Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/10730
Full metadata record
DC FieldValueLanguage
dc.creatorSales, Natalice dos Santos
dc.date.accessioned2023-11-19T21:46:41Z-
dc.date.available2023-11-19T21:46:41Z-
dc.date.issued2019-05-23
dc.identifier.citationSALES, Natalice dos Santos. Importância dos biótopos e da disponibilidade dos recursos alimentares na estrutura da metacomunidade de peixes em um estuário tropical, Nordeste do Brasil. 2019. 183 f. Tese (Doutorado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10730-
dc.description.abstractThe estuarine ecosystems are known as sites of intense recruitment of several species due their heterogeneity of biotopes. However, little is known about the importance of each biotope in establishment and interactions of these individuals, especially regarding non-vegetated or low complexity biotopes. Thus, the main objectives of this study were: 1) evaluate the dispersion of the ichthyofauna according to specific characteristics of each biotope and its spatiotemporal variations; 2) examine the metacommunity structure models through the application of EMS (Elements of Metacommunity Structure) approach, which is based on pattern of distribution of the species along an environmental gradient; 3) identify the trophic relationships of the most abundant fish species within estuary associated with the availability of prey within each biotope. The study was developed in five biotopes (Beach, Seagrass, Mudflat, Mangrove and Marginal Vegetation) distributed along the Mamanguape River Estuary according to the salinity gradient. The results showed a direct influence of salinity on biotopes, where the Mudflats presented the highest density and biomass of juveniles belonging to Marine Estuarine-Dependent guild (MED). This relationship of salinity to species distribution has led to strong responses in the metacommunity structure, such as formation of clementsian patterns, where a group of species may exhibit physiology and / or similar evolutionary constraints, resulting in a common response to the environmental gradient and certain biotopes. Thus, salinity plays an important role as environmental filter in communities which reduces the dispersion of several species of juvenile fish among the various biotopes, changing patterns of metacommunity. This role of environmental filter played by salinity also influenced the distribution of prey in the environment where Zooplankton stood out in the stomachs and in the environment and the Epibenthic Crustaceans in selectivity by species. The marked presence of these items in environment, in stomach and in selectivity, answer directly in trophic guilds, presenting the Zooplankivores and the Epibenthic Zoobentivores as the most representative. Thus, the association of metacommunity analysis with structure and composition of local communities and the trophic relationships allow to expand conservation and protection sites within these coastal environments, not only related to fish species or other organisms of economic importance, but also areas which favor the establishment of main prey for the development of several species of juvenile fish, which reduces dispersion among the biotopes, changing the patterns of metacommunity.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectHeterogeneidadepor
dc.subjectdispersãopor
dc.subjectteias tróficaspor
dc.subjectguildas ecológicaspor
dc.subjectHeterogeneityeng
dc.subjectdispersaleng
dc.subjecttrophic webseng
dc.subjectecological guildseng
dc.titleImportância dos biótopos e da disponibilidade dos recursos alimentares na estrutura da metacomunidade de peixes em um estuário tropical, Nordeste do Brasilpor
dc.title.alternativeImportance of biotopes and availability of food resources in the structure of the metacommunity of fish in a tropical estuary, northeast of Brazileng
dc.typeTesepor
dc.contributor.advisor1Araújo, Francisco Gerson
