Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/10545
Full metadata record
DC FieldValueLanguage
dc.creatorSantos, Luan Valim dos
dc.date.accessioned2023-11-19T21:39:28Z-
dc.date.available2023-11-19T21:39:28Z-
dc.date.issued2020-12-14
dc.identifier.citationSANTOS, Luan Valim dos. Expressão diferencial da brummer e níveis de triacilglicerol em estágios de desenvolvimento e sob estresse alimentar em Aedes aegypti (Diptera: Culicidae). 2020. 69 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10545-
dc.description.abstractThe Aedes aegypti mosquito (Linnaeus 1762) is the main vector of yellow fever, dengue, Chikungunya and Zika. The storage of lipids in the form of triacylglycerol (TAG) is essential during the life cycle of mosquitoes, as it allows for the transformation of the body during the pupal phase and supports energy expenditure during the initial phase of adult life and reproductive maturation. Brummer (bmm) is a lipase of the patatin-like family, which performs the hydrolysis of TAG ester bonds by releasing fatty acids that serve as an energetic substrate for β-oxidation, supporting the energy demands of insects. The present work investigated the relationship between bmm and TAG stocks in Ae. aegypti fatty body using bioinformatics, molecular biology and biochemistry tools. To identify bmm in the Aedes aegypti genome, the bmm identified in the Drosophila melanogaster genome was used as a reference, and comparative bioinformatics analyzes inferred the relationship with other organisms. After identification, bmm expression levels were determined using qPCR and TAG levels were inferred through thin layer chromatography. The bmm expression was differentiated in the larval phase and the adult insect fat bodies, following the dynamics of TAG reserves. In larval stages L3, L4, and pupa, Bmm was expressed three times as much compared to stages L1 and L2. In the post-emergence and post-blood-meal fat body of adult animals, the expression varied over several days. When post-emergence adult animals were fasted, without sucrose, there was a very pronounced increase from the third day onwards compared to animals that did not fast with 10% sucrose. A significant decrease in TAG levels was observed from the third day on, which suggests the participation of bmm in the process. TAG levels increased, six hours after feeding with blood, TAG levels increased, suggesting a process of accumulation of lipid reserves to ensure oogenesis and reproduction. A bmm in Ae. aegypti responds positively to fasting and regulates it is probably involved in the mobilization of TAG reserves in the body of fat at the dose of adult mosquitoes.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectlarvapor
dc.subjectcorpo gordurosopor
dc.subjectestoque lipídicopor
dc.subjectlipasepor
dc.subjectlarvaeeng
dc.subjectfat bodypor
dc.subjectlipid storagepor
dc.titleExpressão diferencial da lipase brummer e níveis de triacilglicerol em estágios de desenvolvimento e sob estresse alimentar em Aedes aegypti (Diptera: Culicidae)por
dc.title.alternativeDiferencial expression of brummer and levels of TAG in different developmental stages and starvation of Aedes aegypti (Diptera: Culicidae)eng
dc.typeDissertaçãopor
dc.contributor.advisor1Pontes, Emerson Guedes
dc.contributor.advisor1ID045.534.107-96por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1562085358907265por
dc.contributor.referee1Pontes, Emerson Guedes
dc.contributor.referee2Grillo, Luciano Aparecido Meireles
dc.contributor.referee3Alencar, Jerônimo Augusto Fonseca
