Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/10739
Full metadata record
DC FieldValueLanguage
dc.creatorRibeiro, Rayane Sorrentino
dc.date.accessioned2023-11-19T21:46:47Z-
dc.date.available2023-11-19T21:46:47Z-
dc.date.issued2021-10-27
dc.identifier.citationRIBEIRO, Rayane Sorrentino. Contaminação de resíduos, microplásticos e químicos no ambiente marinho. 2021. 105 f. Tese (Doutorado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10739-
dc.description.abstractThe inadequate solid waste management, demographic, industrial and tourist growth, inadequate public sanitation policies, are factors that generate favourable scenarios for environmental contamination, especially in marine environments. Coastal areas have dense population density, marinas, ports, sewage channels and intense tourist activity, which aggravates contamination by macro, micro litter, and chemical compounds. Currently, there are diverse methodologies applied to macro litter and microplastics (MPs) studies. Regarding litter, many methodologies used in studies are biased, consequently the analyses and results are imprecise. As a result, this thesis brings two chapters of methodologies applied to macro litter and microplastics studies, followed by the third chapter about microplastic contamination in benthic organisms. The Chapter I approaches methodological concepts usually used to ecological works, in the analysis of litter collected in Sydney Harbour. Simulations of different sizes and numbers of sampling units (transects or quadracts) were performed and the impact of these units on sample precision was calculated. It is noticed that the choice and definition of sampling design directly reflects on the precision of the litter sampling. This is a baseline for future studies on the subject and the consequent production of more precise studies and analyses, not only applicable to litter. Still on methods, Chapter II reviews and describes methodologies applied to the study of microplastics in crustaceans. This review included all papers about MP in crustaceans published up to March 2021. In addition to description of methods, this work supports studies involving MPs in invertebrates, since it presents criticisms and limitations about methods used so far. Finally, as a case study, Chapter III analyses the contamination of MPs in different benthic organisms of the coast of Rio de Janeiro. Contamination was analysed in natural substrate, algae, sponges, and sea squirts, concomitantly related to MP ingestion by epibiont amphipods. Macroalgae are more contaminated by MP, as well as their associated organisms. Sponges and ascidians have different filtering process that influence the accumulation of MP in tissue, as well as its availability to associated organisms. MPs are considered ecosystem compounds and these results report the transference of this contamination in different benthic ecological levels and in sites not previously analysed.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectprecisão de amostragempor
dc.subjectsubstrato naturalpor
dc.subjectorganismos associadospor
dc.subjectsampling precisioneng
dc.subjectnatural substrateeng
dc.subjectassociated organismseng
dc.titleContaminação de resíduos, microplásticos e químicos no ambiente marinhopor
dc.title.alternativeContamination of litter, microplastics and chemicals in marine environment.eng
dc.typeTesepor
dc.contributor.advisor1Senna, André Resende de
dc.contributor.advisor1ID083.612.007-89por
dc.contributor.referee1Senna, André Resende de
dc.contributor.referee2Neves, Leonardo Mitrano
dc.contributor.referee3Silva, Hélio Ricardo da
dc.contributor.referee4Silva, Melanie Lopes da
dc.contributor.referee5Araújo, Fáblo Vieira de
dc.creator.ID144.783.397-08por
dc.creator.IDhttps://orcid.org/0000-0002-0937-0214por
dc.creator.Latteshttp://lattes.cnpq.br/5856769424320380por
