Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/10948
Full metadata record
DC FieldValueLanguage
dc.creatorPinton, Rachel
dc.date.accessioned2023-11-19T21:52:35Z-
dc.date.available2023-11-19T21:52:35Z-
dc.date.issued2007-03-30
dc.identifier.citationPinton, Rachel. “Quorum sensing” e biofilme como estratégias para a seleção de Pseudomonas sp. promotoras de crescimento. 2007. [47 f.]. Dissertação( Programa de Pós-Graduação em Agronomia - Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10948-
dc.description.abstractDue to the need of developing agricultural management practices that could bring lower environmental negative impacts, researches have been investigating biological components of agro ecosystems in order to reach higher productivity and sustainability. Therefore, the present study was conducted with the purpose of prospecting plant growth promotion rhizobacteria and parameters for their selection. There were isolated 127 strains of rhizobacteria from rhizoplane of lettuce, kale, arugula and parsley. The plants were cultivated in King B media, modified for Pseudomonas, and its morphological characterization was made. There were set assays to detect ALH (acil homoserina lactone) production, an auto inducer present in “quorum sensing” systems of gram- negative bacteria, with Agrobacterium tumefaciens. Among the 112 strains evaluated, 14 (12.5%) resulted positive for AHL production. From the 91 strains evaluated for biofilm formation, 87 (95.5%) showed positive. Three experiments were conducted using kale to verify the rhizobacteria capacity in promoting plant growth. In the first experiment, there were tested: 2 isolated strains, 5 inoculate doses, and 4 inoculation methods. After 30 days, the material was collected and the following parameters were evaluated: shoot fresh weight; shoot dry weight, and root dry weight. There was no difference between strains; however, there was difference among the inoculation methods, with better results when seedlings received inoculate than in the seeds. In the second experiment, 7 strains were used; with 2 inoculate concentrations, and one moment of inoculation, at the 10th day after planting. The treatments for both experiments were placed in vases with 1kg of substrate (soil from A horizon of a Fragiudult). After 55 days the plants were collected and the following parameters evaluated: shoot fresh weight, shoot dry weight, and root dry weight. The plants inoculated with R142 strain showed increment of 40% in shoot fresh weight, and 55% in root dry weight. In the third experiment, the same 7 strains used in the second assay were inoculated; with 2 inoculate concentrations, and 2 inoculation periods. The parcels were set in Styrofoam containers for plants with the substrate PLANTMAX (EUCATEX). The plants were collected 24 days after planting and there was no difference between strains, but there were differences among inoculate concentration (10 9 was better than 10 7), and the results were better when inoculated at the 6th day than at the 12th. The obtained data allow us to conclude that the R142 strain was efficient in promoting growth in kale, the inoculate dosage 10 9 was most appropriated, and the inoculation must be performed on seedlings.eng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasilpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAuto- indutorespor
dc.subjectRizobactériaspor
dc.subjectPromoção de crescimentopor
dc.subjectCouvepor
dc.subjectAutoinducerseng
dc.subjectRhizobacteriaeng
dc.subjectGrowth promotioneng
dc.subjectKaleeng