dc.creator.ID156.150.197-27por
dc.creator.IDhttps://orcid.org/0000-0002-2333-210Xpor
dc.creator.Latteshttp://lattes.cnpq.br/1407400988697500por
dc.description.resumoO mosquito Aedes aegypti (Linnaeus 1762) é o principal vetor da febre amarela, dengue, Chikungunya e Zika. O armazenamento de lipídios na forma de triacilglicerol (TAG) é essencial durante o ciclo de vida de mosquitos, pois permite a transformação do corpo durante a fase de pupa e suporta o gasto energético durante a fase inicial da vida adulta e maturação reprodutiva. A brummer (bmm) é uma lipase da família das patatin-like, que realiza a hidrólise das ligações ésteres do TAG liberando ácidos graxos que servem de substrato energético na β-oxidação, suportando as demandas energéticas em insetos. O presente trabalho investigou a relação entre a bmm e os estoques de TAG no corpo gorduroso de Ae. aegypti utilizando ferramentas de bioinformáticas, de biologia molecular e bioquímica. Para identificar a bmm no genoma de Aedes aegypti foi utilizada como referência a bmm identificada no genoma de Drosophila melanogaster e análises bioinformáticas comparativas inferiram a relação com outros organismos. Após a identificação, os níveis de expressão da bmm foram determinados através de qPCR e os níveis de TAG foram inferidos através de cromatografia de camada fina. A expressão de bmm foi diferenciada na fase larval e nos corpos gordurosos do inseto adulto, acompanhando a dinâmica das reservas de TAG. Nos estágios larvais L3, L4 e pupa, a bmm foi expressa três vezes mais em comparação com os estágios L1 e L2. No corpo gorduroso pós-emergência (PE) e pós alimentação sanguínea de animais adultos, a expressão variou ao longo dos dias analisados. Quando os animais adultos após a emergência foram submetidos ao jejum, sob ausência de sacarose, observou-se um aumento muito pronunciado a partir do terceiro dia em relação aos animais alimentados com sacarose 10%. Foi observada uma diminuição significativa nos níveis de TAG a partir do terceiro dia, o que sugere a participação de bmm no processo. Os níveis de TAG aumentaram, seis horas após a alimentação com sangue, sugerindo um processo de acúmulo de reservas lipídicas para garantir a oogênese e reprodução. A bmm em Ae. aegypti responde positivamente ao jejum e provavelmente está envolvida na mobilização das reservas de TAG no corpo gorduroso dos mosquitos adultos.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesALABASTER, A. et al. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti. Insect Biochemistry and Molecular Biology, v. 41, n. 12, p. 946–955, 2011. ALERSTAM, T.; LINDSTRÖM, Å. Optimal Bird Migration: The Relative Importance of Time, Energy, and Safety. 1. ed. Berlin: Springer-Verlag, 1990. ALMEIDA-OLIVEIRA, F. et al. Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease. Biomedicine and Pharmacotherapy, v. 88, p. 948–955, 2017. ARAUJO, B. B. A. et al. Bigger kill than chill: The uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quaternary International, v. 431, p. 216–222, 2017. ARRESE, E. L. et al. Lipid storage and mobilization in insects: Current status and future directions. Insect Biochemistry and Molecular Biology, v. 31, n. 1, p. 7–17, 2001. ARRESE, E. L.; SOULAGES, J. L. Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology, v. 55, n. 1, p. 207–225, 2010. ASSIS, W. A. DE et al. The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Arthropod Structure and Development, v. 43, n. 5, p. 501–509, set. 2014. ATTARDO, G. M. et al. Analysis of lipolysis underlying lactation in the tsetse fly, Glossina morsitans. Insect Biochemistry and Molecular Biology, v. 42, n. 5, p. 360–370, maio 2012. AZEEZ, O. I.; MEINTJES, R.; CHAMUNORWA, J. P. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: The nexusLipids in Health and Disease, 2014. Disponível em: <http://www.lipidworld.com/content/13/1/71>. Acesso em: 2 jul. 2019 BARAL, C. et al. Viewpoint ask not what your postdoc can do for you ⋯. Communications of the ACM, v. 61, n. 1, p. 42–44, 2018. BEACH, V. From the Florida State Board of Health Entomological ResearchBlood. [s.l: s.n.]. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1357660/pdf/jphysiol01162-0034.pdf>. Acesso em: 10 jun. 2019. BESERRA, E. B.; FERNANDES, C. R. M.; RIBEIRO, P. S. Larval density as related to life cycle, size and fecundity of aedes (Stegomyia) aegypti (l.) (Diptera: Culicidae) in laboratory. Neotropical Entomology, v. 38, n. 6, p. 847–852, 2009. BHARUCHA, K. N.; TARR, P.; ZIPURSKY, S. L. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. Journal of Experimental Biology, v. 211, n. 19, p. 3103–3110, 1 out. 2008. BOROVSKY, D. Biosynthesis and Control of Mosquito Gut ProteasesIUBMB Life, 1 ago. 2003. Disponível em: <http://doi.wiley.com/10.1080/15216540310001597721>. Acesso em: 28 nov. 2020 BRADY, O. J. et al. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Neglected Tropical Diseases, v. 6, n. 8, 2012. BRASIL. MINISTÉRIO DA SAÚD. SECRETARIA DE VIGILÂNCIA EM SAÚDE. Boletim Epidemiológico: Monitoramento dos casos de dengue, febre de chikungunya e doença aguda pelo vírus Zika até a Semana Epidemiológica 52 de 2018Boletim Epidemiológico. [s.l: s.n.]. Disponível em: <http://portalarquivos2.saude.gov.br/images/pdf/2019/janeiro/28/2019-002.pdf>. BRIEGEL, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. Journal of Insect Physiology, v. 36, n. 3, p. 165–172, jan. 1990. BROWN, M. R.; SIEGLAFF, D. H.; REES, H. H. Gonadal Ecdysteroidogenesis in Arthropoda: Occurrence and Regulation. Annual Review of Entomology, v. 54, n. 1, p. 105–125, 2009. CANAVOSO, L. E. et al. Fat Metabolism in Insects. Annual Review of Nutrition, v. 21, n. 1, p. 23–46, 2001. CARRIERE, F. et al. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology, v. 105, n. 3, p. 876–888, 1 set. 1993. CHAPMAN, R. F. The Insects Structure and Function. 5. ed. New York: Cambridge University Press, 2013. CHUNG, H. N. et al. Fat body organ culture system in aedes aegypti, A vector of zika virus. Journal of Visualized Experiments, v. 2017, n. 126, p. 1–8, 2017. CLEMENTS, A. N. The biology of mosquitoes. v. 3, p. 1–571, 2011. COFFEL, E. D.; HORTON, R. M.; DE SHERBININ, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st centuryEnvironmental Research Letters, 1 jan. 2018. Disponível em: <http://stacks.iop.org/1748-9326/13/i=1/a=014001?key=crossref.1628e439fe93adb84839f0550336785b> COLLINS, K.; WARNOW, T. PASTA for proteins. Bioinformatics, v. 34, n. 22, p. 3939–3941, 2018. DA SILVA, R. M. et al. Hypometabolic strategy and glucose metabolism maintenance of Aedes aegypti egg desiccation. Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology, v. 227, p. 56–63, 1 jan. 2019. DANIELL, H. Sleeping dogs of the genome: Retrotransposable elements may be agents of somatic diversity, disease and aging. Science, v. 346, n. 6214, p. 211–220, 2014. DOW, J. A. T. Insect Midgut Function. Advances in Insect Physiology, v. 19, n. C, p. 187–328, 1987. ESTEVES, A.; EHRLICH, R. Invertebrate intracellular fatty acid binding proteinsComparative Biochemistry and Physiology - C Toxicology and PharmacologyElsevier Inc., , mar. 2006. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1532045605002413>. Acesso em: 8 maio. 2020 FARNESI, L. C. et al. Embryonic development and egg viability of wMel-infected Aedes aegypti. Parasites and Vectors, v. 12, n. 1, 2019. FINN, R. D. et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, v. 44, n. D1, p. D279–D285, 2016. FOSTER, W. A. Mosquito Sugar Feeding and Reproductive Energetics. Annual Review of Entomology, v. 40, n. 1, p. 443–474, 1995. GEISER, F.; KENAGY, G. J. Dietary fats and torpor patterns in hibernating ground squirrels. Canadian Journal of Zoology, v. 71, n. 6, p. 1182–1185, 1993. GENTILE, C.; LIMA, J. B. P.; PEIXOTO, A. A. Isolation of a fragment homologous to the rp49 constitutive gene of Drosophila in the Neotropical malaria vector Anopheles aquasalis (Diptera: Culicidae). Memorias do Instituto Oswaldo Cruz, v. 100, n. 6, p. 545–547, 2005. GERSHMAN, B. et al. High-resolution dynamics of the transcriptional response to nutrition in Drosophila: A key role for dFOXO. Physiological Genomics, v. 29, n. 1, p. 24–34, 14 mar. 2007. GHOSH, M. et al. Properties of the Group IV phospholipase A2 family. Progress in Lipid Research, v. 45, n. 6, p. 487–510, 2006. GLAESSER, D. et al. Global travel patterns: An overview. Journal of Travel Medicine, v. 24, n. 4, p. 330–342, 2017a. GLAESSER, D. et al. Global travel patterns: An overview. Journal of Travel Medicine, v. 24, n. 4, p. 1–5, 2017b. GONDIM, K. C. et al. Lipid metabolism in insect disease vectors. Insect Biochemistry and Molecular Biology, v. 101, n. August, p. 108–123, 2018. GOULD, E. et al. Emerging arboviruses: Why today? One Health, v. 4, n. July, p. 1–13, 2017. GRANT, P. M.; BATRA, I. P. Band structure of polyacetylene, (CH)x. Solid State Communications, v. 29, n. 3, p. 225–229, 1979. GRÖNKE, S. et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metabolism, v. 1, n. 5, p. 323–330, 2005. GRÖNKE, S. et al. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biology, v. 5, n. 6, p. 1248–1256, 2007. GROSSMAN, G. L. et al. Evidence for two distinct members of the amylase gene family in the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, v. 27, n. 8–9, p. 769–781, ago. 1997. GUBLER, D. J. Dengue, Urbanization and globalization: The unholy trinity of the 21 st century. Tropical Medicine and Health, v. 39, n. 4 SUPPL., p. 3–11, 2011. HAHN, D. A.; DENLINGER, D. L. Meeting the energetic demands of insect diapause: Nutrient storage and utilizationJournal of Insect PhysiologyPergamon, , 1 ago. 2007. Disponível em: <https://www.sciencedirect.com/science/article/pii/S002219100700087X?via%3Dihub>. Acesso em: 18 jun. 2019 HAHN, D. A.; DENLINGER, D. L. Energetics of insect diapause. Annual Review of Entomology, v. 56, p. 103–121, 7 jan. 2011. HIRSCHBERG, H. J. H. B. et al. Cloning, expression, purification and characterization of patatin, a novel phospholipase A. European Journal of Biochemistry, v. 268, n. 19, p. 5037–5044, 1 out. 2001. HOLTOF, M. et al. Extracellular nutrient digestion and absorption in the insect gutCell and Tissue Research, 2019. Disponível em: <https://doi.org/10.1007/s00441-019-03031-9>. Acesso em: 8 maio. 2020 HORNE, I.; HARITOS, V. S.; OAKESHOTT, J. G. Comparative and functional genomics of lipases in holometabolous insects. Insect Biochemistry and Molecular Biology, v. 39, n. 8, p. 547–567, 2009. HOSSAIN, M. S. et al. 20-Hydroxyecdysone-induced transcriptional activity of FoxO upregulates brummer and acid lipase-1 and promotes lipolysis