Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/10835
Full metadata record
DC FieldValueLanguage
dc.creatorPereira, Erinaldo Gomes
dc.date.accessioned2023-11-19T21:50:26Z-
dc.date.available2023-11-19T21:50:26Z-
dc.date.issued2019-02-27
dc.identifier.citationPEREIRA, Erinaldo Gomes. Caracterização funcional do transportador OsAAP1 e avaliação de mecanismos associados à eficiência de uso de nitrogênio, utilizando-se o sistema CRISPR-Cas 9. 2019. 95 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10835-
dc.description.abstractThe integration of acquired knowledge on the processes of N-inorganic regulation, transport and metabolism, with the study of N-organic, using modern tools such as the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system, is one of the paths for optimization production processes and can contribute to the development of more sustainable agriculture. The main objectives of this work were to verify the role of the transporter of amino acids OsAAP1 (Amino acid Permease 1) of rice (Oryza sativa L.) in the initial development of the plants, its influence on inorganic and organic N transporters, possible alterations in the expression of genes that encode key enzymes for carbon metabolism, as well as the performance of this transporter in grain production and in the use of nitrogen (NUE). For this, the OsAAP1 gene was knocked out in plants of the Piauí variety using the CRISPR-Cas9 system and two lines were selected for the study (L3 and L5). Two experiments were carried out with the obtained strains, and as control wild plants of the same variety were used: experiment 1, for metabolic characterization and study of the expression of genes involved in N-inorganic transport and carbon metabolism, was conducted in chamber of the Federal Rural University of Rio de Janeiro (UFRRJ), in nutrient solution of Hoagland and Arnon (1950), with 2 mM and 0.2 mM of N-nitric (KNO3-) as the only source of N for 40 days. The experiment 2, for metabolic characterization, study of the expression of genes involved in N-organic transport and carbon metabolism, determination of production parameters and efficiency in the use of N, was conducted in a greenhouse of the Laboratory of Mineral Nutrition (LNMP), in pots containing soil from a horizon A of a PLANOSOL collected at the UFRRJ campus. A basal fertilization, at 30 days after germination, was performed, equivalent to 60 kg / ha of N-nitric (KNO3-). At the end of the study it was possible to verify that the AAP1 gene is involved in the internal flow of N in rice plants, and its knockout negatively interferes in the processes of absorption and assimilation of inorganic N, causing a regulation in the expression of genes coding for nitrate transporters, amino acids and carbon cycle enzymes, in addition to leading to a decrease in grain yield and NUE.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectTransportador de aminoácidospor
dc.subjectVariedade Piauípor
dc.subjectOryza sativa L.por
dc.subjectAmino acids transportereng
dc.subjectPiauí varietyeng
dc.titleCaracterização funcional do transportador OsAAP1 e avaliação de mecanismos associados à eficiência de uso de nitrogênio, utilizando-se o sistema CRISPR-Cas 9por
dc.title.alternativeunctional characterization of the OsAAP1 transporter and evaluation of mechanisms associated to the efficiency of nitrogen use, using the CRISPR-Cas system 9eng