dc.description.resumoO inadequado manejo de resíduos sólidos, ineficientes políticas públicas de saneamento, alto crescimento demográfico, industrial e turístico são fatores que geram cenários favoráveis para contaminação ambiental, em especial nos ambientes marinhos. Áreas costeiras possuem alto índice populacional, além de marinas, portos, canais de esgoto e intensa atividade turística, que agrava ainda mais a contaminação por macro, micro resíduos e compostos químicos que interagem e impactam a biota marinha. Atualmente existe uma diversidade de metodologias aplicadas ao estudo da contaminação e poluição por macro-resíduos e microplásticos (MPs). A respeito dos resíduos, muitas metodologias utilizadas atualmente são enviesadas e as análises e resultados são consequentemente, imprecisos. Desse modo, esta tese traz dois capítulos voltados para metodologias utilizadas no estudo de macro resíduos e microplásticos, seguido do terceiro capítulo sobre a contaminação de microplásticos em organismos bentônicos. O Capítulo I aborda conceitos metodológicos usualmente aplicados a ecologia, na análise de resíduos coletados no porto de Sydney. Simulações de diferentes tamanhos e números de unidades amostrais (transectos ou quadracts) foram realizadas e o impacto dessas unidades na precisão da amostragem foi calculada. Percebe-se que a escolha e definição do delineamento amostral reflete diretamente na precisão da amostragem de resíduos. Este estudo poderá auxiliar futuros estudos do tema e a consequente geração de trabalhos e análises mais precisas, não somente aplicáveis para resíduos. O Capítulo II revisa e descreve metodologias aplicadas ao estudo de microplásticos em crustáceos. Nesta revisão foram incluídos todos os artigos sobre MPs em crustáceos publicados até março de 2021. Além da descrição de métodos, o trabalho é um suporte para estudos que envolvem MPs em invertebrados, pois apresenta críticas e limitações dos métodos utilizados até o momento. Por fim, como um estudo de caso, o Capítulo III analisa a contaminação dos microplásticos em diferentes organismos bentônicos da costa do Estado do Rio de Janeiro. A contaminação foi analisada em substratos naturais, algas, esponjas e ascídias, concomitantemente relacionada com a ingestão de MPs por seus anfípodes epibiontes. Macroalgas estão mais expostas a microplásticos, como também seus organismos associados. Esponjas e ascídias possuem diferentes processos de filtragem que influenciam no acúmulo de MP nos tecidos, bem como na disposição dessas partículas para os organismos associados. MPs já são considerados componentes do ecossistema e esses resultados reportam o acúmulo dessa contaminação em diferentes grupos bentônicos e em localidades anteriormente não relatadas para a ciência.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.references1. INTRODUÇÃO GERAL: BARATA, C.; PORTE, C; BAIRD, D. J. 2004. Experimental designs to assess andocrine disrupting effects in invertebrates a review. Ecotoxicology, 13, 511–517. BARNES, D. K. A.; GALGANI, F.; THOMPSON, R. C.; BARLAZ, M. 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B. 364, 1985–1998. BROWNE, M A; CHAPMAN, M. G.; THOMPSON, R. C.; ZETTLER, L. A. A.; JAMBECK, J.; MALLOS, N. J. 2015a. Spatial and Temporal Patterns of Stranded Intertidal Marine Debris: Is There a Picture of Global Change? Environmental Science & Technology. V. 49, p. 7082−7094. BROWNE, M. A.; , UNDERWOOD, A. J. ; CHAPMAN, M. G.; WILLIAMS, R. THOMPSON, R. C.; VAN FRANEKER, J. A. 2015b. Linking effects of anthropogenic debris to ecological impacts. Proceedings Royal Society B. 282: 20142929. http://dx.doi.org/10.1098/rspb.2014.2929 BUCCI, K.; TULIO, M.; ROCHMAN, C. M. 2020. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecological Applications. 0(0), 2020, e02044. COE, J. M. e ROGERS, D. 1997. Marine Debris: Sources, Impacts, and Solutions. Springer, New York, NY. (1), 432. CRITCHELL, K. e LAMBRECHTS, J. 2020. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes? Estuarine, Coastal and Shelf Science. 