dc.title“Quorum sensing” e biofilme como estratégias para a seleção de Pseudomonas sp. promotoras de crescimentopor
dc.title.alternative“Quorum sensing” and biofilm as strategies for selecting growth promoters Pseudomonas sp.eng
dc.typeDissertaçãopor
dc.contributor.advisor1Xavier, Gustavo Ribeiro
dc.contributor.advisor1ID032488987-98por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6832519607059036por
dc.contributor.referee1Ferreira, Enderson Petrônio de Brito
dc.contributor.referee2Souza, Sonia Regina de
dc.creator.ID028440627-92por
dc.description.resumoDevido à necessidade de se desenvolver metodologias de manejo de sistemas agrícolas que venham a gerar menor impacto negativo ao ambiente, a pesquisa vem buscando utilizar componentes biológicos dos agroecossistemas para a obtenção de maior produtividade e sustentabilidade. Neste sentido, desenvolveu-se o presente trabalho, que objetivou prospectar rizobactérias com possibilidade de promover crescimento em plantas, bem como parâmetros para sua seleção. Foram obtidos 127 isolados do rizoplano de plantas de alface, couve, rúcula e salsa, cultivados em meio King B modificado para Pseudomonas e foi realizada sua caracterização morfológica. Foram realizados ensaios para verificar a produção de AHL (acil homoserina lactona), auto-indutor presente em sistemas de “quorum sensing” de bactérias gram-negativas, com Agrobacterium tumefaciens repórter. De 112 isolados testados, 14 (12,5%) foram positivos para produção de AHL. De 91 isolados avaliados, 87 (95,5%) foram capazes de formar biofilme. Para verificar capacidade das rizobactérias em promover crescimento de plantas foram conduzidos três experimentos com plantas de couve. No experimento I foram testados: 2 isolados, 5 doses de inoculo e quatro formas de inoculação. A coleta ocorreu aos 30 dia s após a montagem do experimento e foram avaliados os seguintes parâmetros: massa fresca da parte aérea; massa seca da parte aérea e massa seca das raízes. Não houve diferença entre os isolados, entretanto houve diferença na forma de inoculação, sendo a inoculação nas plântulas mais eficiente do que nas sementes. No experimento II foram utilizados 7 isolados, 2 concentrações de inoculo e 1 época de inoculação (aos 10 dias após o plantio). As parcelas constituíram-se de vasos plásticos com 1 kg de substrato (horizonte A de Planossolo), assim como no experimento I. A coleta foi realizada aos 55 dias após o plantio e os parâmetros avaliados foram: massa fresca da parte aérea, massa seca da parte aérea e massa seca das raízes. A estirpe R142 promoveu 40% de aumento na massa seca da parte aérea e 55% de aumento na massa seca das raízes. No experimento III, foram utilizados os mesmos 7 isolados do II, 2 concentrações de inoculo e 2 épocas de inoculação. As parcelas foram estabelecidas em bandejas de isopor e o substrato PLANTMAX (EUCATEX). A coleta foi aos 24 dias após o plantio e não houve diferença entre as bactérias, entretanto houve entre doses e época, sendo a dose 10 9 melhor do que 10 7, e a inoculação aos 6 dias após o plantio foi melhor do que aos 12 dias após o plantio. Com os resultados obtidos, pode-se concluir que o isolado R142 foi eficiente em promover crescimento em couve, a dose de inoculo mais apropriada foi 10 9 e a inoculação deve ser realizada nas plântulas.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesALTIERI, M. A. Sustainable agricultural development in Latin America: exploring the possibilities. Agriculture, Ecosystems and Environment, n. 39, p. 1-21, 1992. ANDERSEN, J. B.; KOCH, B.; NIELSEN, T. H.; SORENSEN, D.; HANSEN, M.; NYBROE, O; CHRISTOPHERSEN, C.; SORENSEN, J.; MOLIN, S.; GIVSKOV, M. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Phytium ultimum. Microbiology, v. 149, p. 37-46, 2003. BARKIN, D. Overcoming the Neoliberal Paradigm: Sustainable Popular Development. Latin America Studies Association, México, April 17-19, 1992. BASSLER, B. L.; GREENBERG, E. P.; STEVENS, A. M. Cross species induction of luminescence in the quorum sensing bacterium Vibrio harveyi. Journal of Bacteriology, v. 179, n. 12, p. 4043-4045, 1997. BETANCOURTH, M.; BOTERO, J. E.; RIVERA, S. P. Biopelículas: una comunidad microscópica en desarrollo. Revista Colombia Médica, v. 35, n. 3, Suppl. 1, p. 34-39, 2004. BIBB, M. Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology, v. 142, p. 1335-1344, 1996. BLOEMBERG, G. V.; LUGTENBERG, B. J. J. Molecular basis of plant growth promotion and biocontrol by Rhizobacteria. Current Opin. Plant Biol., v. 4, p. 343-350, 2001. CAMILLI, A.; BASSLER, B. L. Bacterial Small-Molecule Signaling Pathways. Science, v 311, no. 5764, p. 1113-1116, 2006. CARVALHO, G. A,; ABREU, M. S.; OLIVEIRA, D. F.; RESENDE, M. L. V.; ABREU, M. F. E. Efeito In Vitro e In Vivo de Filtrados de Rizobactérias sobre Colletotrichum gloeosporioides Penz. do Cafeeiro. Ciência Agrotécnica, v. 29, no. 3, p. 553-561, 2005. COSTERTON, J. W.; STEWART, P. S.; GREENBERG, E. P. Bacterial biofilms: a common cause of persistent infections. Science. v.284, p. 1318-1322, 1999. DANHORN, T.; HENTZER, M.; GIVSKOV, M.; PARSEK, M. R.; FUQUA, C. Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. Journal of Bacteriology, v. 186, n. 14, p. 4492- 4501, 2004. DUNLAP, P. V.; GREENBERG, E. P. Control of Vibrio fischeri lux gene transcription by a ciclic AMP receptor protein- luxR protein regulatory circuit. Journal of Bacteriology, v. 170 (9), p. 4040-4046, 1988. DUTTA, L.; NUTTALL, H. E.; CUNNINGHAM, A.; JAMES, G.; HIEBERT, R. In situ biofilm barriers: Case study of a nitrate groundwater plume, Albuquerque, New Mexico. 36 Remediation Journal, v. 15, i. 4, p. 101-111, 2005. EBERHARD, A. Inhibition and activation of bacterial luciferase synthesis. Journal of Bacteriology, v. 109, p. 1101-1105, 1972. FUQUA, C.; WINANS, S. C. A. LuxR-Luxl type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. Journal of Bacteriology, v. 176 (10), p. 2796-2806, 1994. FUQUA, C.; WINANS, S. C.; GREENBERG, E. P. Census and consensus in bacterial ecosystems: The LuxR-Luxl family of quorum sensing transcripcional regulators. Annual Review of Microbiology, v. 50, p. 727-751, 1996. GAMALERO, E.; TROTTA, A.; MASSA, N.; COPETTA, A.; MARTINOTTI, M. G.; BERTA, G. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P aquisition. Mycorrhiza, v. 14, no. 3, p. 185- 192, 2004. GAMBELLO, M. J.; IGLEWSKI, B. H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene: a transcriptional activator of elastase expression. Journal of Bacteriology, v. 173, p. 3000-3009, 1991. GELATS, F. L. i. A discursive approach to agricultural and rural policy in Europe. 3rd Global Conference – Environmental Justice & Global Citizenship. Copenhagen, Denmark, February 12-14, 2004. GLIESSMAN, S. R. Agroecologia: Processos ecológicos em agricultura sutentável. Ed. Universidade, Porto Alegre, 2ª ed, 656 p., 2001. HAAS, D.; DÉFAGO, G. Biological Control of Soil-Borne Pathogens by Fluorescent Pseudomonads. Nature Reviews Microbiology, v. 3, p. 307-319, 2005. HOGARDT, M.; FOEDER, M.; SCHREFF, A. M.; EBERL, L.; HEESEMANN, J. Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS. Microbiology, v. 150, p. 843-851, 2004. JOELSSON, A.; LIU, Z.; ZHU, J. Genetic and Phenotypic Diversity of Quorum-Sensing Systems in Clinical and Environmental Isolates of Vibrio cholerae. Infectionand Immunity, v. 74, no. 2, p. 1141-1147, 2006. JUHAS, M.; EBERL, L.; TUMMLER, B. Quorum sensing: the power of cooperation in the world of Pseudomonas. Environmental Microbiology, v 7, i. 4, p. 459-471, 2005. KAMILOVA, F.; VALIDOV, S.; AZAROVA, T.; MULDERS, I.; LUGTENBERG, B. Enrichment for enhance competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, v. 7, no. 11, p. 1809-1817, 2005. KAPLAN, C. W.; KITTS, C. L. Bacterial Succession in a Petroleum Land Treatment Unit. Applied and Environmental Microbiology, Mar, p. 1777-1786, 2004. KELLER, L.; SURETTE, M. G. Communication in bacteria: an ecological and evolutionary 37 perspective. Nature Reviews Microbiology, v. 4, p. 249-258, 2006. KING, E. O.; WARD, M. K.; RANEY, D. E. Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine , v. 44, p. 301-307, 1954. KREFT, J. U.; BONHOEFFER, S. The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. Microbiology, v. 151, p. 637-641, 2005. KLEEREBEZEM, M.; BEERTHUYZEN, M. M.; VAUGHAN, E. E.; VOS, W. M. de; KUIPERS, O. P. Controlled gene expression systems for lactic acid bacteria: transferable nisin- inducible expression cassettes for Lactococcus, Leuconostoc and Lactobacillus spp. Applied and Environmental Microbiology, v. 63, p. 4581-4584, 1997. KRUPPA, M.; KROM, B. P.; CHAUHAN, N.; BAMBACH, A. V.; CIHLAR, R. L.; CALDERONE, R. A. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryotic Cell, v. 3, n. 4, p. 1062-1065, 2004. LATIFI, A.; WINSON, M. K.; FOGLINO, M.; BYCROFT, B. W.; STEWART, G. S.; LAZDUNSKI, A.; WILLIAMS, P. Multiple homologues of LuxR and Luxl control expression of the virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Molecular Microbiology, v. 17 (2), p. 333-343, 1995. LEQUETTE, Y.; GREENBERG, E. P. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. Journal of Bacteriology, v. 187, n. 1, p. 37-44, 2005. MATZ, C.; MCDOUGALD, D.; MORENO, A. M.; YUNG, P. Y.; YILDIZ, F. H.; KJELLEBERG, S. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. PNAS, v. 102, no. 46, 2005. MELLO, M. R. F.; MARIANO, R. L. R.; MENEZES, M.; CÂMARA, T. R.; ASSIS, S. M. P. Seleção de bactérias e métodos de bacterização para promoção de crescimento em mudas de abacaxizeiro micropropagadas. Summa Phytopathologica, v. 28, no. 3, p. 222-228, 2002. MILLER, M. B.; BASSLER, B. L. Quorum Sensing in Bacteria. Annual Review of Microbiology, v. 55, p. 165-199, 2001. MINOGUE, T. D.; CARLIER, A. L.; KOUTSOUDIS, M. D.; VON BODMAN, S. B. The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene. Molecular Microbiology, v. 56, no. 1, p. 189-203, 2005. NEALSON, K. H.; PLATT, T.; HASTINGS, J. W. Cellular control of the synthesis and activity of the bacterial luminescence system. Journal of Bacteriology, v. 104, p. 313-322, 1970. PEROTTI, E. B. R.; MENÉNDEZ, L. T.; GAIA, O. E.; PIDELLO, A. Supervivencia de Pseudomonas fluorescens em suelos com diferente contenido de materia orgânica. Revista Argentina de Microbiologia, v. 37, p. 102-105, 2005. 38 RASCH, M.; BUCH, C.; AUSTIN, B.; SLIERENDRECHT, W. J.; EKMANN, K. S.; LARSEN, J. L.; JOHANSEN, C.; RIEDEL, K.; EBERL, L.; GIVSKOV, M.; GRAM, L. An inhibitor of bacterial quorum sensing reduces mortalities caused by vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Systematic and Applied Microbiology, v. 27, n. 3, p. 350-359, 2004. RUMJANEK, N. G.; FONSECA, M. C. C.; XAVIER, G. R. Quorum sensing em sistemas agrícolas. Revista Biotecnologia Ciência & Desenvolvimento, n. 33, p. 35-50, 2004. SESSITSCH, A.; COENYE, T.; STURZ, A. V.; VANDAMME, P.; BARKA, E. A.; SALLES, J. F.; VAN ELSAS, J. D.; FAURE, D.; REITER, B.; GLICK, B. R.; WANGPRUSKI, G; NOWAK, J. Burkholderia phytofirmans sp., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, v. 55, p. 1187-1192, 2005. SIDDIQUI, I. A .; SHAUKAT, S. S. Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biology and Fertility of Soils, v. 36, no. 4, p. 260-268, 2002. SOTTERO, A. N.; FREITAS, S. S.; MELO, A. M. T.; TRANI, P. E. Rizobactérias e Alface: Colonização Rizosférica, Promoção de Crescimento e Controle Biológico. Revista Brasileira de Ciência do Solo, v. 30, p. 225-234, 2006. SOUZA, L. C. A. Produção e caracterização do operon gum de Xylella fastidiosa. Tese de Mestrado em Agronomia. ESALQ, Piracicaba, SP, 2002. STICKLER, D. J.; MORRIS, N. S.; McLEAN, R. J. C.; FUQUA, C. Biofilms on Indwelling Urethral Catheters Produce Quorum-Sensing Signal Molecules In Situ and In Vitro. Applied and Environmental Microbiology, v. 64, n. 9, p. 3486-3490, 1998. ST. JOHN, T. The Importance of Mycorrhizal Fungi and Other Beneficial Microorganisms in Biodiversity Projects. Paper presented at the Western Forest Nursery Associations meeting at Fallen Leaf Lake, September, 14-18, 1992. TILAK, K. V. B. R.; RANGANAYAKI, N.; MANOHARACHARI, C. Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). European Journal of Soil Science, v. 57, issue 1, p. 67-71, 2006. TRON, E. A.; WILKE, H. L.; PETERMANN, S. R.; RUST, L. Pseudomonas aeruginosa from canine otitis externa exhibit a quorum sensing deficiency. Veterinary Microbiology, v. 99, n. 2, p. 121-129, 2004. VAN HOUDT, R.; AERTSEN, A.; JANSEN, A.; QUINTANA, A. L.; MICHIELS, C. W. Biofilm formation and cell-to-cell signalling in Gram-negative bactéria isolated from a food processing environment. Journal of Applied Microbiology. v. 96, 177-184, 2004. VESELOVA, M.; KHOLMECKAYA, M.; KLEIN, S.; VORONINA, E.; LIPASOVA, V.; METLITSKAYA, A.; MAYATSKAYA, A.; LOBANOK, E.; KHMEL, I.; CHERNIN, L. Production of N-Acylhomoserine Lactone Signal Molecules by Gram-Negative Soil-Borne and Plant-Associated Bacteria. Folia Microbiol. v. 48, no. 6, p. 794-798, 2003. 39 WILLIAMS, P.; BAINTON, N. J.; SWIFT, S.; CHHABRA, S. R.; WINSON, M. K.; STEWART, G. S. A. B.; SALMOND, G. P. C.; BYCROFT, B. W. Small molecule-mediated density-dependent control of gene expression in prokaryotes: bioluminescence and the biosynthesis of carbapen antibiotics. FEMS Microbiol. Lett., v. 100, p. 161-168, 1992. XAVIER, G. R.; SILVA, F. V.; ZILLI, J. E.; RUMJANEK, N. G. Extração de DNA de microrganismos associados às plantas. EMBRAPA Agrobiologia, Comunicado Técnico, 2004. 15p. ZAGO, V.C.P.; DE-POLLI, H.; RUMJANEK, N.G. Pseudomonas spp. Fluorescentes – Bactérias promotoras de crescimento de plantas e biocontroladoras de fitopatógenos em sistemas de produção agrícola. Documento n. 127, 34 pág. EMBRAPA Agrobiologia, 2000. ZHANG, L. H.; DONG, Y. H. Quorum sensing and signal interference: diverse implications. Molecular Microbiology, v. 53, p. 1563-1571, 2004.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/63168/2007%20-%20Rachel%20Pinton.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4188
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-11-24T15:33:13Z No. of bitstreams: 1 2007 - Rachel Pinton.pdf: 2224827 bytes, checksum: 6b82313057016efda9aa06c2c4e040cb (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-11-24T15:33:13Z (GMT). No. of bitstreams: 1 2007 - Rachel Pinton.pdf: 2224827 bytes, checksum: 6b82313057016efda9aa06c2c4e040cb (MD5) Previous issue date: 2007-03-30eng
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2007 - Rachel Pinton.pdf2007 - Rachel Pinton2.17 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.