dc.typeDissertaçãopor
dc.contributor.advisor1Fernandes, Manlio Silvestre
dc.contributor.advisor1ID002.180.573-34por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6269004387821466por
dc.contributor.advisor-co1Bucher, Cassia Pereira Coelho
dc.contributor.referee1Fernandes, Manlio Silvestre
dc.contributor.referee2Martim, Silvia Aparecida
dc.contributor.referee3Ferraz Junior, Altamiro Souza de Lima
dc.creator.IDhttps://orcid.org/0000-0002-9052-091Xpor
dc.creator.ID112.516.576-64por
dc.creator.Latteshttp://lattes.cnpq.br/3637209801005675por
dc.description.resumoA integração de conhecimentos adquiridos sobre os processos de regulação, transporte e metabolismo de N-inorgânico, com o estudo do N-orgânico, utilizando ferramentas modernas como o sistema CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), é um dos caminhos para a otimização dos processos de produção, podendo contribuir para o desenvolvimento de uma agricultura mais sustentável. Os principais objetivos do trabalho foram verificar o papel do transportador de aminoácidos OsAAP1 (Aminoácido Permease 1) de arroz (Oryza sativa L.) no desenvolvimento inicial das plantas, sua influência nos transportadores de N inorgânico e orgânico, possíveis alterações na expressão de genes que codificam enzimas chaves para o metabolismo de carbono, bem como a atuação desse transportador na produção de grãos e na eficiência do uso de nitrogênio (EUN). Para isso, o gene OsAAP1 foi nocauteado em plantas da variedade Piauí com o uso do sistema CRISPR-Cas9 e duas linhagens foram selecionadas para o estudo (L3 e L5). Dois experimentos foram realizados com as linhagens obtidas, e como controle foram utilizadas plantas selvagens da mesma variedade: o experimento 1, para caracterização metabólica e estudo da expressão de genes envolvidos no transporte de N-inorgânico e no metabolismo de carbono, foi conduzido em câmara de crescimento da Universidade Federal Rural do Rio de Janeiro (UFRRJ), em solução nutritiva de Hoagland e Arnon (1950), com 2 mM e 0,2 mM de N-nítrico (KNO3-) como única fonte de N, durante 40 dias. O experimento 2, para caracterização metabólica, estudo da expressão de genes envolvidos no transporte de N-orgânico e no metabolismo de carbono, determinação dos parâmetros de produção e da eficiência no uso de N, foi conduzido em casa de vegetação do Laboratório de Nutrição Mineral de Plantas (LNMP), em vasos contendo terra de um horizonte A de um PLANOSSOLO coletado no campus da UFRRJ. Foi realizada uma adubação basal, aos 30 dias após germinação, equivalente a 60 kg/ha de N-nítrico (KNO3-). No final do estudo foi possível verificar que o gene AAP1 está envolvido no fluxo interno de N em plantas de arroz, e seu nocaute interfere de forma negativa nos processos de absorção e assimilação de N inorgânico, causando uma regulação na expressão de genes que codificam para transportadores de nitrato, aminoácidos e enzimas do ciclo do carbono, além de levar a uma diminuição na produção de grãos e EUN.