171, 111–122. FARADY, S. E. 2019. Microplastics as a new, ubiquitous pollutant: Strategies to anticipate management and advise seafood consumers. Marine Policy. 104, 103–107. FENG, Z.; ZHANG, T.; SHI, H.; GAO, K.; HUANG, W.; XU, J.; WANG, J.; WANG, R; LI, J.; GAO, G. 2020. Microplastics in bloom-forming macroalgae: Distribution, characteristics, and impacts. Journal of Hazardous Materials. 397, 122752. GALGANI, F.; LEAUTE, J. P.; MOGUEDET, P.; SOUPLET, A.; VERIN, Y.; CARPENTIER, A.; GORAGUER, H.; LATROUITE, D.; ANDRAL, B.; CADIOU, Y.; MAHE, J. C.; POULARD, J. C.; NERISSON, P. 2020. Litter on the sea floor along European coasts. Marine pollution Bulletin. 40 (6), 516–527. HENGSTMANN, E.; GRÄWE, D.; TAMMINGA M.; FISCHER, E. K. 2017. Marine litter abundance and distribution on beaches on the Isle of Rügen considering the influence of exposition, morphology, and recreational activities. Marine Pollution Bulletin. 115, 297–306. IMHOF, H. K.; WIESHEU, A. C.; ANGER, P. M.; NIESSNER, R.; IVLEVA, N. P.; LAFORSCH, C. 2018. Variation in plastic abundance at different lake beach zones – A case study. Science of the Total Environment. 613–614, 530–537. JAMBECK, J. R.; GEYER, R.; WILCOX, C.; SIEGLER, T. R.; PERRYMAN, M.; ANDRADY, A.; NARAYAN, R.; LAW, K. L. 2015. Plastic waste inputs from land into the ocean. Science. 347, 768–771. LEBRETON, l.; EGGER, M.; SLAT, B. 2019. A global mass budget for positively buoyant macroplastic debris in the ocean. Scientific reports. 9:12922. LOHR, A.; SAVELLI, H.; BEUNEN, R.; KALZ, M.; RAGAS; A.; VAN BELLEGHEM, F. 2017. Solutions for global marine litter pollution. Current Opinion in Environmental Sustainability, 28: 90–99. MCGRANAHAN, M.; BALK, D.; ANDERSON, B. 2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment & Urbanization. 19(1): 17–37. ROCHMAN, C. M.; BROWNE, M. A.; UNDERWOOD, A. J.; VAN FRANEKER, J. A.; THOMPSON, R. C.; AMARAL-ZETTLER, L. A. 2016. The ecological impacts of marine debris: ravelling the demonstrated evidence from what is perceived. Ecology. 97, 302–312. RODRÍGUEZ, E. M.; MEDESANI, D. E.; FINGERMAN, M. 2007. Endocrine disruption in crustaceans due to pollutants: A review. Comparative Biochemistry and Physiology, Part A. 146, 661–671. TEKMAN, M. B.’; KRUMPENB, T.; BERGMANNA, M. 2017. Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Deep Sea Research, Part I: Oceanographic Research Papers. 120, 88–99. UGOLINI, A.; BORGHINI, F.; CALOSI, P.; BAZZICALUPO, M.; CHELAZZI, G.; FOCARDI, S. 2004. Mediterranean Talitrus saltator (Crustacea, Amphipoda) as a biomonitor of heavy metals contamination. Marine Pollution Bulletin. 48, 526–532. UGOLINI, A.; PASQUALI, V.; BARONI, D.; UNGHERESE, G. 2012. Behavioural responses of the supralittoral amphipod Talitrus saltator (Montagu) to trace metals contamination. Ecotoxicology. 21, 139–147. UNDERWOOD, A. J. 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press. 504 pp. VELANDER, K. e MOCOGNI, M. 1999. Beach litter sampling strategies: Is there a ‘best’ method? Marine Pollution Bulletin. 38(12), 1134−1140. WILHELMSSON, D.; THOMPSON, R. C.; HOLMSTRÖM, K.; LINDE´N, O.; ERIKSSONHÄGG, H. Marine Pollution. In: NOONE, K.; SUMAILA, U.; DIAZ, R. Managing Ocean Environments in a Changing Climate. Elsevier. 376 pp. WRIGHT, S. L. e. KELLY, F. J. 2017. Plastic and human health: a micro issue? Environmental Science Technology. 51, 12, 6634–6647. - CAPÍTULO I: ABS: Australian Bureau of Statistics: https://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/3218.0Main%20Features702017 -18?opendocument&tabname=Summary&prodno=3218.0&issue=2017-18&num=&view= Visitado 28 de Abril de 2021. ALKALAY, R.; PASTERNAK, G.; ZASK. A. 2007. A new approach for beach cleanliness assessment. Ocean Coastal Management. 50, 352−362. ANDERSON, M. J. e SANTANA-GARCON, J. 2015. Measures of precision for dissimilaritybased multivariate analysis of ecological communities. Ecology Letters. 