Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/10582
Full metadata record
DC FieldValueLanguage
dc.creatorCarvalho, Dandhara Rossi
dc.date.accessioned2023-11-19T21:40:16Z-
dc.date.available2023-11-19T21:40:16Z-
dc.date.issued2022-11-25
dc.identifier.citationCARVALHO, Dandhara Rossi. Beta-diversidade taxonômica e funcional como ferramentas para avaliação dos efeitos das pequenas centrais hidrelétricas na ictiofauna de um rio tropical. 2022. 54 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10582-
dc.description.abstractDams construction blocks lotic systems, creating physical barriers that modify the physical- chemical local conditions and alter the flow regime. The new formed environment prevents the free migration of the ichthyofauna and other aquatic organisms that inhabits the lotic environment to pass through the filters of the lentic environment. This environment, with lentic characteristics facilitates the entry of non-native species, which may lead to the extinction of native species, especially those that are more specialized and more sensitive to new environmental conditions. Damming of tropical rivers has been one of the main threats to aquatic biodiversity, and it has occurred on an unprecedented scale. One way out for medium and small rivers is the construction of Small Run-of-Run Hydroelectric Power Plants (SPPs), as they present reduced flooding areas and do not form large reservoirs. However, the real influence of SHPs has been questioned as to their effects in ichthyofauna compared to large dams. In this context, the present study aimed to evaluate the influences on the ichthyofauna of two PCHs built in the middle section of the Paraíba do Sul River, a lotic system of great importance for the water supply of the state of Rio de Janeiro. Three periods were selected: 1) a period with a totally lotic scenario, before the construction of the two SPPs (2008 - Pre); 2) a period immediately after the construction of the SPPs (2012 - Post); and 3) a period of a decade after the construction of these dams (2021 - Current). Seasonal comparisons were also made among three hydro-environmental conditions: 1) wet, between January and March; 2) dry, between July and August; and 3) transition, between September and October. To understand these changes in ichthyofauna, taxonomic and functional beta-diversity were used, since they assess changes in ichthyofauna and serve to assess both species/function replacement (turnover) and species/function loss (nestedness) in relation to the pool available regionally. For the determination of 10 functional tracts, 12 quantitative morphometrical measures related to habitat use, feeding and locomotion of the species were taken. The ichthyofauna composition varied between periods, although seasonal variations were less conspicuous. Higher richness was recorded in the Post and lower in the Current period. Abundances decrease considerably in the Current period. The taxonomic and functional beta-diversity increased over the three periods, with the taxonomic having increased significantly in the Post period and remained without significant differences in the Current period. On the other hand, the functional beta- diversity was similar between the pre and post period, with a significant increase in the current period. The replacement component (turnover) was the one that most influenced the results of taxonomic and functional beta-diversity, whereas no significant temporal differences were observed in the loss of species component (nestedness). There was a process of the ichthyofauna heterogenization over the periods, with an increase in taxonomic and functional B-diversity associated with a decrease in richness and abundance. Our study indicates that the ichthyofauna is undergoing a re-structuration process, due to the appearance of tolerant species and the replacement of native and sensible species, which results in function replacement after one decade of operation of the SPPs. This suggests that small-scale enterprises such as SPPs are harmful to the ichthyofauna, due to the changes in habitat, or the appearance of non-native and generalist species. Little is known about the real effects of SPPs on ichthyofauna and our results suggest that it is important to understand these changes, as they can be harmful to the ichthyofauna. It is suggested to expand these studies in order to provide a basis for biodiversity conservation measures in environments affected by these projects.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectImpactos antropogênicospor