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesAGROLINK.Disponívelem:https:www.agrolink.com.br/culturas/arroz/informacoes/importancia_361560.html. Acessado em 29/11/2018. AGROLINK, 2016. ANCIELO, A. G., TOESCHER, C. F.; KOPP L. M.; COLLETO, L. S. Produtividade das cultivares de arroz desenvolvidas para Terras Altas e das desenvolvidas para inundação, quando irrigadas por aspersão, em Uruguaiana, RS. In: Congresso Brasileiro de Arroz Irrigado, Santa Maria. Anais, Sociedade Sul-Brasileira de Arroz Irrigado. p.340-341, 2005. ASENSIO, J. S. R.; RACHMILEVITCH, S.; BLOOM, A. J. Responses of Arabidopsis and wheat to rising CO2 depend on nitrogen source and nighttime CO2 levels. Plant physiology, v. 168, n. 1, p. 156-163, 2015. AVICE, J. C., OURRY, A., VOLENEC, J. J., LEMAIRE, G., BOUCAUD, J. Defoliation-induced changes in abundance and immuno-localization of vegetative storage proteins in taproots of Medicago sativa. Plant Physiology and Biochemistry, 34: 561–570, 1996. BARNEIX, A. J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. Journal of Plant Physiology, 164: 581–590, 2007. BLOMM, A. J. The increasing importance of distinguishing among plant nitrogen sources. Current Opinion in Plant Biology 25: 10–16, 2015. BLOOM, A. J. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynthesis research, v. 123, n. 2, p. 117-128, 2015. BRADFORD, M. M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, v.72, p.248-254, 1976. BRUGIERE, N.; DUBOIS, F.; MASCLAUX, C.; SANGWAN, R. S.; HIREL, B. Immunolocalization of glutamine synthetase in senescing tobacco (Nicotiana tabacum L.) leaves suggests that ammonia assimilation is progressively shifted to the mesophyll cytosol. Planta 211: 519–527, 2000. CARGINALE, V.; MARIA, G.; CAPASSO, C.; IONATA, E.; CARA, F. L.; PASTORE, M.; BERTACCINI, A.; CAPASSO, A. Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene 332:29–34, 2004. CHEN, J., ZHANG, Y.; TAN, Y., ZHANG, M.; ZHU, L.; XU, G.; FAN, X. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol. J. 14:1705–15, 2016. CLELAND, E. E.; HARPOLE, W. S: Nitrogen enrichment and plant communities. Ann NY Acad Sci, 1195:46–61, 2010. COELHO, C. P. Remobilização de nitrogênio em variedades de arroz com e sem suplementação nitrogenada. [Dissertação]. Seropédica. Universidade Federal Rural do Rio de Janeiro, 2011. COELHO, C. P. Influência dos transportadores de aminoácidos OsAAP1 e OsAAP18 na remobilização de nitrogênio e acúmulo de proteínas nos grãos de arroz. [Tese]. Seropédica. Universidade Federal Rural do Rio de Janeiro, 2015. COELHO, C. P.; SANTOS, L. A.; RANGEL, R. P.; SPERANDIO, M. V. L.; BUCHER, C. A.; Souza, S. R., Fernandes, M. S. Rice Varieties Exhibit Different Mechanisms for Nitrogen Use Efficiency (NUE) [online]. Australian Journal of Crop Science, vol. 10, n ° 3, mar de 2016: 342-352. CONAB, Companhia nacional de Abastecimento. Disponível em: https://www.conab.gov.br/... arroz/.../15943_144fbd688fe784933ba25908839d24bf. Acessado em 29/11/18. CONAB, 2018. CONG, L.; RAN, F. A.; COX, D.; LIN, S.; BARRETTO, R.; HABIB, N.; HSU, P. D.; Multiplex genome engineering using CRISPR/Cas systems. 2013. Febrero 15; 339(6121): p. 819-823. SCIENCE, 2010. CORUZZI, G. LAST, R., AMRHEIN, N. Amino acids. In: Buchanan BB, Gruissem W, Jones RL, editors. Biochemistery and molecular biology of plants. 