18: 66–73. ANDREW, N. L. e MAPSTONE, B. D. 1999. Sampling and the description of spatial pattern in marine ecology. In: BARNES, H. e BARNES, M. Oceanography and marine ecology: a annual review. British Library Cataloguing in Publication Data, 25, 574 pp. BROWNE, M. A., GALLOWAY, T. S., THOMPSON, R. C. 2010. Spatial patterns of plastic debris along estuarine shorelines. Environmental Science & Technology. 44 (9), 3404–3409. BROWNE, M A; CHAPMAN, M. G.; THOMPSON, R. C.; ZETTLER, L. A. A.; JAMBECK, J.; MALLOS, N. J. 2015. Spatial and Temporal Patterns of Stranded Intertidal Marine Debris: Is There a Picture of Global Change? Environmental Science & Technology. 49, p. 7082−7094. BOWMAN, D., MANOR-SAMSONOV, N., GOLIK, A. 1998. Dynamics of litter pollution on israeli mediterranean beaches: a Budgetary, Litter Flux Approach. Journal of Coastal Research. 14(2), 418−432. COCHRAN, W.G. 1963. Sampling Techniques. John Wiley & Sons, New York, 2nd edition, 413 pp. COCHRAN, W.G. e COX, G.M. 1957. Experimental Designs. John Wiley e Sons, New York, 2nd edition, 611 pp. CUNNINGHAM, D. J. e WILSON, S. P. 2003. Marine debris on beaches of the greater Sydney Region. Journal of Coastal Research. 19(2), 421−430. EVANS, S. M.; DAWSON, M.; DAY, J.; FRID, C. L. J.; GILL, M. E.; PATTISINA, L. A.; PORTER, J. 1995. Domestic waste and TBT pollution in coastal areas of Ambon Island (Eastern Indonesia). Marine Pollution Bulletin. 30(2), 109−115. GARRITY, S. D.; LEVINGS, S. C. 1993. Marine debris along the Caribbean Coast of Panama. Marine Pollution Bulletin. 26, 317−324. IRISH, A.E. e CLARKE, R.T., 1984. Sampling designs for the estimation of phytoplankton abundance in limnetic environments British Journal of Psychology. 19, 57–66. JOHNSTON, E. L.; MAYER-PINTO M.; HUTCHINGS, P. A.; MARZINELLI, E. M., AHYONG, S. T.; BIRCH, G.; BOOTH, D. J.; CREESE, R. G.; DOBLIN, M. A.; FIGUEIRA, W.; GRIBBEN, P. E.; PRITCHARD, T.; ROUGHAN, M.; STEINBERG, P. D.; HEDGE, L. H. 2015. Sydney Harbour: what we do and do not know about a highly diverse estuary. Marine and Freshwater Research. 66, 1073–1087. MAYER-PINTO, M.; JOHNSTON, E. L.; HUTCHINGS, P. A.; MARZINELLI, E. M.; AHYONG, S. T.; BIRCH, G.; BOOTH, D. J.; CREESE, R. G.; DOBLIN, M. A.; FIGUEIRA, W.; GRIBBEN, P. E.; PRITCHARD, T.; ROUGHAN, M.; STEINBERG, P. D.; HEDGE, L. H. 2015 Sydney Harbour: a review of anthropogenic impacts on the biodiversity and ecosystem function of one of the world’s largest natural harbours. Marine and Freshwater Research. 66, 1088–1105. MERRELL, T. R. J. 1980. Accumulation of plastic litter on beaches of Amchitka Island, Alaska. Marine Environmental Research. 3, 171 ̶ 184. MOORE, S. L.; GREGORIO, D.; CARREONS, M.; WEISBERG, S. B.; LEECASTER, M. K. 2001. Composition and distribution of beach debris in Orange County, California. Marine Pollution Bulletin. 42, 241−245. OIGMAN-PSZCZOL, S. e CREED, J. C. 2007. Quantification and classification of marine litter on Beaches along Armação dos Búzios, Rio de Janeiro, Brazil. Journal of Coastal Research. 232, 421−428. PRINGLE, J.D. 1984. Efficiency Estimates for Various Quadrat Sizes Used in Benthic Sampling. Journal of Fisheries and Aquatic Science. 41, 1485–1489. SNEDECOR, G.W. e COCHRAN, W.G., 1980. Statistical Methods. The Iowa State University Press, Iowa, 7th edition, 507 pp. Stelling-Wood, T. P.; Clark, G. F.; Poore, A. G. B. 2016. Responses of ghost crabs to habitat modification of urban sandy beaches. Marine Environmental Research. 116, 32–40. UNEPUTTY, P e EVANS, S. M. 1997. The impact of plastic debris on the biota of tidal flats in Ambon bay (eastern Indonesia). Marine Environmental Research. 44, (3), 233 ̶ 242. VAUK, G. J. M. e SCHREY, E. 1987. Litter pollution from ships in the German Bight. Marine Pollution Bulletin. 18, 316−319. VELANDER, K. e MOCOGNI, M. 1999. Beach litter sampling strategies: Is there a ‘best’ method? Marine Pollution Bulletin 38(12), 1134−1140. WHITING, S. D. 1998. Types and Sources of Marine Debris in Fog Bay, Northern Australia. Marine Pollution Bulletin, 36(11), 904 ̶ 910. WIEBE, P.H., 1971. Limnology Oceanography. 