALTHALL, C.L; KIM, M.S; COLSTOUN, E.B; MCMURTREY, J.E; Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, v. 74, n. 2, p. 229-239, 2000. DOBBELAERE, S.; CROONENBORGHS, A.; THYS, A.; VANDE BROEK, A.; VANDERLEYDEN, J. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, v. 212, p. 155-164, 1999. DOBBELAERE, S.; VANDERLEYDEN, J.; OKON, Y. Plant growth-promoting effects of diazotrophics the rhizosphere. CRC Critical Reviews in Plant Science, v. 22, n. 2, p. 107-149, 2003. DOBBELAERE, S.; CROONENBORGHS, A.; THYS, A.; PTACEK, D.; VANDERLEYDEN, J.; DUTTO, P.; LABANDERA-GONZALEZ, C.; CABALLERO-MELLADO, J.; AGUIRRE, J.F.; KAPULNIK, Y.; BRENER, S.; BURDMAN, S.; KADOURI, D.; SARIG, S.; OKON, Y. Response of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology, v. 28, p. 871-879, 2001. DÖBEREINER, J.; MARRIEL, I.E.; NERY, M. Ecological distribution of Spirillum lipoferum Beijerink. Canadian Journal of Microbiology, v. 22, n. 10, p. 1464-1473, 1976. DÖBEREINER, J.; PEDROSA, F.O. Nitrogen-fixing bacteria in non leguminous crop plants. Science Tech, Springer Verlag, Madison, p. 1-155 (Brock/Springer series in contemporary bioscience), 1987. DÖBEREINER, J. History and new perspective of diazotrophs in association with nonleguminous plants. Symbiosis, v. 13, n. 1, p. 1-13, 1992. DÖBEREINER, J.; BALDANI, V. L. D.; BALDANI, J. I. Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Brasília: DF: EMBRAPA-SPI, 1995. 60 p. DONATO, V.M.T.S.; ANDRADE, A.G.; SOUZA, E.S.; FRANÇA, J.G.E.; MACIEL, G.A. Atividade enzimática em variedades de cana-de-açúcar cultivadas in vitro sob diferentes níveis de nitrogênio. Pesquisa Agropecuária Brasileira, v. 39, p. 1087-1093, 2004. DOTTO, A.P.; LANA, M.C.; STEINER, F.; FRANDOLOSO, J.F. Produtividade do milho em resposta à inoculação com Herbaspirillum seropedicae sob diferentes níveis de nitrogênio. Revista Brasileira de Ciências Agrárias, v.5, n.3, p. 376-82, 2010. DOYLE, J. J.; DOYLE, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, v. 19, p. 11-15, 1987. ESTRADA, G.A.; BALDANI, V.L.D.; OLIVEIRA, D.M.; URQUIAGA, S.; BALDANI, J.I. Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutriente uptake. Plant and Soil, v. 369, p. 115-129, 2013. EUCLYDES, R. Sistema para análises estatísticas (SAEG 9.1). Viçosa: Funarbe, 2007. FALHOF, J.; PEDERSEN, J.T.; FUGLSANG, A.T.; PALMGREN, M. Plasma membrane H(+)-ATPase regulation in the center of plant physiology. Molecular Plant, n. 9, p. 323-337, 2016. FALEIRO, A.C.; NETO, P.A.V.; SOUZA, T.V.; SANTOS, M.; ARISI, A.C.M. Microscopic and proteomic analysis of Zea mays roots (P30F53 variety) inoculated with Azospirillum brasilense strain FP2. Journal of Crop Science and Biotechnology, v. 18, n. 2, p. 63-71, 2015. FALEIRO, A. C.; PEREIRA, T.P.; ESPINDULA, E.; BROD, F.C.A.; ARISI, A.C.M. Real time PCR detection targeting nifA gene of plant growth promoting bacteria Azospirillum brasilense strain FP2 in maize roots. Symbiosis, v. 61, n. 3, p. 125-133, 2013. FAGES, J. Azospirillum inoculants and field experiments. Y. Okon (Ed.), Azospirillum/plant associations, CRC Press, Boca Raton, p. 87-109, 1994. FANG, X.F.; FANG, S.Q.; YE, Z.Q.; LIU, D.; ZHAO, K.L.; JIN, C.W. NRT1.1 dual-affinity nitrate transport/signalling and its roles in plant abiotic stress resistance. Frontiers in Plant Science, v. 12, p. 1-12, 2021. FAN, X.; NAZ, M.; FAN, X.; XUAN, W.; MILLER, A. J.; XU, G. Plant nitrate transporters: from gene function to application. Journal of Experimental Botany, v. 68, p. 2463-2475, 2017. FAO, FAOSTAT. Food Balances. 2018. Disponível em: https://www.fao.org/faostat/en/#data/FBS Acesso em: 4 abr. de 2021. FELKER, P. Micro determination of nitrogen in seed protein extracts. Analytical Chemistry, v. 49, p. 1080-1080, 1977. FENG, H.; YAN, M.; FAN, X.; L.I, B.; SHEN, Q.; MILLER, A.J.; XU, G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, v. 62, p. 2319-2332, 2011. FERNANDES, M.S.; SOUZA, S.R.; SANTOS, L.A. (Editores). Nutrição Mineral de plantas. 2 ed, 670 p. Viçosa-MG: SBCS, 2018. FERNANDES, M.S. Absorção e metabolismo de nitrogênio em plantas. Boletim técnico, v.1, 50 p., 1978. FERREIRA, D. Sisvar: versão 5.3. Lavras: UFLA, 2010. FERREIRA, N.S.; SANT’ANA, F.H.; REIS, V.M.; AMBROSINI, A.; VOLPIANO, C.G.; ROTHBALLER, M.; SCHWAB, S.; BAURA, V.A.; BALSANELLI, E.; PEDROSA, F.O.; PASSAGLIA, L.M.P.; SOUZA, E.M.; HARTMANN, A.; CASSAN, F.; ZILLI, J.E. Genomebased reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. International Journal of Systematic and eEvolutionary Microbiology, v. 70, n. 12, p. 6203-6212, 2020. FORDE, B.G. Nitrogen signalling pathways shaping root system architecture: an update. Current Opinion in Plant Biology, v. 21, p. 30-36, 2014. FRÍAS, I.; CALDEIRA, M.T. PÉREZ-CASTINEIRA, J.R.; NAVARRO-AVINÓ, P.; CULLIANEZ-MACIÁ, F.A.; KUPPINGER, O.; STRANSKY, H.; PAGÉS, M.; HAGER, A.; SERRANO, R. A major isoform of the maize plasma membrane H+-ATPase: Characterization and induction by auxin in coleoptiles. The Plant Cell, v. 8, p. 1533-1544, 1996. FUKAMI, J.; OLLERO, F. J.; MEGÍAS, M.; HUNGRIA, M. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, v. 7, n. 1, p. 153, 2017. GALINDO, F.S.; TEIXEIRA FILHO, M.C.M.; BUZETTI, S.; PAGLIARI, P.H.; SANTINI, J.M.K.; ALVES, C.J.; MEGDA, M.M.; NOGUEIRA, T.A.R.; ANDREOTTI, M.; ARF, O. Maize yield response to nitrogen rates and sources associated with Azospirillum brasilense. Agronomy Journal, v. 111, n. 4, p. 985-1997, 2019. GALINDO, F.S.; TEIXEIRA FILHO, M.C.M.; BUZETTI, S.; PAGLIARI, P.H.; SANTINI, J.M.K.; ALVES, C.J.; NOGUEIRA, L.M.; LUDKIEWICZ, M.G.Z.; ANDREOTTI, M.; BELLOTTE, J.L.M. Corn yield and foliar diagnosis affected by nitrogen fertilization and inoculation with Azospirillum brasilense. Revista Brasileira de Ciência do Solo, v. 40, p. 1- 18, 2016. GARNETT, T.; CONN, V.; PLETT, D.; CONN, S.; ZANGHELLINI, J.; MACKENZIE, N.; ENJU, A.; FRANCIS, K.; HOLTHAM, L.; ROESSNER, U.; BOUGHTON, B.; BACIC, A.; SHIRLEY, N.; RAFALSKI, A.; DHUGGA, K.; TESTER, M.; KAISER, B.N. The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytologist, v. 198, n. 1, p. 82-94, 2013. GARNETT, T.; PLETT, D.; CONN, V.; CONN, S.; RABIE, H.; RAFALSKI, J.A.; DHUGGA, K.; TESTER, M.A.; KAISER, B.N. Variation for N uptake system in maize: genotypic response to N supply. Frontiers in Plant Science, v. 6, p. 1-13, 2015. GAXIOLA, R.A.; PALMGREN, M.G.; SCHUMACHER, K. Plant próton pumps. FEBS Letters, v. 581, p. 2204-2214, 2007. GEWEHR, E.; RODRIGUES, D.B.; AMARANTE, L.; MARTINS A.C.; ALMEIDA, A.S.; TUNES, L.V.M. Biochemical characterization of wheat seeds produced with the association of Azospirillum brasilense with nitrogen. Brazilian Journal of Development, v. 6, n. 8, p. 58140- 58151, 2020. GLICK, B.R. Plant growth-promoting bactéria: mechanisms and applications. Scientifica, Hindawi Publishing Corporation, v. 2, p. 1-15, 2012. GLICK, B.R.; PENROSE, D.M.; LI, J.P. A model for the lowering of plant ethylene concentrations by plant growth-promoting bactéria. Journal of Theoretical Biology, v. 190, n. 1, p. 63-68, 1998. GLICK, B.R.; TODOROVIC, B.; CZARNY, J.; CHENG, Z.Y.; DUAN, J.; MCCONKEY, B. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences, v. 26, p. 227-242, 2007. HARDOIM, P.R.; DE CARVALHO, T.L.G.; BALLESTEROS, H.G.F.; BELLIENYRABELO, D.; ROJAS, C.A.; VENANCIO, T.M.; FERREIRA, P.C.G.; HEMERLY, A.S. Genome-wide transcriptome profiling provides insights into the responses of maize (Zea mays L.) to diazotrophic bacteria. Plant Soil, v. 451, p. 121-143, 2019. HERRIDGE, D.F.; PEOPLES, M.B.; BODDEY, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, v. 311, p. 1-18, 2008. HIREL, B.; BERTIN, P.; QUILLERÉ, I.; BOURDONCLE, W.; ATTAGNANT, C.; DELLAY, C.; GOUY, A.; CADIOU, S.; RETAILLIAU, C.; FALQUE, M.; GALLAIS, A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology, v. 125, p. 1258-1270, 2001. HIREL, B.; LEGOUIS, J.; NEY, B.; GALLAIS, A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, v. 58, p. 2369-2387, 2007. HOAGLAND, D.R., ARNOLD, D.I. The water-culture method for growing plants without soil. Circular number 347. California Agricultural Experiment Station, 1950. HOULTON, B.; ALMARAZ, M.; ANEJA, V.; AUSTIN, A.T.; BAI, E.; CASSMAN, K.G.; COMPTON, J.E.; DAVIDSON, E.A.; ERISMAN, J.W.; GALLOWAY, J.N.; GU, B.; YAO, G.; MARTINELLI, L.A.; SCOW, K.; SCHLESINGER, W.H.; TOMICH, T.P.; WANG, C.; ZHANG, X. A world of cobenefits: Solving the global nitrogen challenge. Earth’s Future, v. 7, n. 8, p. 865-872, 2019. HÖRBE, T.A.N.; AMADO, T.J.C.; FERREIRA, A.O.; ALBA, P.J. Optimization of corn plant population according to management zones in Southern Brazil. Precision Agriculture, v. 14, n. 4, p. 450-465, 2013. HUERGO, L.F.; MONTEIRO, R.A.; BONATTO, A.C.; RIGO, L.U.; STEFFENS, M.B.R.; CRUZ LM, CHUBATSU, L.S.; SOUZA, E.M.; PEDROSA, F.O. Regulation of nitrogen fixation in Azospirillum brasilense. In: Cassán FD, GarciadeSalamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, p. 17-36, 2008. HUNGRIA, M.; CAMPO, R.J.; MENDES, I.C. A importância do processo de fixação biológica do nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro. Londrina: Embrapa Soja, 2007. 80p. (Embrapa Soja. Documentos, 283). HUNGRIA, M.; CAMPO, R.J.; SOUZA, E.M.; PEDROSA, F. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, v. 331, p. 413-425, 2010. HUNGRIA, M. Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Londrina: EMBRAPA-SOJA, 38p. (Documentos EMBRAPA-SOJA, ISSN 2176-2937, n.325), 2011. HUSSAIN, A.; HASNAIN, S. Interaction of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World Journal of Microbiology and Biotechnology, v.27, p. 2645-2654, 2011. IFA- International Fertilizer Association. Assessment of fertilizer use by crop at the global level 2014-15. A. 17, 134 rev., 2017. INAGAKI, A.M.; GUIMARÃES, V.F.; LANA, M.C.; KLEIN, J.; COSTA, A.C.P.R.; RODRIGUES, L.F.O.S.; RAMPIM, L. Maize initial growth with the inoculation of plant growth-promoting bacteria (PGPB) under diferente soil acidity levels. Australian jornal of Crop Science, v. 9, n. 4, p. 271-280, 2015. JAIN, D.K.; PATRIQUIN, D.G. Characterization of substance produced by Azospirillum with causes branching of wheat root hairs. Canadian Journal of Microbiology, v. 31, n. 3, p. 206- 210, 1985. JAMES, E.K; OLIVARES, F.L. Infection and colonization of sugarcane and other graminaceous plants by endophytic diazotrophs. Critical Review in Plant Science, v. 17, n. 1, p. 77-119, 1998. JANICKA-RUSSAK, M.; KABALA, K. The role of plasma membrane H+-ATPase in salinity stress of plants. In: Progress in Botany, Lüttge U. and Beyschlag W. (eds), vol. 76, (Cham: Springer International Publishing), p. 77-92, 2015. JAWORSKI, E.G. Nitrate reductase assay in intact plant tissues. Biochemical Biophysical Research Communications, v. 43, p. 1274-1279, 1971. JENSEN, E.S.; PEOPLES, M.B.; BODDEY, R.M.; GRESSHOFF, P.M.; HAUGGAARDNIELSEN, H.; ALVES, B.; MORRISON, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agronomy for Sustainable Development, v. 32, n. 2, p. 329-364, 2012. JORDÃO, L.T.; LIMA, F.F.; LIMA, R.S.; MORETTI, P.A.E.; PEREIRA, H.V.; MUNIZ, A.S.; OLIVEIRA, M.C.N. Teor relativo de clorofila em folhas de milho inoculado com Azospirillum brasilense sob diferentes doses de nitrogênio e manejo com braquiária. In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, 29., Reunião Brasileira sobre Micorrizas, 31., Simpósio Brasileiro de Microbiologia do solo, 11., Reunião Brasileira de Biologia do Solo, 8. Anais...FERTBIO: Guarapari, ES, p1-5, 2010. KANDEL, S.L.; JOUBERT, P.M.; DOTY, S.L. Bacterial endophyte colonization and distribution within plants. Microorganisms, v. 5, n. 4, p. 1-26, 2017. KANT, S. Understanding nitrate uptake, signalling and remobilisation for improving plant nitrogen use efficiency. Seminars in Cell and Developmental Biology, v. 74, p. 89-96, 2018. KANT, S.; BI, Y.M.; WERETILNYK, E.; BARAK, S.; ROTHSTEIN, S.J. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation. Plant Physiology, v. 147, p. 1168- 1180, 2008. KANG, S.M., RADHAKRISHNAN, R., KHAN, A.L., KIM, M.J., PARK, J.M., KIM, B.R.; SHIN, D.H.; LEE, I.J. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, v. 84, p. 115-124, 2014. KAISER, W.M.; HUBER, S.C. Posttranslational regulation of nitrate reductase in higher plants. Plant Physiology, v. 106, p. 817-821, 1994. KEMPERS, A. J.; ZWEERS, A. Ammonium determination in soil extracts by the salicylate method. Community in Soil Science Plant Analysis, v. 17, p. 715-723, 1986. KISTLER, L.; MAEZUMI, S.Y.; SOUZA, J.G.; PRZELOMSKA, N.A.S; COSTA, F.M.; SMITH, O.; LOISELLE, H.; RAMOS-MARDRIGAL, J.; WALES, N.; RIBEIRO, E.R.; MORRISON, R.R.; GRIMALDO, C.; PROUS, A.P.; ARRIAZA, B.; GILBERT, M.T.P.; FREITAS, F.O.; ALLABY, R.G. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science, v. 362, p. 1309-1313, 2018. KLOEPPER, J.W.; SCHROTH, M.N. Plant growth-promoting rhizobacteria on radishes. In Station de Pathologie, Proceeding of the 4th International Conference on Plant Pathogenic Bacteria, Tours, France, 27 August- 2 september, Végétale et Phyto-Bactáriologie, Ed., p. 879- 882, 1978. KAPPES, C.; ARF, O.; ARF, M.V.; FERREIRA, J.P.; DAL BEM, E.A.; PORTUGAL, J.R.; VILELA, R.G. Inoculação de sementes com bactérias diazotróficas e aplicação de anitrogênio em cobertura e foliar em milho. Semina: Ciências Agrárias, v. 34, n. 2, p. 527-538, 2013. KENNEDY, I.R.; CHOUDHURY, A.T.M.A.; KECSKES, M.L. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better explored. Soil Biology & Biochemistry, v. 36, p. 1229-1244, 2004. KRAISER, T.; GRAS, D.E.; GUTIÉRREZ, A.G.; GONZÁLEZ, B.; GUTIÉRREZ, R.A. A holistic view of nitrogen acquisition in plants. Journal of Experimental Botany, v. 62, p. 1455-1466, 2011. KRAPP, A.; BERTHOMÉ, R.; ORSEL, M.; MERCEY-BOUTET, S.; YU, A.; CASTAINGS, L.; ELFTIEH, S.; MAJOR, H.; RENOU, J.P.; DANIEL-VEDELE, F. Arabidopsis roots and shots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiology, v. 157, n. 3, p. 1255-1282, 2011. KUMAR, A.; BAHADUR, I.; MAURYA, B.R.; RAGHUWANSHI, R.; MEENA, V.S. SINGH, D.K.; DIXIT, J. Does a plant growth promoting rhizobacteria enhance agricultural sustainability?. Journal of pure and applied microbiology, v. 9, n. 1, p. 715-724, 2015. KUMAR, P.K.R.; LONSANE, B.K. Microbial production of gibberellins: state of the art. Advances in Applied Microbiology, v. 34, p. 29-139, 1989. LAUGIER, E.; BOUGUYON, E.; MAURIÈS, A.; TILLARD, P.; GOJON, A.; LEJAY, L. Regulation of High-Affinitty nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional controlo f the NRT2.1/NAR2.1 transpot system. Plant Physiology, v. 158, n. 2, p. 1067-1078, 2012. LANA, M.C.; DARTORA, J.; MARINI, D.; HANN, J.E.H. Inoculation with Azospirillum, associated with nitrogen fertilization in maize. Revista Ceres, v.59, p.399- 405, 2012. LANG, V.; PERTL-OBERMEYER, H.; SAFIARIAN, M.; OBERMEYER, G. Pump up the volume - a central role for the plasma membrane H+ pump in pollen germination and tube growth. Protoplasma, V. 251, P. 477-488, 2014. LEZHNEVA, L.; KIBA, T.; FERIA-BOURRELLIER, A-B.; LAFOUGE, F.; BOUTETMERCEY, S.; ZOUFAN, P.; SAKAKIBARA, H.; DANIEL-VEDELE, F.; KRAPP, A.The Arabidopsis nitrate transporter NRT 2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. The Plant Journal, v. 80, p. 230-241, 2014. LÉRAN, S.; VARALA, K.; BOYER, J.-C.; CHIURAZZI, M.; CRAWFORD, N.; DANIELVEDELE, F.; DAVID, L.; DICKSTEIN, R.; FERNANDEZ, E.; FORDE, B.; GASSMAN, W.; GEIGER, D.; GOJON, A.; GONG, J. M.; HALKIER, B. A.; HARRIS, J. M.; HEDRICH, R.; LIMANI, A. N.; RENTSCH, D.; SEO, M.; TSAY, Y. F.; ZHANG, M.; CORUZZI, G.; LACOMBE, B. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trend in Plant Science, v. 19, p. 5-9, 2014. LI, X.; JI, P.; ZHOU, B.; DONG, W.; ZHANG, L.; XIAO, K.; YIN, B.; ZHANG, Y. Nitrogen partitioning traits and expression patterns of N metabolism-associated genes in maize hybrids with contrasting N utilization efficiencies. Agronomy Journal, v. 113, p. 1439-1456, 2021. LI, M.G.; VILLEMUR, R.; HUSSEY, P.J.; SILFLOW, C.D.; GANTT, J.S.; SNUSTAD, D.P. Differential expression of six glutamine synthetase genes in Zea mays. Plant Molecular Biology, v. 23, p. 401-440, 1993. LIN, W.; OKON, Y.; HARDY, R.W.F. Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Applied and Environmental Microbiolology, v. 45, n. 6, p. 1775-1779, 1983. LIPPER, L.; THORNTON, P.; CAMPBELL, B.M.; BAEDEKER, T.; BRAIMOH, A.; BWALYA, M., CARON, P.; CATTANEO, A.; GARRITY, D.; HENRY, K.; HOTTLE, R.; JACKSON, L.; JARVIS, A.; KOSSAM, F.; MANN, W.; MCCARTHY, N.; MEYBECK, A.; NEUFELDT, H.; REMINGTON, T.; SEN, P.T.; SESSA, R.; SHULA, R.; TIBU, A.; TORQUEBIAU, E.F. Climate-smart agriculture for food security. Nature Climate Change, v. 4, p. 1068-1072, 2014. LIU, J.; HAN, L.; CHEN, F.; BAO, J.; ZHANG, F.; MI, G. Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.). Plant Science, v. 175, p. 272-282, 2008. LIU, K.H.; HUANG, C.Y.; TSAY, Y.F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, v. 11, p. 865-874, 1999. LIVAK, K. J. & SCHMITTGEN, T. D. Analysis of relative gene expression data using Real- Time Quantitative PCR and the 2-ΔΔCт Method. Methods, v. 25, p. 402-408, 2001. LOTHIER, J.; GAUFICHON, L.; SORMANI, R.; LEMAÎTRE, T.; AZZOPARDI, M.; MORIN, H.; CHARDON, F.; REISDORF-CREN, M.; AVICE, J. C.; MASCLAUXDAUBRESSE, C. The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting. Journal of Experimental Botany, v.62, n. 4, p. 1375-1390, 2011. LPSN - List of prokaryotic names with standing in nomenclature. Disponível em: < https://www.bacterio.net/>. Acesso em: 10 de mar. 2020. LUCANGELI, C., BOTTINI, R. Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis, v. 23, p. 63- 71, 1997. LUCARINI, A.C.; SILVA, L.A.; BIANCHI, R.A.C. Um sistema para contagem semiautomática de microrganismos. Pesquisa & Tecnologia FEI, n. 26, p. 36-40, 2004. MACHADO, H.B.; FUNAYAMA, S.; RIGO, L.U.; PEDROSA, F.O. Excretion of ammonium by Azospirillum brasilense mutants resistente to ethylenediamine. Canadian Journal of Microbiology, v. 37, n. 7, p. 549-553, 1991. MACHADO, A.T.; MAGALHÃES, J.R.; MAGNAVACA, R.; SILVA, M.R. Determinação da atividade de enzimas envolvidas no metabolismo do nitrogênio em diferentes genótipos de milho. Revista Brasileira de Fisiologia Vegetal, v. 4, n. 1, p. 45-47, 1992. MACHADO, A.T.; SODEK, L.; DÖBEREINER, J.; REIS, V.M. Evaluation of nitrogen fertilizer and inoculation with diazotrophic bacteria on the biochemical behavior of the maize cultivar nitroflint. Pesquisa Agropecuária Brasileira, v. 33, n. 6, p. 961-70, 1998. MADIGAN, M.T.; MARTINKO, J.M.; BENDER, K.S.; BUCKLEY, D.H.; STAHL, D.A. Microbiologia de Brock. 