2ª ed. Rockeville: American Society of Plant Physiologists, Jhon Wiley & Sons. P. 289-336, 2015. DUFF, S. M., QI, Q., REICH, T., WU, X., BROWN, T., CROWLEY, J. H., FABBRI, B. A kinetic comparison of asparagine synthetase isozymes from higher plants. Plant Physiology and Biochemistry, 49(3), 251-256, 2011. EMBRAPA, Empresa brasileira de pesquisa agropecuária. Agência Embrapa de Informação Tecnológica - Mercado, comercialização e consumo Disponível em: http://www.agencia.cnptia.embrapa.br/gestor/arroz/arvore/CONT000fok5vmke02wyiv80bhgp5prthhjx4.html. Acessado em 29/11/2018. EMBRAPA, 2018. EMBRAPA, Empresa Brasileira de Pesquisa Agropecuária. Embrapa testa variedades de arroz de sequeiro no RS. Disponível em: <http://www.cnpaf.embrapa.br/arroz/index.htm>. Acessado em 29/11/2018. EMBRAPA, 2018. FAN, X.; NAZ, M.; FAN, X. X. W; MILLER, A. J; XU, X. Plant nitrate transporters: from gene function to application. Journal of Experimental Botany 68: 2463–2475, 2017. FAN, X.; TANG, Z.; TAN, Y.; ZHANG, Y.; LUO, B.; YANG, M.; LIAN, X.; SHEN, Q.; JOHN, M.; XU, G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. PNAS 113:7118–23, 2016. FAO, Food and Agriculture e Organization Rice Market Monitor, 2018. Disponível em: http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/. Acessado em 12/11/2018. FAO, 2018. FARNDEN, K. J. S.; ROBERTSON, J. G. Methods for studying enzyme involved in metabolism related to nitrogen. In: BERGSEN, F. J. ed. Methods for Evaluating Biological Nitrogen Fixation, Chichester: John Wiley, p.265-314, 1980. FELKER, P. Micro determination of nitrogen in seed protein extracts. Analytical Chemistry, v.49, 1977. FERNANDES, M. S. Efeitos de fontes e níveis de nitrogênio sobre a absorção e assimilação de N em arroz. Revista Brasileira de Fisiologia Vegetal 2(1): 1-6, 1990. FERNANDES, M. S., SOUZA, S. R., SANTOS, L. A. Nutrição Mineral de Plantas, 2ª edição. Sociedade Brasileira de Ciência do Solo, 2018. FERNANDES, M.S. N-carriers, light and temperature influences on uptake and assimilation of nitrogen by rice. Turrialba. San Jose, v.34, p.9-18, 1984. FERREIRA, C. M., PINHEIRO B. S., SOUSA I. S. F. & MORAIS O. P. Qualidade do arroz no Brasil: Evolução e padronização. Goiânia, Embrapa Arroz e Feijão. 61p, 2005. FISHER, W. N., KWART, M., HUMMEL, S., FROMMER, W. B. Substrate specificity and expression profile of amino acid transports (AAPs) in Arabidopsis. J Biol Chem.http://dx.doi.org/10.1074/jbc.270.27.16315.Pmid:7608199, 1995. FROMMER, W. B.; HUMMEL, S.; RIESMEIER, J. W. Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci USA 90:5944–5948, 1993. GAJ, Thomas; GERSBACH, Charles A.; BARBAS III, Carlos F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in biotechnology, v. 31, n. 7, p. 397-405, 2013. GAUFICHON, L., REISDORF-CREN, M., ROTHSTEIN, S. J., CHARDON, F., SUZUKI, A. Biological functions of asparagine synthetase in plants. Plant Science, v. 179, n. 3, p. 141-153, 2010. GUAN, P. Z.; RIPOLL, J. J.; WANG, R. H.; VUONG, L.; BAILEY-STEINITZ, L. J.; YE, D. N.; CRAWFORD, N. M. Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proceedings of the National Academy of Sciences, USA 114: 2419–2424, 2017. GUO, M. G. Molecular and genomic analysis of nitrogen regulation of amino acid permease I (AAP1) in Arabidopsis. PhD dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 2004. HAEFELE, S. M., WOPEREIS, M. C. S., NDIAYE, M. K., BARRO, S. E., ISSELMOU, M. O. Internal nutrient efficiencies, fertilizer recovery rates and indigenous nutrient supply of irrigated lowland rice in Sahelian West Africa. Field Crop. Res. 80, 19–32, 2003. HAMMES, U. Z.; NIELSEN, E.; HONAAS, L. A.; TAYLOR, C. G.; SHACHTMAN, D. P. AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. Plant J 48:414–426, 2006. HAQUE, Effi., TANIGUCHI, HIROAKI., HASSAN, M. D. MAHMUDUL, BHOWMIL, PANKAJ., KARIM, M. REZAUL., SMIECH, MAGDALENA., ZHAO, KAIJUN, RAHMAN, MAHFUZUR., ISLAM, TOFAZZAL. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. Frontiers in plant science, v. 9, 2018. HAVÉ, M., MARMAGNE, A., CHARDON, F., MASCLAUX-DAUBRESSE, C. Nitrogen remobilisation during leaf senescence: lessons from Arabidopsis to crops. Journal of Experimental Botany, 68: 2513–2529, 2016. HAYASHI, H., CHINO, M. Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant Cell Physiol. 31/247-51. http://dx.doi.org/10.1093/oxfordjournals.pcp.ao77899, 1990. HIRNER, A., LADWIG, F., STRANSKY, H., OKUMOTO, S., KEINATH, M., HARMS, A., FROMMER, W. B., KOCH, W. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell, 18: 1931–1946, 2006. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Station Bull, v.347, p.1-32, 1950. HU, R., QIU, D. Y., CHEN, Y., MILLER, A. J., FAN, X. R., PAN, X. P., ZHANG, M. Y. Knockdown of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply. Frontiers in Plant Science, 7: 1–13, 2016. IBGE, Instituto Brasileiro de Geografia e Estatística. Disponível em: https://agenciadenoticias.ibge.gov.br/a https://agenciadenoticias.ibge.gov.br/a https://agenciadenoticias.ibge.gov.br/a https://agenciadenoticias.ibge.gov.br/a https://agenciadenoticias.ibge.gov.br/a https://agenciadenoticias.ibge.gov.br/a https://agenciadenoticias.ibge.gov.br/ahttps://agenciadenoticias.ibge.gov.br/a https://agenciadenoticias.ibge.gov.br/a https://agenciadenoticias.ibge.gov.br/a gencia gencia genciagencia-noticias/2012 noticias/2012noticias/2012 -agenciadeagenciade agenciade agenciadeagenciadeagenciade noticias/17172 noticias/17172noticias/noticias/17172noticias/noticias/17172noticias/noticias/17172 noticias/17172 noticias/17172 noticias/17172 -soja -milho milho -e-arrozarrozarroz -representam representam representamrepresentamrepresentamrepresentam -mais -de -90 -da -safra safrasafra -2017. Acessado em 12/11/2018. Acessado em 12/11/2018. Acessado em 12/11/2018. Acessado em 12/11/2018. Acessado em 12/11/2018. Acessado em 12/11/2018. Acessado em 12/11/2018. Acessado em 12/11/2018. IBGE IBGE , 2018. ISHINO. Y.; SHINAGAWA, H.; MAKINO K.; AMEMURA, M.; NAKATA A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology; 169(12), December, 1987. ISHIYAMA, K.; INOUE, E.; TABUCHI, M.; YAMAHA, T.; TAKAHASHI, H. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant and Cell Physiology. v.45, n.11, p.1640-1647, 2004. JACKSON, M. T. Conservation of rice genetic resources: the role of the International Rice Genebank at IRRI. Plant molecular biology, v. 35, n. 1-2, p. 61-67, 1997. JIN, J. Changes in the efficiency of fertiliser use in China. J. Sci. Food Agric. 92, 1006–1009, 2012. JULIANO, B.O. (Ed.). Rice: chemistry and technology. Minnesota, USA: American Association of Cereal Chemists. Cap.2, p.17-57, 1985. KANT, S. Understanding nitrate uptake, signaling and remobilization for improving plant nitrogen use efficiency. In: Seminars in cell & developmental biology. Academic Press, 2017. KIM, D.; KIM, J.; HUR, J. K.; BEEN, K. W.; YOON, S. H.; KIM, J. S. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnol. doi: 10.1038/nbt.3609, 2016. KIM, W. T.; OKITA, T. W. Structure, expression, and heterogeneity of the rice seed prolamines. Plant physiology, v. 88, n. 3, p. 649-655, 1988. LALONDE, S.; WIPF, D.; FROMMER, W. B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372, 2004. LARA, W.A.R.; TRIVELIN, P.C.O. Eficiência de um coletor semi-aberto estático na quantificação de N-NH3 volatilizado da uréia aplicada ao solo. Revista Brasileira de Ciência do Solo, Campinas, v.14, n.3, p.345-352, 1990. LEE, Y. H.; COLLIER, R.; TRETHEWY, A.; GOULD, G.; SIEKER, R.; TEGEDER, M. AAP1 transports uncharged amino acids into roots of Arabidopsis. The Plant Journal, v. 50, n. 2, p. 305-319, 2007. LÉRAN, S.; VARALA, K; BOYER, J. C; CHIURAZZI, M.; CRAWFORD, N.; VEDELE, F. D.; DAVID, L.; DICKSTEIN, R.; FERNANDEZ, E.; FORDE, B. GASSMANN, W.; GEIGER, D.; GOJON, A.; GONG, J. M.; HALKIER B. A.; HARRIS, M. J.; HEDRICH, R.; LIMAMI, A. M. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, v. 19, n. 1, p. 5-9, 2014. LEZHNEVA, L., KIBA, T., FERIA-BOURRELLIER, A. B., LAFOUGE, F., BOUTET-MERCEY, S., ZOUFAN, P., SAKAKIBARA, H., DANIEL-VEDELE, F., KRAPP, A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant Journal, 80: 230–241, 2014. LIANG, P.; XU, YANWEN.; ZHANG, X.; DING, C.; HUANG, R.; ZHANG, Z.; LV, J.; XIE., X.; CHEN, Y.; LI, Y.; SUN, Y.; BAI, Y.; SONYANG, Z.; MA, W.; ZHOU, C.; HUANG, J.CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 6, 363-372, 2015. LIU, G.; JI, Y.; BHUIYAN, N. H.; PILOT, G.; SELVARAJ, G.; ZOU, J.; WEI, Y. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 22:3845–3863, 2010. LIU, Y., NICOLAUS, V. W. 2017. Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany, 68: 2581– 2592, 2017. LOQUE, D., LUDEWIG, U., YUAN. L. X., VON, W. N. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiology, 137: 671–680, 2005. LU, Y.; SONG, M.; LU, K.; LIAN, X.; CAI, H. Molecular characterization, expression and functional analysis of the amino acid transporter gene family (OsAATs) in rice. Acta physiologiae plantarum, v. 34, n. 5, p. 1943-1962, 2012. MARTINEZ M. F.; DIEZ-VILLASEÑOR C, GARCIA-MARTINEZ J.; SORIA, E. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Molecular Evolution. Febrero; 60(2), 2005. MARY, B.; RECOUS, S; DARWIS, D.; ROBIN, D. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant and Soil, Dordrecht, v.181, n.1, p.71-82, 1996. MASCLAUX-DAUBRASSE, C.; DANIEL-VEDELE, F., DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L.; SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany 105: 1141– 1157, 2010. MCMANUS, M.T.; SHARP, P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747 Wyman, C. and Kanaar, R. (2006) DNA double-strand break repair: all’s well that ends well. Annu. Rev. Genet. 40, 363–383, 2002. MIRANDA, K.M.; ESPEY, M.G.; WINK, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide v.5, p.62–71, 2001. MOLL, R. H., KAMPRATH, E. J., JACKSON, W. A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agronomy Journal, 74(3), 562-564, 1982. NOVARROZ. Disponível em:http://www.novarroz.pt/pt/mundo-do-arroz/arroz-no-mundo/14-tipos-e-variedades-de-arroz. Acessado em 29/11/2018. NOVARROZ, 2018. ODIPIO, J.; ALIEAI, T., INGELBRECHT, I.; NUSINOW, D. A.; BART, R., TAYLOR, N. J. Efficient CRISPR/Cas9 genome editing of phyteone desaturase in cassava. Front. Plant Sci. 8:1780. doi: 10.3389/fpls.2017.01780, 2017. OKUMOTO, S., KOCH, W., TEGEDER, M., FISCHER, W. N., BIEHL, A., LEISTER, D., STIERHOF, Y. D., FROMMER, W. B. Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. Journal of Experimental Botany, 55: 2155–2168, 2004. PENG, B., KONG, H. L., LI, Y. B., Wang, L. Q., ZHONG, M., SUN, L., GAO, G. J., ZHANG, Q. L., LUO, L. J., WANG, G. W. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature communications, 5: 4847, 2014. PERCHLIK, M., FOSTER, J., TEGEDER, M. Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake. Journal of Experimental Botany, 65: 5193–5204, 2014. PERCHLIK, M., TEGEDER, M. Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiology, 175: 235–247, 2017. PEREIRA, J. A. Cultura do arroz no Brasil: subsídios para a sua história. Teresina: Embrapa Meio-Norte, 2002. PINHEIRO B. S., CASTRO E. S & GUIMARÃES C. M. Sustainability and profitability of aerobic rice production in Brazil. Field Crops Research, 97:34–42, 2006. RAN, F. A.; CONG, L.; YAN, W. X.; SCOTT, D. A., GOOTENBERG, J. S.; KRIZ, A. J., ZETSCHE, B., SHALEM, O., Wu, X., MAKAROVA, K. S.; KOONIN,E. V.; SHARP, P. A.; ZHANG, F. Beyond CRISPR: A guide to the many other ways to edit a genome. Nature. Aug 8;536(7615):136-7. doi: 10.1038/536136b, 2016. ROBERTS, J., PANG, M. Estimation of ammonium ion distribution between cytoplasm and vacuole using nuclear magnetic resonance spectroscopy. Plant Physiology, 100: 1571–1574, 1992. RODRÍGUEZ-LEAL, D.; LEMMON, Z. H.; MAN, J.; BARTLETT, M. E., LIPPMAN, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480.e8. doi: 10.1016/j.cell.2017.08.030, 2017. SANDERS, A.; COLLIER, R.; TRETHEWY, A.; GOULD, G.; SIEKER, R.; TEGEDER, M. AAP1 regulates import of amino acids into developing Arabidopsis embryos. The Plant Journal, v. 59, n. 4, p. 540-552, 2009. SANTIAGO, J. P., TEGEDER, M. Implications of nitrogen phloem loading for carbon metabolism and transport during Arabidopsis development. Journal of Integrative Plant Biology, 59: 409–421, 2016. SANTOS, L. A., BUCHER, C. A., SOUZA, S. R. Metabolismo de nitrogênio em arroz sob níveis decrescentes de nitrato. Agronomia, v. 39, p. 28-33, 2005. SOUZA, S. R. Teor e qualidade das proteínas do arroz com a aplicação foliar e no solo de URAN. [dissertação]. Seropédica: Universidade Federal Rural do Rio de Janeiro, 1990. SOUZA, S.R.; FERNANDES, M.S. NITROGÊNIO. In: FERNANDES, M.S. (Org.) Nutrição Mineral de Plantas. Sociedade Brasileira de Ciência do Solo. 2006. SPERANDIO, M. V. L.; SANTOS, L. A.; ARAUJO, O. J. L.; BRAGA, R. P.; COELHO, C. P.; MATOS, N., E.; FERNANDES, M. S. e SOUZA, S. R. Resposta dos transportadores de nitrato e da expressão de PM H + -ATPase ao ressuprimento de nitrogênio em duas variedades de arroz de terras altas, contrastando com a cinética de captação de nitrato [online]. Australian Journal of Crop Science, vol. 8, n ° 4, abril de 2014: 568-576. SU, Y. H.; FROMMER, W. B.; LUDEWIG, U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 136:3104–3131, 2004. TAIZ, L., ZEIGER, E., MOLLER, I. M., MURPHY, A. Fisiologia e Desenvolvimento Vegetal. 6ª edição. Artmed, 2017. TAN, Q. M., ZHANG, L. Z., GRANT, J., COOPER, P., TEGEDER, M. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiology, 154: 1886– 1896, 2010. TEGEDER, M., MASCLAUX‐DAUBRESSE, C. Source and sink mechanisms of nitrogen transport and use. New Phytologist, v. 217, n. 1, p. 35-53, 2017. TISCHNER, R. Nitrate uptake and reduction in higher and lower plants. Plant, Cell and Environment. v.23, p.1005-1024, 2000. TOKI, S.; HARA, N.; ONO, K.; ONODERA, H.; TAGIRI, A.; OKA, S.; TANAKA, H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal, v.47, p.969-976, 2006. TURANO, F. J.; DASHNER, R.; UPADHYAYA, A.; CALDWELL, C. R. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant Physiology, v.112, p.1357-1364, 1996. URRIOLA, J., RATHORE, K. S. Overexpression of a glutamine synthetase gene affects growth and development in sorghum. Transgenic Res. 24:397–407, 2015. WALTER, M.; MARCHEZAN, E.; AVILA, L. Arroz: composição e características nutricionais. Ciência Rural, v. 38, n. 4, 2008. WANG, F., WANG, C., LIU, P., LEI, C., HAO, W., GAO, Y., LIU, YAO-GUANG., ZHAO, KAJUN. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE. 11:0154027. doi: 10.1371/journal.pone.0154027, 2016. WANG, W.; PAN, Q.; HE, F.; AKHUNOYA, A.; CHAO, S.; TRICK, H., AKHUNOV, EDUARDl. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J. 1, 65–74. doi: 10.1089/crispr.2017.0010, 2018. WANG, Y. Y.; CHENG, Y. H; CHEN, K. E; TASY, Y. F. Nitrate transport, signaling, and use efficiency. Annual review of plant biology, v. 69, p. 85-122, 2018. WHITE, A. C., ROGERS, A., REES, M., OSBORNE, C. P. How can we make plants grow faster? A source–sink perspective on growth rate. Journal of Experimental Botany 67: 31–45, 2016. XIE, K.; MINKENBERG, B.; YANG, Y. Targeted gene mutation in rice using a CRISPR-Cas9 system. Bio Protocol, v. 4, p. e1225, 2014. XU, R.; YANG, Y.; QIN, R.; LI, H.; QIU, C.; LI, LI., WEI, PENCHENG., YANG, JIANBO (2016). Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J. Genet. Genomics 43, 529–532. doi: 10.1016/j.jgg, 2016. YEMM, E.W. & COCKING, E. C. The determination of amino-acid with ninhydrin. Analytical Biochemistry, v.80, p.209-213, 1955. ZHANG, L. Z., TAN, Q. M., LEE, R., TRETHEWY, A., LEE, Y. H., TEGEDER, M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell, 22: 3603–3620, 2010. ZHANG, L.Z., GARNEAU, M.G., MAJUMDAR, R., GRANT, J., TEGEDER, M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant Journal, 81: 134–146, 2015. ZHAO, H.; MA, H.; YU, L.; WANG, X.; ZHAO, J. Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.). PLoS One, v. 7, n. 11, p. e49210, 2012. ZHAO, Z.; ZHANG, H.; LI, C.; ZHAO, Q.; CAO, L. Quantifying nitrogen loading from a paddy field in Shanghai, China with modified DNDC model. Agr. Ecosyst. Environ. 197, 212–221, 2014.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71121/2019%20-%20Erinaldo%20Gomes%20Pereira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6079
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-10-18T16:56:46Z No. of bitstreams: 1 2019 - Erinaldo Gomes Pereira.pdf: 2093431 bytes, checksum: 6953fcb807dd747c46bc0df310e65a58 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-10-18T16:56:46Z (GMT). No. of bitstreams: 1 2019 - Erinaldo Gomes Pereira.pdf: 2093431 bytes, checksum: 6953fcb807dd747c46bc0df310e65a58 (MD5) Previous issue date: 2019-02-27eng
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Erinaldo Gomes Pereira.pdf2.04 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.