16, 29–38. WIEBE, P.H. e HOLLAND, W.R. 1968. Limnology Oceanography. 13, 315–321. - CAPÍTULO II: As mesmas do anexo - CAPÍTULO III: ALIMBA, C. G. e FAGGIO, C. 2019. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology. 68, 61–74. AUTA, H. S.; EMENIKE, C. U.; FAUZIAH, S.H. 2017. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International. 102, 165–176. BHAGAT, J., NISHIMURA, N., SHIMADA, Y. 2020. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: current knowledge and future perspectives. Journal of Hazardous Material. 405, 123913. BOGUSZ, A. e OLESZCZUCK, P. 2016. Microplastics in the environment: characteristic, identification and potential risk. In: Olszówka M. e Maciąg K. (red.), Nauka w służbie przyrodzie: wybrane zagadnienia, Fundacja na Rzecz Promocji Nauki i Rozwoju Tygiel Lublin, 61–73. BOTTERELL, Z.L.R.; BEAUMONT, N.; COLE, M.; HOPKINS, F.E.; STEINKE, M.; THOMPSON, R.C.; LINDEQUE, P.K. 2020. Bioavailability of Microplastics to Marine Zooplankton: Effect of Shape and Infochemicals. Environmental Science & Technology. 54 (19), 12024–12033. BRUCK, S. e FORD, A.T. 2018. Chronic ingestion of polystyrene microparticles in low doses has no effect on food consumption and growth to the intertidal amphipod Echinogammarus marinus? Environmental Pollution. 233, 1125–1130. CAO, Y.; ZHAO, M.; MA, X.; SONG, Y.; ZUO, S.; LI, H.; D, W. 2021. A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Science of the Total Environment. 788, 147620. CARBOREL, C. 1998. Modelling of upwelling in the coastal area of Cabo Frio (Rio de Janeiro - Brazil). Revista Brasileira de Oceanografia. 46 (1), 1–17. CARRASCO, A.; PULGAR, J.; QUINTANILLA-AHUMADA, D.; PEREZ-VENEGAS, D.; QUIJÓNC, P. A.; DUARTE, C. 2019. The influence of microplastics pollution on the feeding behavior of a prominent sandy beach amphipod, Orchestoidea tuberculata (Nicolet, 1849). Marine Pollution Bulletin. 145, 23–27. CARREIRA, R. S.; WAGENER, A. L. R.; READMAN, J. W.; FILEMAN, T. W.; MACKO, S.A., VEIGA, A. 2002. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach. Marine Chemical. 79, 207–227. CARVALHO, D.G e BAPTISTA NETO, J.A 2016. Microplastic pollution of the beaches of Guanabara Bay, Southeast Brazil. Ocean and Coast Management. 128, 10–17. CELIS-HERNÁNDEZ. O.; ÁVILA, E.; WARD, R. D.; RODRÍGUEZ-SANTIAGO, M. A.; AGUIRRE-T´ELLEZ, J. A. 2021. Microplastic distribution in urban vs pristine mangroves: Using marine sponges as bioindicators of environmental pollution. Environmental Pollution. 284, 117391. CUNNINGHAM, E. M.; CUTHBERT, R. N.; COUGHLAN, N. E., KREGTING, L., CAIRNDUFF, V.; DICK, J. T.A. 2021. Microplastics do not affect the feeding rates of a marine predator. Science of the Total Environment. 779, 146487. DA COSTA A. J. S. T. e LIMA C. S. 2019. Recicla ilha: uma proposta de gestão para os resíduos sólidos urbanos em Ilha Grande/RJ. XIII ENANOPEGE. https://www.enanpege2019.anpege.ggf.br/resources/anais/8/1560558070_ARQUIVO_trabalh ocompletocongresso.pdf. Acessado em 14 Abril de 2020. DE SÁ, L. C.; OLIVEIRA, M.; RIBEIRO, F.; ROCHA, L.; FUTTER, M. N. 2018. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of the Total Environment. 645, 1029–1039. DIAS, G. T. M. e KJERFVE B. 2009 Chapter 7 Barrier and Beach Ridge Systems of the Rio de Janeiro Coast. In: Geology and geomorphology of Holocene coastal barriers of Brazil. Springer, Berlin, pp 380. ECCARD, L. R.; DA SILVA, A. L. C.; SILVESTRE, C. P. 2017. Variações morfológicas nas praias oceânicas de Niterói (RJ, Brasil) em resposta à incidência de ondas de tempestades. Revista Brasileira de Geografia Física. 10 (01), 206–218. FALLON, B. F. e FREEMAN, C. J. 2021. Plastics in Porifera: The occurrence of potential microplastics in marine sponges and seawater from Bocas del Toro, Panamá. PeerJ. 9, e11638 DOI 10.7717/peerj.11638. FENG, Z.; ZHANG, T.; SHI, H.; GAO, K.; HUANG, W.; XU, J.; WANG, J.; WANG, R.; LI, J.; GAO, G. 2020. Microplastics in bloom-forming macroalgae: Distribution, characteristics and impacts. Journal Hazardous Material. 