dc.contributor.advisor1IDCPF: 040.983.233-20por
dc.contributor.advisor-co1Pessanha, André Luiz Machado
dc.contributor.advisor-co1IDCPF: 068.529.707-10por
dc.contributor.referee1Albrecht, Míriam Pilz
dc.contributor.referee2Petry, Ana Cristina
dc.contributor.referee3Santos, Luciano Neves dos
dc.contributor.referee4Neves, Leonardo Mitrano
dc.contributor.referee5Azevedo, Márcia Cristina Costa de
dc.creator.IDCPF: 075.836.044-43por
dc.creator.Latteshttp://lattes.cnpq.br/7024671487592426por
dc.description.resumoOs ecossistemas estuarinos são reconhecidos como locais importantes para o recrutamento de diversas espécies de peixes devido sua heterogeneidade de biótopos. No entanto, pouco se conhece sobre a importância de cada biótopo no estabelecimento e nas interações desses indivíduos, principalmente no que se refere a biótopos não-vegetados ou de baixa complexidade. Assim, os principais objetivos desse estudo foram: 1) avaliar a dispersão da ictiofauna de acordo com as características específicas de cada biótopo e suas variações espaço-temporal; 2) examinar os modelos da estrutura de metacomunidades através da aplicação da abordagem EEM (Elementos de Estrutura de Metacomunidades), que se baseia no padrão de distribuição das espécies ao longo de um gradiente ambiental; 3) identificar as relações tróficas das espécies de peixes mais abundantes dentro do estuário associada a disponibilidade das presas dentro de cada biótopo. O estudo foi desenvolvido em cinco biótopos (Praia, Fanerógama Marinha, Planície de Maré, Manguezal e Vegetação Marginal) distribuídos ao longo do Estuário do Rio Mamanguape- PB de acordo com o gradiente de salinidade. Os resultados apontaram uma influência direta da salinidade sobre os biótopos, onde as planícies de Maré apresentaram a maior densidade e biomassa de juvenis Marinho Estuarino Dependente (MED) durante a duas estações do ano. Essa relação da salinidade com a distribuição das espécies induziu a fortes respostas na estrutura metacomunitária como a formação de padrões clementsianos, onde um grupo de espécies pode apresentar fisiologia e/ou restrições evolutivas semelhantes, resultando em uma resposta comum ao gradiente ambiental e a preferências por determinados biótopos independentes das diferentes estações do ano. Assim, a salinidade desempenha um papel importante como filtro ambiental nas comunidades o que reduz a dispersão de diversas espécies de peixes juvenis entre os diversos biótopos, alterando os padrões de metacomunidade. Esse papel de filtro ambiental desempenhado pela salinidade também influenciou na distribuição das presas no ambiente onde o Zooplâncton apresentou maior abundância no estômago das espécies e no ambiente, e os Crustáceos Epibênticos na seleção de presas pelas espécies. A presença marcante desses itens no ambiente, no estômago e na seletividade, responderam diretamente nas guildas tróficas, apresentando os Zooplanctívoros e os Zoobentívoros Epibênticos como as mais representativas. Assim, a associação da análise da metacomunidade com a estrutura e composição das comunidades locais e as relações tróficas permitem ampliar locais de conservação e proteção dentro desses ambientes costeiros, não apenas relacionados as espécies de peixes ou outros organismos de importância econômica, mas também as áreas que favorecem o estabelecimento das principais presas para o desenvolvimento de diversas espécies de peixes juvenis, que reduz a dispersão entre os biótopos, alterando os padrões de metacomunidade.