dc.subjectEcossistemas aquáticospor
dc.subjectBarragenspor
dc.subjectEspécies não- nativaspor
dc.subjectPeixes de águas docepor
dc.subjectAnthropogenic impactseng
dc.subjectAquatic ecosystemseng
dc.subjectDamseng
dc.subjectNon-native specieseng
dc.subjectFreshwater fisheng
dc.titleBeta-diversidade taxonômica e funcional como ferramentas para avaliação dos efeitos das pequenas centrais hidrelétricas na ictiofauna de um rio tropicalpor
dc.title.alternativeTaxonomic and functional beta-diversity as tools for evaluating the effects of small hydroelectric power plants on the ichthyofauna of a tropical rivereng
dc.typeDissertaçãopor
dc.contributor.advisor1Araújo, Francisco Gerson
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-4551-1974por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7898069293489622por
dc.contributor.referee1Araújo, Francisco Gerson
dc.contributor.referee1IDhttps://orcid.org/0000-0003-4551-1974por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7898069293489622por
dc.contributor.referee2Terra, Bianca de Freitas
dc.contributor.referee2ID096.343.177-31por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5842231432141723por
dc.contributor.referee3Santangelo, Jayme Magalhães
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8292200467538527por
dc.creator.IDhttps://orcid.org/0000-0002-0439-0443por
dc.creator.Latteshttp://lattes.cnpq.br/4154298607582847por
dc.description.resumoA construção de barramentos bloqueia os sistemas lóticos, criando barreiras físicas que modificam as condições físico-químicas e alteram o regime de vazões. O novo ambiente formado impede a livre migração da ictiofauna e de outros organismos aquáticos que se encontravam estabelecidas no ambiente lótico e passam pelos filtros do ambiente lêntico. Este ambiente, com características lênticas, facilita a entrada de espécies não-nativas, podendo levar à extinção de espécies nativas, principalmente aquelas mais especializadas e mais sensíveis às novas condições ambientais. O barramento nos rios tropicais tem sido uma das principais ameaças a biodiversidade aquática, e tem ocorrido em uma escala sem precedentes. Uma saída para rios médios e de pequeno porte é a construção de Pequenas Centrais Hidrelétricas a fio d’agua (PCHs), por apresentarem reduzidas áreas de alagamento não formando grandes reservatórios. No entanto, a real influência das PCHs tem sido questionada quanto a seus efeitos na ictiofauna em comparação com os grandes barramentos. Nesse âmbito, o presente estudo teve como objetivo avaliar as influências na ictiofauna de duas PCHs construídas no trecho médio do Rio Paraíba do Sul, um rio de grande importância para o abastecimento hídrico do estado do Rio de Janeiro. Três períodos foram selecionados: 1) um período com cenário totalmente lótico, anterior a construção das PCHs (Pré - 2008); 2) um período imediatamente após a construção (Pós – 2012); e 3) um período após uma década da construção das PCHs (Atual - 2021). Comparações sazonais também foram feitas entre três condições hidro- ambientais: 1) cheias, entre janeiro e março; 2) secas, entre Julho e Agosto; e 3) transição, entre Setembro e Outubro. Para entender estas mudanças na ictiofauna, a beta-diversidade taxonômica e funcional foram utilizadas, uma vez que avaliam as mudanças na ictiofauna e servem para avaliar tanto a substituição de espécies/funções (turnover) como a perda de espécies/funções (nestedness) em relação ao pool disponível regionalmente. Para a determinação de 10 atributos funcionais de peixes, foram tomadas 12 medidas morfométricas quantitativas relacionadas ao uso do habitat, alimentação e locomoção. A composição da ictiofauna variou entre os períodos, embora variações sazonais tenham sido menos conspícuas. A maior riqueza foi observada no período Pós, e a menor riqueza no período Atual. A abundância diminuiu consideravelmente no período Atual. A beta-diversidade taxonômica e funcional aumentaram ao longo dos três períodos, com a taxonômica aumentando significativamente no período Pós e permanecendo sem diferenças significativas do período Atual. Por outro lado, a beta-diversidade funcional foi similar entre os períodos Pré e Pós, com