397, 122752. FISTAROL, G. O.; COUTINHO, F. H; MOREIRA, A. P. B.; VENAS, T.; CÁNOVAS, A.; DE PAULA S. E. M. JR.; COUTINHO, R.; DE MOURA, R. L.; VALENTIN, J. L.; TENENBAUM, D. R.; PARANHOS, R.; DO VALLE, R. A. B.; VICENTE, A. C. P.; AMADO FILHO, G. M.; PEREIRA, R. C.; KRUGER, R.; REZENDE, C. E.; THOMPSON, C. C.; SALOMON, P. S.; THOMPSON, F. L. 2015. Environmental and sanitary conditions of Guanabara Bay, Rio de Janeiro. Frontiers in Microbiology. 6: 1232. GIRARD, E. B.; FUCHS, A.; KALIWODA, M.; LASUT, M.; PLOETZ, E.; SCHMAHL, W. W.; WORHEIDE, G. 2020. Sponges as bioindicators for microparticulate pollutants?. Environmental Pollution, 268, 115851. GEYER, R.; JAMBECK, J.R.; LAW, K.L. 2017. Production, use, and fate of all plastics ever made. Science Advances. 3(7): e1700782. doi:10.1126/sciadv.1700782.PMID:28776036. GODOI, V. A.; CALADO, L.; WATANABE, W. B.; YAGINUMA, L. E.; Bastos, M. 2011. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, Campos dos Goytacazes/RJ. 5(2), 27–44. GÓMEZ GESTEIRA, J. L e DAUVIN, J. C. 2000. Amphipods are Good Bioindicators of the Impact of Oil Spills on Soft-Bottom Macrobenthic Communities. Marine Pollution Bulletin. 40(11), 1017–1027, GOSS, H.; JASKIEL, J.; ROTJAN, R. 2018. Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Marine Pollution Bulletin. 135, 1085–1089. GUTOW, L.; ECKERLEBE, A.; GIMÉNEZ, L.; SABOROWSKI, R. 2016. Experimental Evaluation of Seaweeds as a Vector for Microplastics into Marine Food Webs. Environmental Science Technology. 50(2), 915–923. IBGE (Instituto Brasileiro de Geografia e Estatística). https://cidades.ibge.gov.br/brasil/rj/armacao-dos-buzios/panorama Visitado em 28 de Abril de 2021. JONES, K. L.; HARTL, M. G. J.; BELL, M. C.; CAPPER, A. 2020. Microplastic accumulation in a Zostera marina L. bed at Deerness Sound, Orkney, Scotland. Marine Pollution Bulletin. 152, 110883. JONES-WILLIAMS, K.; GALLOWAY, T.; COLE, M.; STOWASSER, G.; WALUDA, C.; MANNO, C. 2020. Close Encounters - Microplastic availability to pelagic amphipods in sub- Antarctic and Antarctic surface waters. Environment International. 140, 105792. KJERFVE, B.; RIBEIRO, C. H. A.; DIAS, G. T. M.; FILIPPO, A. M.; QUARESMA, V. S. 1997. Oceano-graphic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Continental Shelf Research. 17, 609–1643. LEYS, S. P. e EERKES-MEDRANO, D. I. 2006. Feeding in a calcareous sponge: particle uptake by pseudopodia. Biology Bulletin. 211, 2. 157–171 DOI 10.2307/4134590. LI, Q.; FENG, Z.; ZHANG, T.; MA, C. SHI, H. 2020. Microplastics in the commercial seaweed nori. Journal of Hazardous Materials. 388, 122060. LIU, S.; SHI, J.; WANG, J.; DAI, Y.; LI, H.; LI, J.; LIU, X.; CHEN, X.; WANG, Z.; ZHANG, P. 2021. Interactions Between Microplastics and Heavy Metals in Aquatic Environments: A Review. Frontiers in Microbiology. 12, 652520. doi: 10.3389/fmicb.2021.652520. MACEDO, A. V.; SILVA, A. L. C.; MADUREIRA, E. A. L.; SILVESTRE, C. P. 2017. Poluição por lixo nas praias de abraão e preta na borda setentrional-oriental da Ilha Grande (Angra dos Reis, RJ) e o impacto socio-ambiental. In: Perez Filho A, Amorin RR. Os desafios da geografia física na fronteira do conhecimento. Campinas, pp 3009-3014. MACEDO, A. V.; SILVA, A. L. C.; MADUREIRA, E. A. L. 2019. Ocorrência e distribuição de microplásticos no litoral da Ilha Grande (Angra dos Reis, RJ). In: Geografia Física e as Mudanças Globais Edition: UFC. MACHADO, W.; SANTELLI, R. E.; LOUREIRO, D. D.; OLIVEIRA, E. P.; BORGES, A. C.; MA, V. K.; LACERDA, L.D. 2008. Mercury accumulation in sediments along an eutrophication gradient in Guanabara Bay, Southeast Brazil. Journal of Brazilian Chemical Society. 19, 569–575. MADUREIRA, E. A. L.; DA SILVA, A. L. C.; MACEDO, A. V.; GRALATO, J. C. A. 2017. Análise da composição, distribuição e origem do lixo nas praias oceânicas de Dois Rios e Lopes Mendes na Ilha Grande (Angra dos Reis, RJ). In: Perez Filho A, Amorin RR. Os desafios da geografia física na fronteira do conhecimento. Campinas, pp 3015-3020. MATEOS-CÁRDENAS, A.; O'HALLORAN, J.; VAN PELT, F. N. A. M.; JANSEN, M. A.K. 2021. Beyond plastic microbeads – Short-term feeding of cellulose and polyester microfibers to the freshwater amphipod Gammarus duebeni. Science of Total Environment. 