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesABDURAHIMAN, K. P.; NAYAK, T. H.; ZACHARIA, P. U. & MOHAMED, K. S. (2010). Trophic organisation and predator–prey interactions among commercially exploited demersal finfishes in the coastal waters of the southeastern Arabian Sea. Estuarine, Coastal and Shelf Science 87, n. 4, p. 601-610. ADAMS, J. N.; BRODEUR, R. D.; DALY, E. A. & MILLER, T. W. (2017). Prey availability and feeding ecology of juvenile Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon in the northern California Current ecosystem, based on stomach content and stable isotope analyses. Marine Biology 164, n. 5, p. 98. AHLBECK, I.; HANSSON, S. & HJERNE, O. (2012). Avaliação de métodos de análise de dieta de peixes por modelagem individual. Canadian Journal of Fisheries and Aquatic Sciences 69, n. 7, p. 1184-1201. ALMANY, G. R. (2004). Differential effects of hábitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia, 141, n. 1, p. 105-113. ALVARES, C. A.; STAPE, J. L.; SENTELHA, P. C.; GONÇALVES, M.; SPAROVEK, G. (2014). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, p. 711–728. AMARA, R.; MEZIANE, T.; GILLIERS, C.; HERMEL, G. & LAFFARGUE, P. (2007). Growth and condition indices in juvenile sole Solea solea measured to assess the quality of essential fish hábitat. Marine Ecology Progress Series 351, p. 201–208. AMARAL, A. C. Z. & NONATO, E. F. (1996). Annelida Polychaeta: características, glossário e chaves para famílias e gêneros da costa brasileira. Editora da UNICAMP. ANDERSON, M. J.; GORLEY, R. N. & CLARKE, K. R. (2008). PERMANOVA for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, UK. ANGEL, A. & F. P. OJEDA. 2001. Structure and trophic organization of subtidal fish assemblages on the northern Chilean coast: the effect of hábitat complexity. Marine Ecology Progress Series 217, p. 81-91. BASER, B.; BUCKLEY, H. L.; GOTELLI, N. J. & ELLISON, A. (2013). Predicting food-web structure with metacommunity models. Oikos 122, p. 492-506. BARILI, E.; AGOSTINHO, A. A.; GOMES, L. C. & LATINI, J. D. (2011). The coexistence of fish species in streams: relationships between assemblage attributes and trophic and environmental variables. Environmental Biology of Fishes 92, n. 1, 41. BARLETTA, M.; BARLETTA‐BERGAN, A.; SAINT‐PAUL, U. S. G. H. & HUBOLD, G. (2005). The role of salinity in structuring the fish assemblages in a tropical estuary. Journal of Fish Biology 66, n.1, p. 45-72. BARRY, J. M.; YOKLAVICH, M. M.; CAILLIET, G. M.; AMBROSE, D. A. & ANTRIM, B. S. (1996). Trophic ecology of dominant fishes in Elkhorn Slough, California,1974-1980.Estuaries19,p.115-138. BERGAMINO, L.; GÓMEZ, J.; BARBOZA, F. R. & LERCARI, D. (2013). Major food web properties of two sandy beaches with contrasting morphodynamics, and effects on the stability. Aquatic Ecology 47, p. 253–261. BLOOMFIELD, A. L.; GILLANDERS, B. M. (2005). Fish and invertebrate assemblages in seagrass, mangrove, saltmarsh, and nonvegetated hábitats. Estuaries 28, p. 63–77. BORTHAGARAY, A. I.; PINELLI, V.; BERAZATEGUI, M.; RODRÍGUEZTRICOT, L. & ARIM, M. (2015). Effects of metacommunity networks on local community structures: from theoretical predictions to empirical evaluations. AcademicPress. BUCKLAND, A.; BAKER, R.; LONERAGAN, N. & SHEAVES, M. (2017). Standardising fish stomach content analysis: The importance of prey condition. Fisheries Research, 196, p.126-140. BUCKLEY, L.; CALDARONE, E. & ONG, T. L. (1999). RNA–DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia 401, p. 265-277. CALLE, L.; VERDE, L.; STRONG, A. & GAWLIK, DE (2018). A disponibilidade de hábitat integrada no tempo é um atributo de recurso que informa os padrões de uso em áreas intertidais. Monografias Ecológicas 88, n. 4, p. 600-620. CAMPOS, D. M. A. R.; SILVA, A. F.; SALES, N. S.; OLIVEIRA, R. E. M. C. C.; PESSANHA, A. L. M. (2015). Trophic relationship among fish assemblages in a mudflat within Brazilian marine protected area. Brazilian Journal of Oceanography 63, p. 135-146. CLARK, F. J. K. & PESSANHA, A. L. M. (2015). Diet and ontogenetic shift in hábitat use by Rhinosardinia bahiensis in tropical semi-arid estuary, northeastern Brazil. Journal of the Marine Biological Association of the United Kingdom 95, 175-183. CORNELISSEN, I. J.; VIJVERBERG, J.; VAN DEN BELD, A. M.; HELMSING, N. R.; VERRETH, J. A. J. & NAGELKERKE, L. A. J. (2018). Heterogeneity