14 ed, Porto Alegre: Artmed, 2016, 960p. MAGALHÃES, J.R.; MACHADO, A.T. Biochemical parameters selecting maize for nitrogen assimilation efficiency under stress conditions. In: SIMPÓSIO INTERNACIONAL SOBRE ESTRESSE AMBIENTAL: O MILHO EM PERSPECTIVA, 1995, Belo Horizonte, MG. Anais... Belo Horizonte: EMBRAPA/CNPMS, 1995. 449p. p 345- 367. MANTELIN, S.; TOURAINE, B. Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. Journal Experimental Botany, v. 55, n. 394, p. 27-34, 2004. MARSCHNER, H. Mineral nutrition of higher plants. 2 ed. London: Academic Press, 1995, 889p. MARTIN, A.; LEE, J.; KICHEY, T.; GERENTES, D.; ZIVY, M.; TATOUT, C.; TATOUT, C.; DUBOIS, F.; BALLIAU, T.; VALOT, B.; DEVANTURE, M.; TERCÉ-LAFORGUE, T.; QUILLERÉ, I.; COQUE, M.; GALLAIS, A.; GONZALEZ-MORO, M.B.; BETHENCOURT, L.; HABASH, D.Z.; LEA, P.J.; CHARCOSSET, A.; PEREZ, P.; MURIGNEUX, A.; SAKAKIBARA, H.; EDWARDS, K.J.; HIREL, B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell, v. 18, n.11, p. 3252-3274, 2006. MARTINS, M.R.; JANTALIA, C.P.; REIS, V.M.; DÖWICH, I.; POLIDORO, J.C.; ALVES, B.J.R.; BODDEY, R.M.; URQUIAGA, S. Impact of plant growth-promoting bacteria on grain yield, protein content, and urea-15N recovery by maize in a Cerrado Oxisol. Plant and soil, v. 422, n. 1-2, p. 239-250, 2017. MARQUES, D.M.; MAGALHÃES, P.C.; MARRIEL, I.E.; JÚNIOR, C.C.G.; SILVA, A.B.; MELO, I.G.; SOUZA, T.C. Azospirillum brasilense favors morphophysiological characteristics and nutrient accumulation in maize cultivated under two water regimes. Revista Brasileira de Milho e Sorgo, v. 19, p. 1-17, 2020. MARQUES, D.M.; MAGALHÃES, P.C.; MARRIEL, I.E.; JÚNIOR, C.C.G.; SILVA, A.B.; MELO, I.G.; SOUZA, T.C. Gas exchange, root morphology and nutrients in maize plants inoculated with Azospirillum brasilense cultivated under two water conditions. Brazilian Archives of Biology and Technology, v. 64, p. 1-11, 2021. MASCLAUX-DAUBRESSE, C.; DANIEL-VEDELE, F.; DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L.; SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, v. 105, p. 1141-1157, 2010. MATT, P.; GEIGER, M.; WALCH-LIU, P.; ENGELS, C.; KRAPP, A.; SITTI, M. The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: a major imbalance between the rate of nitrate reduction and the rates of nitrate uptake and ammonium metabolism during the first part of the light period. Plant Cell and Environment, v. 24, p. 170-190, 2001. MATOSO, E.S.; REIS, V.M.; GIACOMINI, S.J.; SILVA, M.T.; AVANCINI, A.R.; SILVA, S.D.A. Diazotrophic bacteria and substrates in the growth and nitrogen accumulation of sugarcane seedlings. Scientia Agricola, v. 78, n. 1, p. 1-9, 2019. MEHNAZ, S.; KOWALIK, T.; REYNOLDS, B.; LAZAROVITS, G. Growth promotion effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil Biology and Biochemistry, v. 42, p. 1848-1856, 2010. MEHNAZ, S.; LAZAROVITS, G. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecology, v. 10, p. 326-335, 2006. MI, G.; CHEN, F.; ZHANG F. Physiological and genetic mechanisms for nitrogen-use efficiency in maize. Journal of Crop Science and Biotechnology, v. 10, n. 2, p. 57-63, 2010. MITCHELL, L. Micro determination of nitrogen in plant & tissues. J. AOAC, 1, p.1-3, 1972. MIYAZAWA, M., PAVAN, M.A., BLOCK, M.F.M. Spectrophotometry determination of nitrate in soil extracts without chemical reduction. Pesquisa Agropecuária Brasileira, v. 20, p. 129-133, 1985. MONTEIRO, R.A.; BALSANELLI, E.; WASSEM, R.; MARIN, A.M.; BRUSAMARELLOSANTOS, L.C.C.; SCHMIDT, M.A.; TADRA-SFEIR, M.Z.; PANKIEVICZ, V.C.S.; CRUZ, L.M.; CHUBATSU, L.S.; PEDROSA, F.O.; SOUZA, E.M. Herbaspirillum plant interactions: microscopical, histological and molecular aspects. Plant and Soil, v. 356, p.175-196, 2012. MONTEIRO, R.A.; SCHMIDT, M.A.; BAURA, V.A.; BALSANELLI, E.; WASSEM, R.; YATES, M.G.; RANDI, M.A.F.; PEDROSA, F.O.; SOUZA, E.M. Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genetics and Molecular Biology, v. 31, n. 4, p. 932-937, 2008. MORAIS, T.P.; BRITO, C.H.; BRANDÃO, A.M.; REZENDE, W.S. Inoculation of maize with Azospirillum brasilense in the seed furrow. Revista Ciência Agronômica, v. 47, n. 2, p. 290- 298, 2016. MOREIRA, F.M.S.; SIQUEIRA, J.O. Fixação biológica de nitrogênio atmosférico. In: MOREIRA, F.M.S.; SIQUEIRA, J.O. (eds.) Microbiologia e Bioquímica do Solo. Lavras: UFLA, p. 449-542, 2006. MUMBACH, G.L.; KOTOWSKI, I.E.; SCHNEIDER, J.A.; MALLMANN, M.T.; BONFADA, E.B.; PORTELA, V.O.; BONFADA, E.B.; KAISER, D.R. Resposta da inoculação com Azospirillum brasilense nas culturas de trigo e milho safrinha. Revista Scientia Agraria, v. 18, n. 2, p. 97-103, 2017. MÜLLER, T.M.; SANDINI, I.E.; RODRIGUES, J.D.; NOVAKOWISKI, J.H. BASI, S.; KAMINSKI, T.H. Combination of inoculation methods of Azospirillum brasilense with broadcasting of nitrogen fertilizer increases corn yield. Ciência Rural, v. 46, n. 2, p. 210-215, 2016. NENDEL, C.; MELZER, D.; THORBURN, P.J. The nitrogen nutrition potential of arable soils. Nature: Scientific Reports, v. 9, p. 1-9, 2019. NOGUEIRA, A.R.; SOUZA, G.B. Manual de laboratórios: solo, água, nutrição vegetal, nutrição animal e alimentos. São Carlos-SP: Embrapa Pecuária Sudeste, 2005, 334p. NOVAKOWISKI, J. H.; SANDINI, I. E.; FALBO, M. K.; MORAES, A.; NOVAKOWISKI, J. H.; CHENG, N. C. Efeito residual da adubação nitrogenada e inoculação de Azospirillum brasilense na cultura do milho. Semina: Ciências Agrárias, v. 32, p. 1687-1698, 2011. NYE, P.H.; TINKER, P.B. Solute movement in the soil-root system. Oxford: Blackwekk, 1977, 542p. OKAMOTO, M.; KUMAR, A.; LI, W.; WANG, Y.; SIDDIQI, M.Y.; CRAWFORD, N.M.; GLASS, A.D. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiology, v. 140, p. 1036-1046, 2006. OKON, Y.; HEYTLER, P.G.; HARDY, R.W. F. N2 fixation by Azospirillum brasilense and its incorporation into host Setaria italica. Appl. Environ. Microbiol., v. 46, p. 694-697, 1983. OKON, Y.; VANDERLEYDEN, J. Root-associated Azospirillum species can stimulate plants. American Society of Microbiology News, v. 63, p. 366-370, 1997. OLDROYD, G.E.; MURRAY, J.D.; POOLE P.S.; DOWNIE, J.A. The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics, v. 45, p. 119-44, 2011. OLSEN, K.K. Multiple wavelength ultraviolet determinations of nitrate concentration, method comparisons from the preakness brook monitoring project, October 2005 to October 2006. Water, air and soil pollution, v. 187, p. 195-202, 2008. OLIVARES, F.L.; BALDANI, V.L.; REIS, V.M.; BALDANI, J.I.; DÖBEREINER, J. Occurence of the endophytic diazotrophs Herbaspirillum spp. In roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils, v. 21, p. 197-200, 1996. OLIVEIRA, A.L.M.; CANUTO, E.L.; REIS, V.M.; BALDANI, J.I. Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria. Brazilian Journal of Microbiology, v. 34, p. 59-61, 2003. OLIVEIRA, S. A. S.; STARK, E. M. L. M.; FREITAS, J. A. E.; BERBARA, R. L.; SOUZA, S. R. Partição de nitrogênio em variedades de milho (Zea mays L.) com a aplicação foliar de microorganismos eficazes e nitrato. Revista Universidade Rural. Série Ciências da Vida, v. 31, n. 1, p. 57-69, 2011. ONA, O.; IMPE, J.V.; PRINSEN, E.; VANDERLEYDEN, J. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiology Letters, v. 246, p. 125-132, 2005. ORMEÑO-ORRILLO, E.; HUNGRIA, M.; MARTÍNEZ-ROMERO, E. Dinitrogen-Fixing Prokaryotes. In: The The prokaryotes: Prokaryotic physiology and biochemistry. Ed E. Rosenberg, E.F. de Longs, S. Lory, E. Stackebrandt, F. Thompson. Berlin, Springer-Verlag, p. 427-451, 2013. ORSEL, M.; CHOPIN, F.; LELEU, O.; SMITH, S.J.; KRAPP, A.; DANIEL-VEDELE, F.; MILLER, A.J. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein–protein interaction, Plant Physiology, v. 142, p. 1304- 1317, 2006. OSORIO, N.W. Effectiveness of phosphate solubilizing microorganisms in increasing plant phosphate uptake and growth in tropical soils. In: MAHESHWARI D.K. (ED) Bacteria in Agrobiology: Plant Nutrient Management (Vol. III) Springer-Verlag Berlin, p. 65-80, 2011. PAES, M.C.D. Aspectos físicos, químicos e tecnológicos do grão de milho. Sete Lagoas: Embrapa Milho e Sorgo, 2006, 6p. (Embrapa Milho e Sorgo. Circular Técnica, 75). PANKIEVICZ, V.C.S.; AMARAL, F.P.; SANTOS, K.F.D.N.; AGTUCA, B.; XU, Y.; SCHUELLER, M.J.; ARISI, A.C.M.; STEFFENS, M.B.R.; SOUZA, E.M.; PEDROSA, F.O.; STACEY, G.; FERRIERI, R. Robust biological nitrogen fixation in a model grass-bacterial association. The Plant Journal, v. 81, p. 907-919, 2015. PALMGREN, M.G. Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology, v. 52, p. 817-845, 2001. PALMGREN, M. G. & NISSEN, P. P-Type ATPases. Annual Review Biophysics, v. 40, p. 243-266, 2011. PALLARDY, S.G. Nitrogen Metabolism. In: Physiology of Woody Plants, chapter 9. 3ed, Elsevier, 464p. 2008. PARENTONI, S. N.; MENDES, F. F.; GUIMARÃES, L. J. M. Melhoramento para eficiência no uso de P. In: FRITSCHE-NETO, R.; BORÉM, A. (Ed.). Melhoramento de plantas para condições de estresses abióticos. Visconde do Rio Branco: Suprema, 2011. p. 250-255. PEDROSA, F.; YATES, G. Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntrc (GlnG) type genes. FEMS Microbiology Letters, n. 23, p. 95-101, 1984. PEDROSA, F.O.; OLIVEIRA, A.L.M.; GUIMARÃES, V.F.; ETTO, R.M.; SOUZA, E.M.; FURMAM, F.G.; GONÇALVES, D.R.P.; SANTOS, O.J.A.P.; GONÇALVES, L.S.A.; BATTISTUS, A.G.; GALVÃO, C.W. The ammonium excreting Azospirillum brasilense strain HM053: A new alternative inoculant for maize. Plant and Soil, v. 451, p. 45-56, 2020. PATTEN, C.L.; GLICK, B.R. The role of bacterial indoleacetic acid in the development of the host plant root system. Applied and Environmental Microbiology, v. 68, p. 3795-3801, 2002. PENG, J.; DAN, L.; WANG, Y.P.; TANG, X.; YANG, X.; YANG, F.; LU, X.; PAK, B. Role contribution of biological nitrogen fixation to future terrestrial net land carbono accumulation under warming condition at centennial scale. Journal of Cleaner Production, v.202, p.1158- 1166, 2018. PEREIRA, E.G.; FERREIRA, L.M.; FERNANDES, E.C.; LIMA, B.R.; SANTOS, L.A.; FERNANDES, M.S. Root morphology and ammonium uptake kinetics in two traditional rice varieties submitted to different doses of ammonium nutrition. Journal of Plant Nutrition, v. 1, p. 1-14, 2021. PEREIRA, L.M.; PEREIRA, E.M.; REVOLTI, L.T.M.; ZINGARETTI, S.M.; MÔRO, G.V. Seed quality, chlorophyll content index and leaf nitrogen levels in maize inoculated with Azospirillum brasilense. Revista Ciência Agronômica, v. 46, n. 3, p. 630-637, 2015. PEREIRA-DEFILIPPI, L.; PEREIRA, E.M.; SILVA, F.M.; MORO, G.V. Expressed sequence tags related to nitrogen metabolismo in maize inoculated with Azospirillum brasilense. Genetics and Molecular Research, v. 16, n. 2, p. 1-14, 2017. PIETERSE, C.M.J.; VAN DER DOES, D.; ZAMIOUDIS, C.; LEONREYES, A.; VAN WEES, S.C.M. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, v. 28, p. 489-521, 2012. PII, Y.; ALESSANDRINI, M.; GUARDINI, K.; ZAMBONI, A.; VARANINI, Z. Induction of high-affinity NO3 – uptake in grapevine roots is an active process correlated to the expression of specific members of the NRT2 and plasma membrane H+-ATPase gene families. Functional Plant Biology, v. 41, p. 353-365, 2014. PII, Y.; MIMMO, T.; TOMASI, N.; TERZANO, R.; CESCO, S.; CRECCHIO, C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, v. 51, p. 403-415, 2015. PII, Y.; ALESSANDRINI, M.; DALL’OSTO, L.; GUARDINI ,K.; PRINSI,B.; ESPEN, L.; ZAMBONI, A.; VARANINI, Z. Time-Resolved investigation of molecular components involved in the induction of NO3 – High Affinity Transport System in maize roots. Frontiers in Plant Science, v. 7, p. 1-12, 2016. PII,Y.; ALDRIGHETTI, A.; VALENTINUZZI, F.; MIMMO, T.; CESCO, S. Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants. Journal of Experimental Botany, v. 70, n. 4, p. 1313-1324, 2019. PINDER, R.W.; DAVIDSON, E.A.; GOODALE, C.L.; GREAVER, T.L.; HERRICK, J.D., LIU, L.L. Climate change impacts of US reactive nitrogen. Proceedings of the National Academy of Sciences of the United States of America, v. 109, p. 7671-7675, 2012. PIPERNO, D.R.; RANERE, A.J.; HOLST, I.; IRIARTE, J.; DICKAU, R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States of America, v. 106, n. 13, p. 5019-5024, 2009. PLETT, D.; TOUBIA, J.; GARNETT, T.; TESTER, M.; KAISER, B.N.; BAUMANN, U. Dichotomy in the NRT gene families of dicots and grass species. PloS ONE, v. 5, n. 12, p. 1- 12, 2010. PLETT, D.; HOLTHAN, L.; BAUMANN, U.; KKALASHYAN, E.; FRANCIS, K. ENJU, A.; TOUBIA, J. ROESSNER, U.; BACIC, A. RAFALSKI, A.; DHUGGA, K.S.; TESTER, M.; GARNETT, T. Nitrogen assimilation system in maize is regulated by developmental and tissuespecific mechanisms. Plant Molecular Biology, v. 92, p. 293-312, 2016. PUENTE, M.E.; BASHAN, Y.; LI, C.Y.; LEBSKY, V.K. Microbial populations and activities in the rhizoplane of rock-weathering desert plants I. Root colonization and weathering of igneous rocks. Plant Biol., v. 6, p. 629-642, 2004. QUADROS, P.D; ROESCH, L.F.W.; SILVA, P.R.F.; VIEIRA, V.M.; ROEHRS, D.D.; CAMARGO, F.A.O. Desempenho agronômico a campo de híbridos de milho inoculados com Azospirillum. Revista Ceres, v. 61, p. 209- 218, 2014. PRADO, R. de M. Nutrição de plantas. Editora UNESP, 408 p., 2008. RAMOS, A.S.; SANTOS, T.M.C.; SANTANA, T.M.; GUEDES, E.L.F.; MONTALDO, Y.C. Ação do Azospirillum lipoferum no desenvolvimento de plantas de milho. Revista Verde, v. 5, n. 4, p. 113-117, 2010. RAO, H.; SAVALGI, V.P. Isolation and screening of nitrogen fixing endophytic bacterium Gluconacetobacter diazotrophycus GdS25. Internatinal Journal of Current Microbiology and Applied Sciences, v. 6, p. 1364-1373, 2017. RASHID, M.; BERA, S.; MEDVINSKY, A.B.; SUN, G.Q.; LI, B.L.; CHAKRABORTY, A. Adaptive regulation of nitrate transceptor NRT1.1 in fluctuating soil nitrate conditions. iScience, v. 2, p. 41-50, 2018. R CORE TEAM. R: A language and environment for statistical computing disposable, 2019. REETZ, H.F. Fertilizantes e o seu uso eficiente. ANDA: São Paulo, 2017, 178p. REIS, V.M. Inoculantes contendo bactérias fixadoras de nitrogênio para aplicação em gramíneas. In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, 27., Reunião Brasileira sobre Micorrizas, 11., Simpósio Brasileiro de Microbiologia do solo, 9., Reunião Brasileira de Biologia do Solo, 6., 2006, Bonito, MS. A busca das raízes. Anais... Bonito: SBM. DOURADOS; Embrapa Agropecuária Oeste, 2006. 1 CD ROM. (Embrapa Agropecuária Oeste. Documentos, 82). REIS, V.M. Uso de bactérias fixadoras de nitrogênio como inoculante para aplicação em gramíneas. Embrapa Agrobiologia (Documentos 232), p.22, 2007. REIS, V.M.; BALDANI, J.I.; BALDANI, V.L.D.; DOBEREINER, J. Biological dinitrogen fixation in gramineae and palm trees. Critical Reviews in Plant Science, v. 19, n .3, p. 227- 247, 2000. REIS, V.M.; JESUS, E.C.; SCHWAB. S.; OLIVEIRA, A.L.M.; OLIVARES, F.O.; BALDANI, V.L.; BALDANI, J.I. Fixação Biológica de nitrogênio simbiótica e associativa. In: Nutrição Mineral de plantas. Cap. VIII. FERNANDES, M. S.; SOUZA, S. R.; SANTOS, L.A. (Editores). 2 ed, 670 p. Viçosa-MG: SBCS, 2018. RIBAUDO, C.M.; RONDANINI, D.P.; CURÁ, J.A.; FRASCHINA, A.A. Response of Zea mays to the inoculation with Azospirillum on nitrogen metabolism under greenhouse conditions. Biologia Plantarum, v. 44, n. 4, p. 631-634, 2001. RIBAUDO, C.M.; RONDANINI, D.P.; TRINCHERO, G.D.; CURÁ, J.A. Effect of Herbaspirillum seropedicae inoculation on maize nitrogen metabolism. Maydica, v. 51, p. 481- 485, 2006. ROCHA, J.G.; FERREIRA, L.M.; TAVARES, O.C.H.; SANTOS, A.M.; SOUZA, S.R. Cinética de absorção de nitrogênio e acúmulo de frações solúveis nitrogenadas e açúcares em girassol. Pesquisa Agropecuária Tropical, v. 44, n. 4, p. 381-390, 2014. RODRIGUES NETO, J.; MALAVOLTA, J.R.V.A.; VICTOT, O. Meio simples para isolamento e cultivo de Xantomonas campestris pv. Citri Tipo B. Summa Phytopathologica, v. 12, p. 16, 1986. ROESCH, L.F.W.; QUADROS, P.D.; CAMARGO, F.A.O.; TRIPLETT, E.W. Screening of diazotrophic bacteria Azospirillum spp. For nitrogen fixation and auxin production in multiple field sites in southern Brazil. World Journal of Microbiology and Biotechnology, v. 23, n. 10, p. 1377-1383, 2007. ROESCH, L.F.W.; CAMARGO, F.A.O.; BENTO, F.M; TRIPLETT, E.W. Biodiversity of diazotrophic bacteria within the soil root and stem of field-grown maize. Plant and Soil, v. 302, p. 91-104, 2008. ROSOLEM, C.A.; ASSIS, J.S.; SANTIAGO, A.D. Root growth and mineral nutrition of corn hybrids as affected by phosphorus and lime. Communications in Soil Science and Plant Analysis, v. 25, n.13-14, p. 2491-2499, 1994. ROZIER, C.; ERBAN, A.; HAMZAOUI, J.; PRIGENT-COMBARET, C.; COMTE, G.; KOPKA, J.; CZARNES, S.; LEGENDRE, L. Xylem sap metabolite profile changes during phytostimulation of maize by the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1. Metabolomics, v. 6, n.3, p. 1-10 2016. RUBIO-ASENSIO, J.S; RACHMILEVITCH, S.; BLOOM, A.J. Plant responses to rising CO2 depend on nitrogen source and nighttime CO2 levels. Plant Physiology, v. 168, n. 1, p. 156- 163, 2015. SAKAKIBARA, H.; KAWABATA, S.; HASE, T.; SUGIYAMA, T. Differential effect of nitrate and light on the expression of glutamine synthetase and ferredoxin-dependent glutamate synthase in maize. Plant and Cell Physiology, v. 33, n. 8, p. 1193-1198, 1992. SALA, V.M.R.; FREITAS, S.S.; DONZELI, V.P.; FREITAS, J.G.; GALLO, P.B.; SILVEIRA, A.P.D. Ocorrência e efeito de bactérias diazotróficas em genótipos de trigo. Revista Brasileira de Ciência do Solo, v. 29, n. 3, p. 345-352, 2005. SALAZAR-CEREZO, S.; MARTÍNEZ-MONTIELA, N.; GARCÍA-SÁNCHEZ, J.; PÉREZY- TERRÓN, R.; MARTÍNEZ-CONTRERAS, R.D. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bactéria. Microbiological Research, v. 208, p. 85-98, 2018. SANDHU, K.S.; SINGH, N.; MALHI, N.S. Some properties of corn grains and their flours I: Physicochemical, functional and chapati-making properties of flours. Food Chemistry, v. 101, p. 938-946, 2007. SANTOS, J.S.; VIANA, T.O.; JESUS, C.M.; BALDANI, V.L.D.; FERREIRA, J.S. Inoculation and isolation of plant growrh-promoting bacteria in maize grown in Vitoria da Conquista, Bahia, Brazil. Revista Brasileira de Ciência do Solo, v. 39, n. 1, p. 78-85, 2015. SANTOS, K.F.D.N.; MOURE, V.R.; HAUER, V.; SANTOS, A.R.S.; DONATTI, L.; GALVÃO, C.W.; PEDROSA, F.O.; SOUZA, E.M.; WASSEM, R.; STEFFENS, M.B.R. Wheat colonization by an Azospirillum brasilense ammonium-excreting strain reveals upregulation of nitrogenase and superior plant growth promotion. Plant and Soil, v. 415, n. 1-2, p. 245-255, 2017. SANTOS, L.A.; BUCHER, C.A.; SOUZA, S.R.; FERNANDES, M.S. Metabolismo de nitrogênio em arroz sob níveis decrescentes de nitrato. Agronomia, v.39, n. 1-2, p. 28-33, 2005. SANTOS, L.A.; SANTOS, W.A.; SPERANDIO, M.V.L.; BUCHER, C.A.; SOUZA, S.R.; FERNANDES, M.S. Nitrate uptake kinetics and metabolic parameters in two rice varieties grown in high and low nitrate. Journal of Plant Nutrition, v. 34, p. 988-1002, 2011. SANTOS, L.A. Efeito da Superexpressão dos Fatores de Transcrição ZmDof1 e OsDof25 sobre a Eficiência de Uso de Nitrogênio em Arabidopsis thaliana L. 2009. 