753, 141859. https://doi.org/10.1016/j.scitotenv.2020.141859. MESSINETTI, S., MERCURIO, S., PAROLINI, M., SUGNI, M., PENNATI, R. 2018. Effects of polystyrene microplastics on early stages of two marine invertebrates with different feeding strategies. Environmental Pollution. 237, 1080–1087. MESSINETTI, S.; MERCURIO, S.; SCARÌ, G.; PENNATI, A.; PENNATI, R. 2019. Ingested microscopic plastics translocate from the gut cavity of juveniles of the ascidian Ciona intestinalis. The European Zoological Journal. 86, 1, 189–195. DOI: 10.1080/24750263.2019.1616837. MMA (Ministério do Meio Ambiente). 2004. Biodiversidade marinha da Baía da Ilha Grande, RJ. [s.l: s.n.]. Disponível em: http://www.mma.gov.br/publicacoes/biodiversidade/category/142-seriebiodiversidade. html?download=914:serie-biodiversidade-biodiversidade-23&start=20. MODICA, L.; LANUZA, P.; GARCÍA-CASTRILLO, G. 2020. Surrounded by microplastic, since when? Testing the feasibility of exploring past levels of plastic microfibre pollution using natural history museum collections. Marine Pollution Bulletin. 151, 5996, 110846. DOI 10.1016/j.marpolbul.2019.110846. MORAES, F. M.; BERTONCINI, Á.; AGUIAR, A. 2013 História, pesquisa e biodiversidade do Monumento Natural das Ilhas Cagarras. In: Fernando Moraes, Áthila Bertoncini, Aline Aguiar. – Rio de Janeiro: Museu Nacional, 2013. 299 p.: il. color.; 28 cm. – (Série Livros; 48). MUEHE, D. e LINS DE BARROS F. M. 2016. The Beaches of Rio de Janeiro. In: Andrew D. Short; Antonio Henrique da F. Klein. (Org.). Brazilian beach systems. 1st ed. Springer International Publishing, Switzerland, 231–229. MUEHE, D. e VALENTINI, E. 1998. O Litoral do Rio de Janeiro: uma caracterização físicoambiental. In: Dieter M. e Valentini, E. – Rio de Janeiro: FEMAR, 1998. 123p.; il. ISBN 85- 85966-09-2 Cooperação Técnica Brasil-Alemanha, Projeto PLANAGUA-SEMAGTZ. NOAA-MDP (National Oceanic and Atmospheric Administration Marine Debris Program). 2014. Report on the Entanglement of Marine Species in Marine Debris With an Emphasis on Species in the United States. Silver Spring, MD 28 pp. OIGMAN-PSZCZOL, S. e CREED, J. C. 2007. Quantification and classification of marine litter on Beaches along Armação dos Búzios, Rio de Janeiro, Brazil. Journal of Coastal Research. 232, 421−428. OLIVATTO, G.P., MARTINS, M.C.T., MONTAGNER, C.C., HENRY, T.B., CARREIRA, R. 2019. Microplastic contamination in surface waters in Guanabara Bay, Rio de Janeiro, Brazil. Marine Pollution Bulletin. 139, 157–162. PIARULLI, S.; VANHOVE, B.; COMANDINI, P.; SCAPINELLO, S.; MOENS, T.; VRIELINCK, H.; SCIUTTO, G.; PRATI, S.; MAZZEO, R.; BOOTH, A.M.; VAN COLEN, C.; AIROLDI, L. 2020. Do different habits affect microplastics contents in organisms? A traitbased analysis on salt marsh species. Marine Pollution Bulletin. 153, 110983. PLASTICEUROPE. 2017. Plastics. The Facts 2017: an Analysis of European Plastics Production, Demand and Waste Data. pp. 1–44. RODRÍGUEZ, E. M.; MEDESANI, D. A.; FINGERMAN, M. 2007. Endocrine disruption in crustaceans due to pollutants: A review. Comparative Biochemistry and Physiology, Part A 146, 661–671. SENG, N., LAI, S., FONG, J., FAIQ, M., CHENG, C., CHEOK, Z.Y., TODD, P. 2020. Early Evidence of Microplastics on Seagrass and Macroalgae. Marine and Freshwater Research. 71, 8, 922–928 https://doi.org/10.1071/MF19177. SILVA, P.C.A.; SORRENTINO, R.; RAMOS, B.S.; SENNA, A.R.; SKINNER, L.F. 2021. Ingestion of microplastics by benthic marine organisms in the Ilha Grande Bay Heritage site, Southeastern Brazil. Journal Humanity and Environment of Tropical Bays. 2, 1–13. DOI:10.12957/jheotb.2021.60332. SUNDBAEK, K. B.; DUE, I.; KOCH, W.; GREVE VILLARO, C.; RASMUSSEN, N. S.; HOLDT, S.L.; HARTMANN, N. B. 2018. Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus. Journal of Applied Phycology. 30, 2923–2927. SOARES-GOMES, A.; GAMA, B.; NETO, J.; FREIRE, D.; CORDEIRO, R.; MACHADO, W.; BERNARDES, M.; COUTINHO, R. THOMPSON, F.; PEREIRA, R. 2016. An environmental overview of Guanabara Bay, Rio de Janeiro. Regional Studies in Marine Science. 8 (2), 319-330. STAP (Scientific and Technical Advisory Panel). 2011. Marine debris as a global environmental problem introducing a solutions-based framework focused on plastic. A Scientific and Technical Advisory Panel Information Document. 40 pp. QUINN, B.; MURPHY, F.; EWINS, C. 2017. Validation of density separation for the rapid recovery of microplastics from sediment. Analytical Methods, [S. l.], 9 (9), 1491–1498. THIEL, M. 1999. Host-use and population demographics of the ascidian dwelling amphipod Leucothoe spinicarpa : indication for extended parental care and advanced social behaviour, Journal of Natural History, 33, 2. 193–206, DOI: 10.1080/002229399300371. TURON, X.; GALERA, J.; URIZ, M.J. 1997. Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. Journal of Experimental Zoology. 278, 22– 36. DOI 10.1002/(SICI)1097-010X(19970501)278:1<22:AID-JEZ3>3.0.CO;2-8. UGOLINI, A.; BORGHINI, F., CALOSI, P.; BAZZICALUPO, M.; CHELAZZI, G.; FOCARDI, S. 2004. Mediterranean Talitrus saltator (Crustacea, Amphipoda) as a biomonitor of heavy metals contamination. Marine Pollution Bulletin, 48, 526–532. UGOLINI, A.; PASQUALI, V.; BARONI, D.; UNGHERESE, G. 2012. Behavioural responses of the supralittoral amphipod Talitrus saltator (Montagu) to trace metals contamination. Ecotoxicology. 21, 139–147. VERED, G.; KAPLAN, A.; AVISAR, D.; SHENKAR, N. 2019. Using solitary ascidians to assess microplastic and phthalate plasticizers pollution among marine biota: A case study of the Eastern Mediterranean and Red Sea. Marine Pollution Bulletim. 138, 618–625. https://doi.org/10.1016/j.marpolbul.2018.12.013. WANG, J.; TAN, Z.; PENG, J.; QIU, Q.; LI, M. 2016. The behaviors of microplastics in the marine environment. Marine Environmental Research. 113, 7–17. WEBER, A.; SCHERER, C.; BRENNHOLT, N.; REIFFERSCHEID, G.; WAGNER, M. 2018. PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environment Pollution. 234, 181– 189. WOODALL, L. C.; SANCHEZ-VIDAL, A.; CANALS, M.; PATERSON, G. L. J.; COPPOCK, R.; SLEIGHT, V.; CALAFAT, A.; ROGERS, A. D.; NARAYANASWAMY, B. E.; THOMPSON, R. C. 2014. The deep sea is amajor sink formicroplastic debris. Royal Society Open Science. 1: 140317. WRIGHT S. L e KELLY, F. J. 2017. Plastic and human health: a micro issue? Environmental Science Technology. 51 (12), 6634–6647. WU, M.; JIANG, Y.; KWONG, R. W. M.; BRAR, S. K.; ZHONG, H.; JI, R. 2021. How do humans recognize and face challenges of microplastic pollution in marine environments? A bibliometric analysis. Environment Pollution. 280, 116959. https://doi.org/10.1016/j.envpol.2021.116959. WYPYCH, J. 1979. Mechanism of Action of PVC Thermal Stabilizers. Journal of Applied Polymer Science. 23, 39 –54. YARDY, L.; CALLAGHAN, A. 2020. What the fluff is this? - Gammarus pulex prefer food sources without plastic microfibers. Science of Total Environment. 715, 136815.por
dc.subject.cnpqEcologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69597/2021%20-%20Rayane%20Sorrentino%20Ribeiro.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5732
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-06-02T20:33:32Z No. of bitstreams: 1 2021 - Rayane Sorrentino Ribeiro.pdf: 3454434 bytes, checksum: 88267f8f9bd8e3c93b11965d295a3a0c (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-06-02T20:33:32Z (GMT). No. of bitstreams: 1 2021 - Rayane Sorrentino Ribeiro.pdf: 3454434 bytes, checksum: 88267f8f9bd8e3c93b11965d295a3a0c (MD5) Previous issue date: 2021-10-27eng
Appears in Collections:Doutorado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Rayane Sorrentino Ribeiro.pdf3.37 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.