in food-web interactions of fish in the Mwanza Gulf, Lake Victoria: a quantitative stable isotope study. Hydrobiologia 805, n.1, p. 113-130. DEUDERO, S. & MORALES-NIN, B. (2001). Seletividade de presas em peixes jovens planktivorous associados com objetos flutuantes no Mediterrâneo ocidental. Aquaculture Research 32, n. 6, p. 481-490. DIAS, R. M., ORTEGA, J. C. G., GOMES, L. C., & AGOSTINHO, A. A. (2017). Trophic relationships in fish assemblages of Neotropical floodplain lakes: selectivity and feeding overlap mediated by food availability. Iheringia. Série Zoologia, 107. DUARTE, I. A., VASCONCELOS, R. P., FRANÇA, S., BATISTA, M. I., TANNER, S., CABRAL, H. N., & FONSECA, V. F. (2018). Short-term variability of fish condition and growth in estuarine and shallow coastal areas. Marine Environmental Research 134, p. 130-137. DUNNE, J. A.; WILLIAMS, R. J. & MARTINEZ, N. D. (2002). Estrutura de rede e perda de biodiversidade em redes alimentares: a robustez aumenta com a conectividade. Ecology Letters 5, n. 4, p. 558-567. DURANT, J. M., HJERMANN, D. Ø., OTTERSEN, G., & STENSETH, N. C. (2007). Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33, n. 3, p. 271-283. ECONOMO, E.P., KEITT, T.H., 2010. Network isolation and local diversity in neutral metacommunities. Oikos 119, p. 1355-1363. EGAN, J. P., CHEW, U. S., KUO, C. H., VILLARROEL‐DIAZ, V., HUNDT, P. J., IWINSKI, N. G., M. P. HAMMER & SIMONS, A. M. (2017). Diets and trophic guilds of small fishes from coastal marine hábitats in western Taiwan. Journal of Fish Biology 91, n.1, p. 331-345. ELLIOTT, M.; WHITFIELD, A. K.; POTTER, I. C.; BLABER, S. J. M.; CYRUS, D. P.; NORDLIE, F. G. & HARRISON, T. D. (2007). The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8, p. 241–268. ESTEVES, E.; PINA, T.; CHÍCHARO, M. A. & ANDRADE, J. P. (2000). The distribution of estuarine fish larvae: Nutritional condition andco-occurrence with predators and prey. Acta Oecologica 21, n.3, p. 161-173. ESTRADA, E.; BODIN,O¨. (2008). Using network centrality measures to manage landscape connectivity. Ecological Applications 18, p. 1810-1825. FAVERO, F. D. L. T., DA SILVA ARAUJO, I. M., & SEVERI, W. (2019). Structure of the fish assemblage and functional guilds in the estuary of maracaípe, northeast coast of Brazil. Boletim do Instituto de Pesca 45, n.1. FELINTO, A. L.; DANTAS, R. P. & PESSANHA, A. L. M. (2016). Feeding ecology of three juvenile mojarras (Gerreidae) in a tropical estuary of northeastern Brazil. Neotropical Ichthyology 14, n. 1. FIGUEIREDO, G. G. A. A., & PESSANHA, A. L. M. (2016). Comparative study of trophic organization of juvenile fish assemblages of three tidal creeks in a tropical semi‐arid estuary. Journal of Fish Biology 89, n. 1, p. 680-695. FONSECA, V. F., VINAGRE, C., & CABRAL, H. N. (2006). Growth variability of juvenile soles Solea solea and Solea senegalensis, and comparison with RNA: DNA ratios in the Tagus estuary, Portugal. Journal of Fish Biology 68, n. 5, p. 1551-1562. FREEMAN, C., (1979). Centrality in social networks conceptual clarification. Soc. Networks 1, p. 215-239. GARRISON, L. P.; LINK, J. S. (2000). Dietary guild structure of the fish community in the Northast United States continental shelf ecosystem. Marine Ecology Progress Series 202, p. 231-240. GENNER, M. J.; SIMS, D. W.; WEARMOUTH, V. J.; SOUTHALL, E. J.; SOUTHWARD, A. J.; HENDERSON, P. A. & HAWKINS, S. J. (2004). Regional climatic warming drives long–term community changes of British marine fish. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, n. 1539, p. 655-661. HAEGEMAN, B., & LOREAU, M. (2014). General relationships between consumer dispersal, resource dispersal and metacommunity diversity. Ecology Letters 17, n. 2, p. 175-184. HAJISAMAE, S., CHOU, L. M., & IBRAHIM, S. (2003). Feeding habits and trophic organization of the fish community in shallow waters of an impacted tropical hábitat. Estuarine, Coastal and Shelf Science 58, n.1, p. 89-98. HAMMERSCHLAG, N., HEITHAUS, M. R. & SERAFY, J. E. (2010). Relative predation risk for fishes along a subtropical mangrove – seagrass ecotone. Marine Ecology Progress Series 414, p. 223-235. HARGREAVES, D., BUCKLAND, A., & SHEAVES, M. (2017). Trophic guild concept: factors affecting within-guild consistency for tropical estuarine fish. Marine Ecology Progress Series 564, p. 175-186. HEINO, J.; NOKELA, T.; SOININEN, J.; TOLKKINEN, M.; VIRTANEN, L. & VIRTANEN, R. (2015). Elements of metacommunity structure and communityenvironment relationships in stream organisms. Freshwater Biology 60, n. 5, p. 973-988. HIDDINK, J. G.; MORANTA, J.; BALESTRINI, S.; SCIBERRAS, M.; CENDRIER, M.; BOWYER, R.; KAISER, M. J.; SK€OLD, M.; JONSSON, P.; BASTARDIE, F. & HINZ, H. (2016). Bottom trawling affects fish condition through changes in the ratio of prey availability to density of competitors. Journal of Applied Ecology 53, n. 5, p. 1500-1510. HILLEBRAND, H.; MATTHIESSEN, B. (2009). Biodiversity in a complex world: Consolidation and progress in functional biodiversity research. Ecology Letters 12, p. 1405–1419. HINZ, H., KRONCKE, I. & EHRICH, S. (2005). The feeding strategy of dab Limanda limanda in the southern North Sea: linking stomach contents to prey availability in the environment. Journal of Fish Biology 67, p. 125–145. HIXON, M. A., & JONES, G. P. (2005). Competition, predation, and densitydependent mortality in demersal marine fishes. Ecology 86, n. 11, p. 2847- 2859. HOLDO, R. M., R. D. HOLT, & J. M. FRYXELL. (2009). Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the Serengeti. American Naturalist 173, p. 431–445. HORSTON, M.; PLATELL, M. E.;VALESINI, F.J.; POTTER, I. C. (2004). Factors influencing diets of four morphologically divergent fish species in nearshore marine waters. Journal of the Marine Biological Association of the United Kingdom. 84, p. 805-817 HUXHAM, M., RAFFAELLI, D. & PIKE, A. (1995). Parasites and food web patterns. Journal of Animal Ecology 64, p. 168-176. HYSLOP, E. J. (1980). Stomach contents analysis—a review of methods and their application. Journal of fish biology 17, n. 4, p. 411-429. INOUE, T., Y. SUDA & S. MITSUHIKO. (2004). Food habits of fishes in the surf zone of a sandy beach at Sanrimatsubara, Fukuoka Prefecture, Japan. Ichthyological Research 52, p. 9-14. IVLEV, V. S. (1961). Experimental ecology of the feeding of fishes. Yale University Press, New Haven, Connecticut, USA. JENSEN, A. L. (1997). Origin of the relation between K and Linf and synthesis of relations among life history parameters. Canadian Journal of Fisheries and Aquatic Sciences 54, p.987-989. JOHNSON, D. H. 1980. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65– 71. JOHNSON, A. F.; VALLS, M.; MORANTA, J.; JENKINS, S. R.; HIDDINK, J. G. & HINZ, H. (2012). Effect of prey abundance and size on the distribution of demersal fishes. Canadian Journal of Fisheries and Aquatic Sciences 69, n. 1, p. 191-200. KARTHIK RAM & HADLEY WICKHAM. (2018). R package version 0.3.6. LASSALLE, G.; GASCUEL, D.; LE LOC’H F.; LOBRY, J. & OTHERS (2012). An ecosystem approach for the assessment of fisheries impacts on marine top predators: the Bay of Biscay case study. ICES Jounal Marine Science 69, p. 925−938 Le Pape, O. & Bonhommeau, S. (2015). The food limitation hypothesis for juvenile marine fish. Fish and Fisheries 16, p. 373–398. LEGGETT, W.C., DEBLOIS, E. (1994). Recruitment in marine fishes is regulated by starvation and predation in the egg and larval stages? Netherlands Journal of Sea Research 32, p. 1-19. LEIBOLD, M. A.; HOLYOAK, M.; MOUQUET, N.; AMARASEKARE, P.; CHASE, J. M.; HOOPES, M. F.; HOLT, R. D.; SHURIN, J. B.; LAW, R.; TILMAN, D.; LOREAU, M. & GONZALEZ, A. (2004). The metacommunity concept: a framework for multi‐scale community ecology. Ecology Letters 7, n. 7, p. 601- 613. LIRA, A.; ANGELINI, R.; LE LOC'H, F.; MÉNARDD, F.; LACERDA, C.; FRÉDOUA, T.; FRÉDOUA, F. L. (2018). Trophic flow structure of a neotropical estuary in northeastern Brazil and the comparison of ecosystem model indicators of estuaries. Journal of Marine Systems 182, p. 31–45. LÓPEZ-ORDAZ, A.; ORTAZ, M. & RODRIGUEZ-QUINTAL, J. G. (2009). Trama trófica de una comunidad de peces en una pradera marina en el Caribe Venezolano. Revista de Biologia Tropical. 