81 f. Tese (Doutorado em Agronomia-Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro, Instituto de Agronomia, Seropédica, RJ. SANTOS, S.G.; RIBEIRO, F.S.; ALVES, G.C.; SANTOS, L.A.; REIS, V.M. Inoculation with five diazotrophs alters nitrogen metabolism during the initial growth of sugarcane varieties with contrasting responses to added nitrogen. Plant and Soil, v. 451, p. 25-44, 2019. SATURNO, D.F.; CEREZINI, P.; MOREIRA DA SILVA P.; OLIVEIRA, A.B.D.; OLIVEIRA, M.C.N.D.; HUNGRIA, M.; NOGUEIRA, M.A. Mineral nitrogen impairs the biological nitrogen fixation in soybean of determinate and indeterminate growth types. Journal of Plant Nutrition, v. 40, p. 1690-1701, 2017. SCHIAVON, M.; ERTANI, A.; NARDI, S. Effects of an Alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. Journal of Agricultural and Food Chemistry, v. 56, n. 24, p. 11800-11808, 2008. SHAHZAD, R., WAQAS, M., KHAN, A.L., ASAF, S., KHAN, M.A., KANG, S.M.; YUN, B.W.; LEE, I.J. Seedborne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry, v. 106, p.236–243, 2016. SHEN, H.; CHEN, J.; WANG, Z.; YANG, C.; SASAKI, T.; YAMAMOTO, Y.; MATSUMOTO, H.; YAN, X. Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. Journal of Experimental Botany, v. 57, n. 6, p. 1353- 1362, 2006. SMERCINA, D.N.; EVANS, S.E.; FRIESEN, M.L.; TIEMANN, L.K. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology, v. 85, n. 6, p.1-14, 2019. SILVA, F.M.; ALVES, L.S.; BOTELHO FILHO, F.B.; SILVA, I.S. Liquidez dos contratos futuros de milho negociados na BM&FBOVESPA. Revista de Administração e Negócios da Amazônia, v. 9, p. 26-44, 2017. SINCLAIR, T.R.; GILBERT, R.A.; PERDOMO, R.E.; SHINE, J.M.; POWELL, G.; MONTES, G. Sugarcane leaf area development under field conditions. Field Crops Research, v. 88, n. 02-03, p. 171-178, 2004. SIVASANKAR, S.; COLLINSON, S.; GUPTA, R.; DHUGGA, K. “Maize”, in Handbook of Bioenergy Crop Plants, eds C. Kole, C. Joshi, and D. Shonnard (Boca Ratan, FL: CRC Press), p. 405-432, 2012. SHISHIDO, M.; BREUIL, C.; CHANWAY, C.P. Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiology Ecology, v. 29, n. 2, p. 191-196, 1999. SOMERS, E.; PTACEK, D.; GYSEGOM, P.; SRINIVASAN, M.; VANDERLEYDEN, J. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Applied and Environmental Microbiology, v. 71, p. 1803- 1810, 2005. SONDERGAARD, T.E.; SHULTZ, A.; PALMGREN, M.G. Energization of transport processes in plants. Roles of the plasma membrane H+ATPase. Plant Physiology, v. 136, p. 2475-2482, 2004. SOARES, I.C.; PACHECO, R.S.; SILVA, C.G.N.; SANTOS, R.S.; BALDANI, J.I.; URGUIAGA, S.; VIDAL, M.S.; ARAUJO, J.L.S. Real-time PCR method to quantify Sp245 strain of Azospirillum baldaniorum on Brachiaria grasses under field conditions. Plant and Soil, v. 468, p. 1-14, 2021. SOARES, I.C. Avaliação da população de duas espécies diazotróficas associativas em tecidos de braquiária e milho utilizando PCR quantitativa. 2019. 81 f. Dissertação (Mestrado em Fitossanidade e Biotecnologia Aplicada) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. SØRENSEN, J.; NICOLAISEN, M.H.; RON, E.; SIMONET, P. Molecular tools in rhizosphere microbiology-from single-cell to whole-community analysis. Plant and Soil, v. 321, n. 1-2, p. 483-512, 2009. SPAEPEN, S.; BOSSUYT, S.; ENGELEN, K.; MARCHAL, K.; VANDERLEYDEN, J. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytologist, v. 201, p. 850- 861, 2014. SPERANDIO, M. V. L.; SANTOS, L.A.; BUCHER, C.A.; FERNANDES, M.S.; SOUZA, S.R. Isoforms of plasma membrane H+ -ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3 - or NH4 +. Plant Science, v. 180, p. 251-258, 2011. SPERANDIO, M. V. L.; SANTOS, L.A.; ARAÚJO, O.J.L.; BRAGA, R.P.; COELHO, C.P.; NOGUEIRA, E.M.; FERNANDES, M.S.; SOUZA, S.R. Response of nitrate transportes and PM H+-ATPase expression to nitrogen flush on two upland rice varieties contrasting in nitrate uptake kinects. Australian Journal of Crop Science, v. 8, n. 4, p. 568-576, 2014. SPOLAOR, L.T.; GONÇALVES, L.S.A.; SANTOS, O.J.A.P.; OLIVEIRA, A.L.M.; SCAPIM, C.A.; BERTAGNA, F.A.B.; KUKI, M.C. Bactérias promotoras de crescimento associadas a adubação nitrogenada de cobertura no desempenho agronômico de milho pipoca. Bragantia, v. 75, n. 1, p. 33-40, 2016. STETS, M.I.; ALQUERES, S.M.; SOUZA, E.M. PEDROSA, F.O.; SCHMID, M.; HARTMANN, A.; CRUZ, L.M. Quantification of Azospirillum brasilense FP2 bacteria in wheat roots by strain-specific quantitative PCR. Applied and Environmental Microbiology, v. 81, n. 19, p. 6700-6709, 2015. STITT, M.; MÜLLER, C.; MATT, P.; GIBON, Y.; CARILLO, P.; MORCUENDE, R.; SCHEIBLE, W.R.; KRAPP, A. Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany, v. 53, p. 959-970, 2002. SUR, S. BOTHR, A.K.; SEM, A. A symbiotic nitrogen fixation - A bioinformatics perspective. Biotechnology, v. 9, p. 257-273, 2010. SZE, H. H+-Translocating ATPases: advances using membrane vesicles. Annual Review of Plant Physiology, v. 36, p. 175-208, 1985. TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 3. ed. Porto Alegre: Artmed, 719 p., 2004. TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 6. ed. Porto Alegre: Artmed, 858 p., 2017. TAKAHASHI, N.; YAMAGUCHI, I.; YAMANE, H. Gibberellins. In: TAKAHASHI, N. (Ed.) Chemistry of plant hormones. Boca Raton: CRC Press, 1988. cap. 3, p. 57-151. TARRAND, J.J.; KRIEG, N.R.; DÖBEREINER, J. A taxonomic study of the Spirillum liporefum group, with description of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerink) com. nov. and Azospirillum brasilense sp. nov. Canadian Journal Microbiology, v. 24, p. 976-980, 1978. UNNO, H.; UCHIDA, T.; SUGAWARA, H.; KURISU, G.; SUGIYAMA, T.; YAMAYA, T.; SAKAKIBAR, H.; HASE, T.; KUSUNOKI, M. Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity. Journal of Biological Chemistry, v. 29, n. 281, p.29287- 29296, 2006. USDA. United States Department of Agriculture – World Agricultural Projections. Circular series, june 2021, 43 p. VANBLEU, E.; VANDERLEYDEN, J. Molecular genetics of rhizosphere and plant-root colonization. In: Elmerich C, Newton WE, editors. Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Nitrogen fixation: origins, applications and research progress. vol. 5. Dordrecht: Springer, p. 85-112, 2007. VANDE BROEK, A.; DOBBELAERE, S.; VANDERLEYDEN, J.; VAN DOMMELEN, A. Azospirillum -plant root interactions: signaling and metabolic interactions. In Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Edited by E. W. Triplett. Horizon Scientific Press, Wymondham, UK. p. 761-777, 2000. VANONI, M.; DOSSENA, L.; VAN DEN HEUVEL, R.; CURTI, B. Structure–function studies on the complex iron-sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation, Photosynthesis Research, v. 83, p. 219-238, 2005. VESSEY, J.K. Plant growth promoting rhizosphere as biofestilisers. Plant and Soil, v. 255, p. 571-586, 2003. VON WIRÉN, N.; GAZZARRINI, S.; GOJON, A.; FROMMER, W.B. The molecular physiology of ammonium uptake and retrieval. Current Opinion in Plant Biology, v. 3, n. 3, p. 254-261, 2000. WANG, H.; INUKAI, Y.; YAMAUCHI, A. Root development and nutrient uptake. Critical Reviews in Plant Sciences, v. 25, n. 3, p. 279-301, 2006. WERNER, T.; SCHMÜLLING, T. Cytokinin action in plant development. Current Opinion in Plant Biology, v. 12, n. 5, p. 527-538, 2009. WISNIEWSKI-DYÉ, F.; BORZIAK, K.; KHALSA-MOYERS, G.; ALEXANDRE, G.; SUKHARNIKOV, L.O.; WUICHET, K.; HURST, G.B.; McDONALD, W.H.; ROBERTSON, J.S.; BARBE, V.; CALTEAU, A.; ROUY, Z.; MANGENOT, S.; PRIGENT-COMBARET, C.; NORMAND, P.; BOYER, M.; SIGUIER, P.; DESSAUX, Y.; ELMERICH, C.; CONDEMINE, G.; KRISHNEN, G.; KENNEDY, I.; PATERSON, A.H.; GONZÁLEZ, V.; MAVINGUI, P.; ZHULIN, I. B. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. Plos Genetics, v. 7, n. 12, 2011. WOODWARD, A.W.; BARTEL, B. Auxin: regulation, action, and interaction. Annals of Botany, v. 95, n. 5, p. 707-735, 2005. WU, L.; KOBAYASHI, Y.; WASAKI, J.; KOYAMA, H. Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Science and Plant Nutrition, v. 64, n. 6, p. 697-704, 2018. XIE, J.B.; DU, Z.; BAI, L.; TIAN, C.; ZHANG, Y.; XIE, J.Y.; WANG, T.; LIU, X.; CHEN, X.; CHENG, Q.; CHEN, S.; LI, J. Comparative genomic analysis of N2-fixing and non-N2- fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. Plos Genetics, v. 10, n. 3, p. 1-17, 2014. XU, G.; FAN, X.; MILLER, A.J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, v. 63, p. 153-182, 2012. XU, P.; CHEN, A.; HOULTON, B.Z.; ZENG, Z.; WEI, S.; ZHAO, C.; LU, H.; LIAO, Y.; ZHENG, Z.; LUAN, S.; ZHENG, Y. Spatial variation of reactive nitrogen emissions from China’s croplands codetermined by regional urbanization and its feedback to global climate change. Geophysical Research Letters, v. 47, p. 1-12, 2020. XUAN, W.; BEECKMAN, T.; XU, G. Plant nitrogen nutrition: sensing and signaling. Current Opinion in Plant Biology, v. 39, p. 57-65, 2017. XUE, Y.; WARBURTON M. L.; SAWKINS, M.; ZHANG, X.; SETTER, T.; XU, Y.; GRUDLOYMA, P.; GETHI, J.; RIBAUT, J.-M.; LI, W.; ZHANG X , ZHENG Y , YAN J. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theoretical and applied genetics, v. 126, p. 2587-2596, 2013. YEMM, E.W.; WILLIS, A.J. The estimation of carbohydrate in plants extracts by anthrone. Biochemical Journal, v. 57, p. 508-514, 1954. YEMM, E.W., COCKING, E.C. The determination of amino-acid with ninhydrin. Analyst, v. 80, p. 209-213, 1955. YI-BO, T.; YA-JUAN, L.; PING, F.; GUI-XIAO, L. Characterization of nitrogen metabolism in the low-nitrogen tolerant lnt1 mutant of Arabidopsis thaliana under nitrogen stress. Pedosphere, v. 20, n.5, p. 623-632, 2010. YU, W.; KAN, Q.; ZHANG, J.; CHEN, Q. Role of the plasma membrane H+-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency. Plant Signaling & Behavior, v. 11, n. 1, p. 1-4, 2015. ZAHRAN, H. H. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of Biotechnology, v. 91, n. 2, p. 143-153, 2001. ZAIED, K.A.; EL-HADY, A H.; AFIFY, A H.; NASSEF, M. A. Yield and nitrogen assimilation of winter wheat inoculated with new recombinant inoculants of rhizobacteria. Pakistan Journal of Biological Sciences, v. 4, p. 344-358, 2003. ZEMRANY, H.E.; CORTET, J.; LUTZ, M.P.; CHABERT, A.; BAUDOIN, E.; HAURAT, J.; MAUGHAN, N.; FÉLIX, D.; DÉFAGO, G.; BALLY, R.; MOËNNE-LOCCOZ, Y. Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilization. Soil Biology and Biochemistry, v. 38, p. 1712-1726, 2006. ZEMRANY, H.E.; CZARNES, S.; HALLETT, P.D.; ALAMERCERY, S.; BALLY, R.; MONROZIER, L.J. Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant and Soil, v. 291, n. 1-2, p. 109-118, 2007. ZHANG, C.; LEE, U.; TANABE, K. Hormonal regulation of fruit set, parthenogenesis induction and fruit expansion in Japanese pear. Plant Growth Regulation, v. 55, n. 231, 2008. ZHULIN, I.B.; ARMITAGE, J.P. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. Journal of Bacteriology, v. 175, n. 4, p. 952-958, 1993. ZILLI, J.E. MARSON, L.C.; ALVES, G.C.; REIS, V.M.; BALDANI, V.L.D.; CORDEIRO, A.C.C. Contribuição da bactéria diazotrófica Herbaspirillum seropedicae para rendimento de grãos de arroz e milho em Roraima. Embrapa Roraima, Boletim de Desenvolvimento e Pesquisa Boa Vista-RR, v. 6, p.20, 2007. | por |
dc.subject.cnpq | Agronomia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/71083/2021%20-%20Albiane%20Carvalho%20Dias.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6074 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-10-17T19:32:19Z No. of bitstreams: 1 2021 - Albiane Carvalho Dias.pdf: 3382057 bytes, checksum: fcb9be6d660752a123aeb2b954aad3e6 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-10-17T19:32:21Z (GMT). No. of bitstreams: 1 2021 - Albiane Carvalho Dias.pdf: 3382057 bytes, checksum: fcb9be6d660752a123aeb2b954aad3e6 (MD5) Previous issue date: 2021-11-30 | eng |
Appears in Collections: | Doutorado em Agronomia - Ciência do Solo |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021 - Albiane Carvalho Dias.pdf | 3.3 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.