significante aumento no período Atual. O componente de substituição (turnover) foi o que mais influenciou nos resultados das mudanças nas B-diversidade taxonômica e funcional, enquanto nenhuma mudança temporal foi observada no componente de perda de espécies (nestedness). Ocorreu um processo de heterogeneização da ictiofauna ao longo dos períodos, com aumento na beta-diversidade taxonômica e funcional, associados a uma diminuição na riqueza e abundância. Nosso estudo indica que a ictiofauna está sofrendo um processo de reestruturação, devido ao aparecimento de espécies mais tolerantes e a substituição de espécies nativas e sensíveis, o que resultou em uma substituição de funções após uma década de funcionamento das PCHs. Isto sugere que empreendimentos de pequeno porte como as PCHs são prejudiciais para a ictiofauna, devido as mudanças no habitat, ou ainda pelo aparecimento de espécies não nativas e generalistas. Pouco se sabe sobre os reais efeitos de PCHs na ictiofauna e nossos resultados sugerem que é importante entender essas alterações, e como elas podem ser prejudiciais para a ictiofauna. Sugere-se a ampliação destes estudos no sentido de fornecer base para medidas de conservação da biodiversidade em ambientes afetados por esses empreendimentos.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesAgostinho, A.A., Gomes, L.C., Pelicice, F.M. (2007). Ecologia e Manejo de recursos pesqueiros em reservatórios do Brasil. Maringá. Eduem. Agostinho, A.A., Gomes, L.C, Santos, N.C.L., Ortega, J.C.G., Pelicice, F.M. (2016). Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research, 173, 26–36. https:// doi.org/10.1016/j.fshres.2015.04.006 Albert, J.S. & Reis, R.E. (2011). Introduction to the biogeography of Neotropical freshwaters. In Historical Biogeography of Neotropical Freshwater Fishes (Albert, J.S. & Reis, R.E. eds), 1– 20. Berkeley, CA: University of California Press. Albert, J.S., Destouni, G., Duke-Sylvester, S.M., Magurran, A.E., Oberdorff, T., Reis, R.E., Winemiller, K.O., & Ripple, W.J. (2021). Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio, 50, 85–94. https://doi.org/10.1007/s13280-020- 01318-8 Agência Nacional de Águas (ANA), HIDROWEB, www.ana.gov.br, acessado em 19 de setembro de 2022. Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., ... Swenson, N.G. (2010). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 14(1), 19–28. doi:10.1111/j.1461- 0248.2010.01552.x ANEEL. 2022. http://www.aneel.gov.br/. Acessado em 19 de setembro de 2022. Araújo, J.R.S., Nunan, G.W. (2005). Ictiofauna do rio Paraíba do Sul: danos ambientais e sociais causados por barragens, hidrelétricas e poluição no trecho fluminense. CPDM- ALERJ Araújo, E.S., Marques, E.E., Freitas, I.S., Neuberger, A.L., Fernandes, R., Pelicice, F.M. (2013). Changes in distance decay relationships after regulation: similarity among fish assemblages in a large Amazonian River. Ecology of Freshwater Fish, 22, 543–552. 33 Azevedo, M.C.C., De Sousa Gomes, R., Mattos, T.M., Uehara, W., Guedes, G.H.S. & Araújo, F.G. (2017). Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil. Marine Environmental Research, 129, 180–188. Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134–143. Baselga, A., Orme, D. (2012) Betapart: an R package for the study of beta diversity. Methods Ecology Evolution, 3, 808–812. Baxter, R.M. (1977) Environmental effects of dams and impoundments. Annual Review of Ecology, Evolution, and Systematics, 8, 255–283. Brosse, S., Charpin N., Su G., Toussaint A., Herrera-R G.A., Tedesco P.A. & Villéger S. (2021). FISHMORPH: A global database on morphological traits of freshwater fishes. Global Ecology and Biogeography, 00, 1–7. https://doi.org/10.1111/geb.13395 Carvajal-Quintero, J.D., Januchowski-Hartley, S.R., Maldonado-Ocampo, J.A., Jézéquel, C., Delgado, J. & Tedesco, P.A. (2017). Damming Fragments Species’ Ranges and Heightens Extinction Risk. Conservation Letters, 10(6), 708–716. doi:10.1111/conl.12336 Carvalho, C.E.V., Torres, J.P.M. (2002). The ecohydrology of the Paraíba do Sul River, Southeast Brazil. In: McClain ME (ed) Theecohydrology of South American rivers and wetlands. IAHS Special Publication, Miami, 179–19. Cella-Ribeiro, A., Doria, C., Dutka-Gianelli, J., Alves, H., Torrente-Vilara, G., (2017). Temporal fish community responses to two cascade run-of-river dams in the Madeira River. Amazon Basin Ecohydrology, 10 (8), 1889. Deemer, B.R., Harrison, J.A., Li, S., Beaulieu, J.J., DelSontro, T., Barros, N., Bezerra-Neto, J.F., Powers, S.M., Santos, M.A., Vonk, J.A. (2016). Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience, 66, 949–964. Devictor, V., Mouillot, D., Meynerd, C., Jiguet, F., Thuiller, W. & Mouquet, N. (2010). Spatial mismatch and congruence between taxonomic, phylogenetic, and functional diversity: the 34 need for integrative conservation strategies in a changing world. Ecology Letters, 13, 1030–1040. Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. Ellis, E.C., Klein-Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589–606. Fitzgerald, D.B., Perez, M.H.S., Sousa, L.M., Gonçalves, A.P., Py-daniel, L.R., Lujan, N.K., ... Lundberg, J.G. (2018). Diversity and community structure of rapids-dwelling fishes of the Xingu River: Implications for conservation amid large-scale hydroelectric development. Biological Conservation, 222, 104–112. Froese, R. & Pauly, D. (2022). FishBase. https://www.fishbase.org Garavello, J.C. 2005. Revision of genus Steindachneridion (Siluriformes: Pimelodidae). Neotropical Ichthyology, 3, 607–623. Gaston, K.J. & Blackburn, T.M. (Eds.) (2000). Pattern and Process in Macroecology. doi:10.1002/9780470999592 Gaston, K.J. (2000). Global patterns in biodiversity. Nature, 405, 220–227. Gibeau, P., Connors, B.M., & Palen, W.J. (2017). Run-of-River hydropower and salmonids: potential effects and perspective on future research. Canadian Journal of Fisheries and Aquatic Sciences, 74(7), 1135–1149. doi:10.1139/cjfas-2016-0253 Gomes, F.B.R., Vargas, I.S., Procópio, A.S., Castro, S.R. & Ribeiro, C.B.M. (2021). Estudo da variabilidade espaço-temporal e tendências de precipitação na bacia hidrográfica do rio Paraíba do Sul. Revista Brasileira De Climatologia, 28, 365–390. http://dx.doi.org/10.5380/rbclima.v28i0.74380 Graham, C.H. & Fine, P.V.A. (2008). Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters, 11(12), 1265–1277. doi:10.1111/j.1461-0248.2008.01256.x 35 Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., ... Zarfl, C. 2019. Mapping the world’s free flowing rivers. Nature, 569, 215–221. Honji, R.M., Caneppele, D., Hilsdorf, A.W.S. & Moreira, R.G. (2009). Threatened fishes of the world: Steindachneridion parahybae (Steindachner, 1877) (Siluriformes: Pimelodidae). Environmental Biology of Fishes, 85, 207–208. Honji, R.M., Tolussi, C.E., Caneppele, D., Polaz, C.N.M., Hilsdorf, A.W.S. & Moreira, R.G. (2017). Biodiversity and conservation of threatened ichthyofauna of the Paraíba do Sul River basin. Revista da Biologia, 17(2), 18–30. doi:10.7594/revbio.17.02.05 Irz, P., Michonneau, F., Oberdorff, T., Whittier, T.R., Lamouroux, N., Mouillot, D. & Argillier, C. (2007). Fish community comparisons along environmental gradients in lakes of France and northeast USA. Global Ecology and Biogeography, 16, 350–36. Izsak, C. & Price, R.G. (2001). Measuring β-diversity using a taxonomic similarity index, and its relation to spatial scale. Marine Ecology Progress Series, 215, 69–77. Jurasinski, G. & Koch, M. (2011). Commentary: do we have a consistent terminology for species diversity? We are on the way. Oecologia, 167(4), 893–902. doi:10.1007/s00442- 011-2126-6 Jurasinski, G., Retzer, V., Beierkuhnlein, C. (2009) Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity. Oecologia, 159(1),15–26. doi: 10.1007/s00442-008-1190-z. Legendre, P., Bocard, D., Peres-Neto, P.R. (2005). Analyzing Beta Diversity: Partitioning the Spatial Variation of Community Composition Data. Ecological Monograph, 75, 435–450. http://dx.doi.org/10.1890/05-0549 Lenhardt, M., Markovic, G. & Gacic, Z. (2009). Decline in the Index of Biotic Integrity of the Fish Assemblage as a Response to Reservoir Aging. Water Resources Management, 23(9), 1713–1723. doi:10.1007/s11269-008-9348-3 Liermann, C.R., Nilsson, C., Robertson, J., Ng, R.Y. (2012). Implications of dam obstruction for global freshwater fish diversity. Bioscience, 62, 529–548. 