57, n. 4, p. 963-975. MACDONALD, J.S. & GREEN, R. H. (1983). Redundancy of variables used to describe importance of preys species of fishes. Canadian Journal of Fisheries and Aquatic Sciences 40, n. 5, p. 635-637. MAGALHÃES, K. M.; BORGES, J. C. G.; PITANGA, M. E. (2015). Halophila baillonis Ascherson: first population dynamics data for the Southern Hemisphere. Anais da Academia Brasileira de Ciências 87, p. 861-865. MEDEIROS, A. P. M. D., XAVIER, J. H. D. A., & ROSA, I. M. D. L. (2017). Diet and trophic organization of the fish assemblage from the Mamanguape River Estuary, Brazil. Latin American Journal of Aquatic Research 45, n. 5, p. 879- 890. MIKKELSEN, P. M. & BIELER, R. (2008). Conchas do mar de moluscos marinhos Floridaliving do Sul das chaves de Florida e regiões adjacentes. Bivalves (N ° C / 594,110975 M5). MORANTA, J., STEFANESCU, C., MASSUTÍ, E., MORALES-NIN, B., & LLORIS, D. (1998). Fish community structure and depth-related trends on the continental slope of the Balearic Islands (Algerian basin, western Mediterranean). Marine Ecology Progress Series 171, p. 247-259. MOUGI, A & KONDOH, M. (2016). Food-web complexity, meta-community complexity and community stability. Scientific reports 6. Article number: 24478 MOURA, G. C.; BARBOSA, J. E. L.; PATRÍCIO, J., NERY, J. F., & GONÇALVES, A. M. M. (2016). Seasonal and spatial shifts in copepod diets within tropical estuaries measured by fatty acid profiles. Ecological Indicators, 69, p. 284-294. MUGNAI, R., NESSIMIAN, J. L., & BAPTISTA, D. F. (2010). Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro: para atividades técnicas, de ensino e treinamento em programas de avaliação da qualidade ecológica dos ecossistemas lóticos. Technical Books Editora. MUÑOZ, A. A. & OJEDA, F. P. (1998). Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114, p. 563-573. MURPHY, H. M.; JENKINS, G. P.; HAMER, P. A. & SWEARER, S. E. (2012) Interannual variation in larval survival of snapper (Chrysophrys auratus, Sparidae) is linked to diet breadth and prey availability. Canadian Journal of Fisheries and Aquatic Sciences 69, p. 1340–1351. NEUWIRTH, E. (2014). RColorBrewer: paletas ColorBrewer. Versão do pacote R 1.1-2. NEWMAN, C. M. (2010). Networks an Introduction. Oxford University Press, Oxford. NOBREGA, R. R. A.; NISHIDA, A. K. (2003). Aspectos socioeconômicos e percepção ambiental dos catadores de caranguejo-uçá Ucides cordatus cordatus (L. 1763) (Decapoda, Brachyura) do estuário do Rio Mamanguape, Nordeste do Brasil. Interciência 28, p. 36-43. NÓBREGA-SILVA, CLIMÉLIA; MARQUES, JOÃO CARLOS ; OLÍMPIO, MONALISA DOS SANTOS ; FARIAS, JÉSSICA NATYELLE BARROS ; MOLOZZI, JOSELINE . (2016). Is polychaete family-level sufficient to assess impact on tropical estuarine gradients?. Acta Oecologica-International Journal of Ecology. NUNES, M. V., ROCHA, O. & VERANI, J. R. (2014). Trophic interactions between the fish Geophagus brasiliensis (Cichlidae) and the benthic macroinvertebrate community. Studies on Neotropical Fauna and Environment, 49, n.1, p.11-17. O'BRIEN, W. J. & G. L. VINYARD. (1974). Comment on the use of Ivlev's electivity index with planktivorous fish. Journal of the Fisheries Research Board of Canada 31, p.1427-1429. OLIVEIRA, R. E. M. C. C.; PESSANHA, A. L. M. (2014). Fish assemblage along a morphodynamic continuum on three tropical beaches. Neotropical Ichthyology 12, p.165-175. OPSAHL, T.; AGNEESSENS, F. & SKVORETZ, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Networks 32, p. 245-251. PESSANHA, A. L. M., ARAÚJO, F. G., OLIVEIRA, R. E. M., SILVA, A. F. D., & SALES, N. S. (2015). Ecomorphology and resource use by dominant species of tropical estuarine juvenile fishes. Neotropical Ichthyology 13, p. 245-251. PINNEGAR, J. K., TRENKEL, V. M., TIDD, A. N., DAWSON, W. A., & DU BUIT, M. H. (2003). Does diet in Celtic Sea fishes reflect prey availability?. Journal of Fish Biology 63, p. 197-212. PLITZKO, S. J., & DROSSEL, B. (2015). The effect of dispersal between patches on the stability of large trophic food webs. Theoretical Ecology 8, n. 2, p. 233-244. POSSAMAI, B., VIEIRA, J. P., GRIMM, A. M., & GARCIA, A. M. (2018). Temporal variability (1997-2015) of trophic fish guilds and its relationships with El Niño events in a subtropical estuary. Estuarine, Coastal and Shelf Science, 202, p. 145-154. PRIMO, A. L., CORREIA, C., MARQUES, S. C., MARTINHO, F., LEANDRO, S., & PARDAL, M. (2018). Trophic links and nutritional condition of fish early life stages in a temperate estuary. Marine Environmental Research 133, p. 78-84. RINCÓN, B., & KENCHINGTON, E. L. (2016). Influence of benthic macrofauna as spatial structuring agent for juvenile Haddock (Melanogrammus aeglefinus) on the Eastern Scotian Shelf, Atlantic Canada. PloS one 11, n. 9. RIOS, E. C. (1985). Seashells of Brazil. In Seashells of Brazil. Museu Oceanográfico da Fundaçao Universidade do Rio Grande. ROBERT D, CASTONGUAY M, FORTIER L (2009) Effects of preferred prey density and temperature on feeding success and recent growth in larval mackerel of the southern Gulf of St. Lawrence. Marine Ecology Progress Series 377, p. 227−237. ROONEY, N.; MCCANN. (2012). Integrating food web diversity, structure and sability. Trends in Ecology and Evolution 27, n.1, p. 40-46. SÁNCHEZ-HERNÁNDEZ, J., VIEIRA-LANERO, R., SERVIA, M. J., & COBO, F. (2011). Feeding habits of four sympatric fish species in the Iberian Peninsula: Keys to understanding coexistence using prey traits. Hydrobiologia 667, p. 119– 132. SÁNCHEZ-HERNÁNDEZ, J.; HEIDI-MARIE, G.; PER-ARNE, A. (2017). Prey diversity as a driver of resource partitioning between river-dwelling fish species. Ecology and Evolution 7, p. 2058–2068. SANTANA DA COSTA, R. M., DOLBETH, M., DE LUCENA BARBOSA, J. E., & PATRÍCIO, J. (2018). Narrowing the gap: Phytoplankton functional diversity in two disturbed tropical estuaries. Ecological Indicators 86, p. 81-93. SANTOS, A.; QUINTELA, F.; DIAS, I. D. & SOUSA L. F. (2016). Guia técnico de curso de formação taxonomia e ecologia de zooplâncton marinho: métodos e técnicas de amostragem, contagem e identificação. SARDIÑA, P.; CAZORLA, A. L. (2005). Feeding interrelationships and comparative morphology of two young sciaenids co-occurring in South-western Atlantic waters. Hydrobiologia 548, p. 41-49. SCHOENER, T. W. (1974). Resource partitioning in ecological communities. Science 185, n. 4145, p. 27-39. SCHRIEVER, T. A. (2015). Food webs in relation to variation in the environment and species assemblage: a multivariate approach. PloS One 10, n. 4. p.1-17. SEITZ, R. D.; WENNHAGE, H.; BERGSTRÖM, U.; LIPCIUS, R. N. & YSEBAERT, T. (2014). Ecological value of coastal hábitats for commercially and ecologically important species. ICES Journal Marine Science 71, p. 648– 665. SILVA, K. G.; PALUDO, D.; OLIVEIRA, E. M. A.; LIMA, R. P.; SOAVINSKI, R. J. (2011). Distribution and occurrence of manatee (Trichechus manatus) in the Mamanguape River estuary, Paraíba, Brazil. Natural Resources Research 1, p. 5-14. SIMBERLOFF, D. & DAYAN, T. (1991). The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics 22, n. 1, p. 115-143. STONER, A. W. & R. J. LIVINGSTON. (1984). Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from seagrass meadows. Copeia: 174-187. STRAUSS, R. E. (1979). Reliability estimates for Ivlev's electivity index, the forage ratio, and a proposed linear index of food selection. Transactions of the American Fisheries Society 108, n. 4, p. 344-352. TABLEAU, A., BRIND'AMOUR, A., WOILLEZ, M., & LE BRIS, H. (2016). Influence of food availability on the spatial distribution of juvenile fish within soft sediment nursery hábitats. Journal of Sea Research 111, p. 76-87. TEIXEIRA-DE-MELLO, F.; MEERHOFF, M.; GONZÁLEZ-BERGONZONI, I.; KRISTENSEN, E. A.; BAATTRUP-PEDERSEN, A.; JEPPESEN, E. (2015). Influence of riparian forests on fish assemblages in temperate lowland streams. Environmental Biology of Fishes 99, p.133–144. THORMAR, J., HASLER-SHEETAL, H., BADEN, S., BOSTRAM, C., CLAUSEN, KK, KRAUSE-JENSEN, D. & HOLMER, M. (2016). Eelgrass (Zostera marina) food web structure in different environmental settings. PloS One , 11, n. 1., p1-27. TOWNSEND, D. L. & GOUHIER, T. C. (2018). D Spatial and interspecific differences in recruitment decouple synchrony and stability in trophic metacommunities Theorical Ecology, p. 1-9. TRIVINHO-STRIXINO, S (2011). Larvas de Chironomidae: guia de identificação. São Carlos: UFSCar, 1(2). TUNNELL, J. W. (2010). Enciclopédia das conchas do Texas: identificação, ecologia, distribuição e história. Texas A & M University Press. VAN DER LINDEN, P.; MARCHINI, A.; SMITH, C..; DOLBETH, M.; SIMONE, L. R. L.; MARQUES, J. C.; MOLOZZI, J.; MEDEIROS, C. R.; PATRÍCIO, J. (2017). Functional changes in polychaete and mollusc communities in two tropical estuaries. Estuarine, Coastal and Shelf Science 187, p. 62-73. VANDEVALK, A. J., FORNEY, J. L..; JACKSON, J. R. (2008). Relationships between relative weight, prey availability, and growth of walleyes in Oneida Lake, New York. North American Journal of Fisheries Management 28, n. 6, p.1868-1875. WARRY, F. Y., REICH, P., COOK, P. L. M., MAC NALLY, R.; WOODLAND, R. J. (2018). The role of catchment land use and tidal exchange in structuring estuarine fish assemblages. Hydrobiologia 811, n. 1, 173-191. WASSERMAN, S., FAUST, K., (1994). Social Network Analysis. Cambridge Univeristy Press. WERNER, E. E., E HALL, D. J. (1979). Foraging efficiency and hábitat switching in competiting sunfishes. Ecology 60, n. 2, p. 256-264. WERNER, E. E.; GILLIAM, J. F.; HALL, D. J. & MITTELBACH, G. G. (1983). An Experimental test of the effects of predation risk on hábitat use in fish. Ecology 64, n. 6, p. 1540-1548. WHITFIELD, A. K. (2016). The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology and Fisheries 27, 75-110 WILSON, C. J., MURPHY, H. M., BOURNE, C., PEPIN, P., & ROBERT, D. (2018). Feeding ecology of autumn-spawned Atlantic herring (Clupea harengus) larvae in Trinity Bay, Newfoundland: Is recruitment linked to main prey availability?. Journal of Plankton Research 40, n. 3, p. 255-268. WINEMILLER, K. O. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60, p. 331-367. XAVIER, J. H. A.; CORDEIRO, C. A. M. M.; TENÓRIO, G. D.; DINIZ, A. F.; PAULO JR., E. P. N.; ROSA, R. S.; ROSA, I. L. (2012). Fish assemblage of the Mamanguape Environmental Protection Area, NE Brazil: abundance, composition and microhábitat availability along the mangrove-reef gradient. Neotropical Ichthyology 10, p. 109-122. ZHAO, S., GUO, Y., SHENG, Q., & SHYR, Y. (2014). Advanced heat map and clustering analysis using heatmap3. BioMed research international.por
dc.subject.cnpqEcologiapor
dc.subject.cnpqZoologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68532/2019%20-%20Natalice%20dos%20Santos%20Sales.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5465
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-03-21T18:35:08Z No. of bitstreams: 1 2019 - Natalice dos Santos Sales.pdf: 7339859 bytes, checksum: 88556301900aa9ffa592370931537861 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-03-21T18:35:08Z (GMT). No. of bitstreams: 1 2019 - Natalice dos Santos Sales.pdf: 7339859 bytes, checksum: 88556301900aa9ffa592370931537861 (MD5) Previous issue date: 2019-05-23eng
Appears in Collections:Doutorado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Natalice dos Santos Sales.pdf7.17 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.