36 Lima, A.C., Agostinho, C.S., Sayanda, D., Pelicice, F.M., Soares, A.V.M. & Monaghan, K.A. (2015). The rise and fall of fish diversity in a neotropical river after impoundment. Hydrobiologia, 763, 207–221. doi:10.1007/s10750-015-2377-z. Linde-Arias, A.R., Inacio, A.F., Novo, L.A., Albuquerque, C., Moreira, J.C. (2008). Multibiomarker approach in fish to assess the impact of pollution in a large Brazilian river, Paraíba do Sul. Environmental Pollution, 156(3), 974–979. Manna, L.R., Rezende, C.F. & Mazzoni, R. (2013). Diversidade funcional de peixes de riacho: Como as Assembleias podem estar organizadas? Oecologia Australis, 17(3), 402–410. Marengo, J. A. & Lincoln, M. A. (2005). Tendências hidrológicas da bacia do Rio Paraíba do Sul. Revista Brasileira de Meteorologia, 20(2), 215–226. McGill, B., Enquist, B., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178–185. doi:10.1016/j.tree.2006.02.002 McIntyre, P.B., Reidy Liermann, C.A., & Revenga, C. (2016). Linking freshwater fishery management to global food security and biodiversity conservation. Proceedings of the National Academy of Sciences, 113(45), 12880–12885. doi:10.1073/pnas.1521540113 Moraes, M.P.C. & Nery, J.T. (2014). Análise da variabilidade pluvial na unidade de gerenciamento de recursos hídricos do Paraíba do Sul (UGHRI-2). Revista Brasileira de Climatologia, 14, 264–274. Moretti, T.M. (2019). O uso da distinção taxonômica, diversidade funcional e modelagem trófica como ferramentas para avaliar as assembleias de peixes em reservatórios com diferentes configurações hidro-ambientais UFRRJ. 126 pág. Tese (Doutorado) Programa de Pós-graduação em Biologia Animal para obtenção do título de Doutor. Nilsson, C., Ready, C.A., Dynesius, M. & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405–408. Nilton, C.L. (2009). O impacto das Pequenas Centrais Hidrelétricas – PCHS no meio ambiente. 17 pág. UFLA. Trabalho de Conclusão apresentado ao Departamento de Engenharia da 37 Universidade Federal de Lavras como parte das exigências do Curso de Pós-graduação Latu Sensu para obtenção do Título Especialista em Formas Alternativas de Energia. Pavoine, S., & Bonsall, M. B. (2010). Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews, 86(4), 792–812. doi:10.1111/j.1469- 185x.2010.00171.x Pease, A.A., González-Díaz A.A., Rodiles-Hernández, R. & Winemiller, K.O. (2012). Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology, 57(5), 1060–1075. doi:10.1111/j.1365- 2427.2012.02768.x Petchey, O.L. & Gaston, K.J. (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402–411. Petesse, M.L. & Petrere, J.M. (2012). Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tiete river basin, Brazil. Ecological Engineering, 48, 109–116. Pfeiffer, W.C., Fiszman, M., Malm, O., Azcue, J.M. (1986). Heavy metal pollution in the Paraíba do Sul River, Brasil. Science of the Total Environment, 58(1–2), 73–79. Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., ... Sexton, J.O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187), 1246752–1246752. doi:10.1126/science.1246752 Pinto, B.C.T. & Araújo, F.G. (2007). Assessing of biotic integrity of the fish community in a heavily impacted segment of a tropical river in Brazil. Brazilian Archives of Biology and Technology, 50, 489–502. Pinto, B.C.T., Araujo, F.G., Rodrigues, V.D. & Hughes, R. M. (2009). Local and ecoregion effects on fish assemblage structure in tributaries of the Rio Paraíba do Sul, Brazil. Freshwater Biology, 54, 2600–2615. doi:10.1111/j.1365-2427.2009.02269.x 38 Premalatha, M., Tabassum-Abbasi, Abbasi, T. & Abbasi, S. A. (2014). A critical view on the eco-friendliness of small hydroelectric installations. Science of The Total Environment, 481, 638–643. doi:10.1016/j.scitotenv.2013.11. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., ... Cooke, S.J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94, 849– 873. Reidy, L.C., Christer, N., James, R. & Ng, R.Y. (2012). Implications of dam obstruction for global freshwater fish diversity. Bioscience 62, 539–548. Reis, R.E., Albert, J.S., Di Dario, F., Mincarone, M.M., Petry, P., & Rocha, L.A. (2016). Fish biodiversity and conservation in South America. Journal of Fish Biology, 89(1), 12–47. Reis, R.E. (2013). Conserving the freshwater fishes of South America. International Zoo Yearbook, 47, 65–70. Resolução Normativa n° 875, de 10 de março de 2020 Robson, A.L. (2013). Implications of small-scale run-of-river hydropower schemes on fish populations in Scottish streams. Contemp. Youth Res. 117, 22428–22437. Sagouis, A., Jabot, F. & Argillier, C. (2016). Taxonomic versus functional diversity metrics: how do fish communities respond to anthropogenic stressors in reservoirs? Ecology of Freshwater Fish, 26(4), 621–635. doi:10.1111/eff.12306 Santucci, V.J., Gephard, S.R. & Pescitelli, S.M. (2005). Effects of Multiple Low-Head Dams on Fish, Macroinvertebrates, Habitat, and Water Quality in the Fox River, Illinois. North American Journal of Fisheries Management, 25(3), 975–992. doi:10.1577/m03-216.1 Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671–675. 39 Simonovi, P., Ristic, R., Milanovi, V., Polovina, S. & Nikoli, V. (2021). Effects of run-of-river hydropower plants on fish communities in montane streams ecosystems in Serbia. River Research and Applications, 37, 722–731. Socolar, J.B., Gilroy, J.J., Kunin, W.E. & Edwards, D.P. (2016). How Should Beta-Diversity Inform Biodiversity Conservation? Trends in Ecology & Evolution, 31(1), 67–80. doi:10.1016/j.tree.2015.11.005 Spector, S. (2002). Biogeographic Crossroads as Priority Areas for Biodiversity Conservation. Conservation Biology, 16(6), 1480–1487. doi:10.1046/j.1523-1739.2002.00573.x Su, G., Logez, M., Xu, J., Tao, S., Villéger, S. & Brosse, S. (2021). Human impacts on global freshwater fish biodiversity. Science, 273, 835– 838. https://doi.org/10.1126/science.abd3369 Swenson, N.G., Anglada-Cordero, P. & Barone, J.A. (2011). Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B: Biological Sciences, 278(1707), 877–884. doi:10.1098/rspb.2010.1369 Terra, B.F., Santos, A.B.I. & Araújo, F.G. (2010). Fish assemblage in a dammed tropical river: an analysis along the longitudinal and temporal gradients from river to reservoir. Neotropical Ichthyology, 8(3), 599–606.doi:10.1590/s1679-62252010000300004 Terra, B.F., Araújo, F.G., Calza, C.F., Lopes, R.T. & Teixeira, T.P. (2008). Heavy metal in tissues of three fish species from different. Water Air Soil Pollut, 185, 275–284. Tickner, D., Opperman, J.J., Abell, R., Acreman, M., Arthington, A.H., Bunn, S.E., ... Young, L. (2020). Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience. doi:10.1093/biosci/biaa002 Toussaint, A., Charpin, N., Brosse, S. & Villéger, S. (2016). Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports, 6, 22125. https://doi.org/10.1038/srep22125 40 Vasconcelos, R.P., Henriques, S., Franca, S., Pasquaud, S., Cardoso, I., Laborde, M. & Cabral, H.N. (2015). Global patterns and predictors of fish species richness in estuaries. Journal of Animal Ecology, 84, 1331–1341. Villéger, S., Miranda, J.R., Flores Hernandez, D., Sosa Lopez, A., Mouillot, D. (2008). Stable trophic structure across coastal nekton assemblages despite high species turnover. Marine Ecology Progress Series, 364,135–146. Villéger, S., Miranda, J.R., Hernández, D.F., Mouillot, D. (2010). Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20(6), 1512–1522. Villéger, S., Miranda, J.R., Hernandez, D.F. & Mouillot, D. (2012). Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine fish communities. PLoS One 7(7), e40679. Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M.J. (2017). Functional ecology of fish: current approaches and future challenges. Aquatic Science, 79, 783–801. Wang, Y., Wu, N., Tang, T., Wang, Y. & Cai, Q. (2022). Small run-of-river hydropower dams and associated water regulation filter benthic diatom traits and affect functional diversity. Science of the Total Environment, 813, 152566. Winemiller, K.O., Fitzgerald, D.B., Bower, L.M. & Pianka, E.R. (2015). Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, 18, 37–751. Winemiller, K.O., McIntyre, P.B., Castello, L., Fluet-Chouinard, E., Giarizzo, T., Nam, S. & Sáenz, L. (2016). Balancing hydropower and biodiversity in the Amazon, Congo and Mekong. Science, 351, 128–129. https://doi.org/10.1126/science.aac7082por
dc.subject.cnpqBiologia Geralpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74757/2022%20-%20Dandhara%20Rossi%20Carvalho.Pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6921
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-15T15:38:10Z No. of bitstreams: 1 2022 - Dandhara Rossi Carvalho.Pdf: 1189137 bytes, checksum: 08f96156d3e80aa1b7c82da88bec9dcb (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-09-15T15:38:10Z (GMT). No. of bitstreams: 1 2022 - Dandhara Rossi Carvalho.Pdf: 1189137 bytes, checksum: 08f96156d3e80aa1b7c82da88bec9dcb (MD5) Previous issue date: 2022-11-25eng
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Dandhara Rossi Carvalho.Pdf2022 - Dandhara Rossi Carvalho1.16 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.