inBombyx fat body. Insect Biochemistry and Molecular Biology, v. 43, n. 9, p. 829–838, set. 2013. HOU, Y. et al. Temporal Coordination of Carbohydrate Metabolism during Mosquito Reproduction. PLoS Genetics, v. 11, n. 7, p. 1–24, 2015. HU, G.; KURGAN, L. Sequence Similarity Searching. Current Protocols in Protein Science, v. 95, n. 1, p. 1–14, 2019. HU, J. S. et al. Mechanisms of TiO2 NPs-induced phoxim metabolism in silkworm (Bombyx mori) fat body. Pesticide Biochemistry and Physiology, v. 129, p. 89–94, maio 2016. IWAMURA, T.; GUZMAN-HOLST, A.; MURRAY, K. A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nature Communications, v. 11, n. 1, p. 2130, 2020. JINDRA, M.; PALLI, S. R.; RIDDIFORD, L. M. The Juvenile Hormone Signaling Pathway in Insect Development. Annual Review of Entomology, v. 58, n. 1, p. 181–204, 2013. JOHNSON, M. B.; BUTTERWORTH, F. M. Maturation and aging of adult fat body and oenocytes in Drosophila as revealed by light microscopic morphometry. Journal of Morphology, v. 184, n. 1, p. 51–59, 1985. KAWAI, T.; FUSHIKI, T. Importance of lipolysis in oral cavity for orosensory detection of fat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, v. 285, n. 2 54-2, p. R447–R454, ago. 2003. KIENESBERGER, P. C. et al. Mammalian patatin domain containing proteins: A family with diverse lipolytic activities involved in multiple biological functions. Journal of Lipid Research, v. 50, n. SUPPL., p. S63–S68, 2009. KLOWDEN, M. J. Physiological Systems in Insects: Third Edition. [s.l.] Elsevier Inc., 2013. KOTSAKIOZI, P. et al. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses. PLoS Neglected Tropical Diseases, v. 11, n. 7, p. 1–20, 2017. KRAEMER, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. eLife, v. 4, n. JUNE2015, p. 1–18, 2015. KUNZE, K. et al. The wordometer - Estimating the number of words read using document image retrieval and mobile eye tracking. Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, p. 25–29, 2013. LASS, A. et al. Lipolysis - A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Progress in Lipid Research, v. 50, n. 1, p. 14–27, 2011. LETA, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. International Journal of Infectious Diseases, v. 67, p. 25–35, 2018. LOCKE, M. Insect Ultrastructure. 1. ed. Springer, Boston, MA: Plenum Press, 1984. LORD, C. C.; BROWN, J. M. Distinct roles for α-β hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2) in lipid metabolism and signaling. Adipocyte, v. 1, n. 3, p. 123–131, 2012. MAJEROWICZ, D.; GONDIM, K. C. Insect lipid metabolism: Insights into gene expression regulation. In: Recent Trends in Gene Expression. [s.l: s.n.]. p. 147–189. MARTINS, G. F. et al. A comparative study of fat body morphology in five mosquito species. Memorias do Instituto Oswaldo Cruz, v. 106, n. 6, p. 742–747, 2011a. MARTINS, G. F. et al. Insights into the transcriptome of oenocytes from aedes aegypti pupae. Memorias do Instituto Oswaldo Cruz, v. 106, n. 3, p. 308–315, 2011b. MARTINS, G. F. et al. Histochemical and ultrastructural studies of the mosquito Aedes aegypti fat body: Effects of aging and diet type. Microscopy Research and Technique, v. 74, n. 11, p. 1032–1039, 2011c. MARTINS, G. F. et al. Isolation, primary culture and morphological characterization of oenocytes from Aedes aegypti pupae. Tissue and Cell, v. 43, n. 2, p. 83–90, 1 abr. 2011d. MARTINS, G. F.; PIMENTA, P. F. P. Structural Changes in Fat Body of <I>Aedes aegypti</I> Caused by Aging and Blood Feeding. Journal of Medical Entomology, v. 45, n. 6, p. 1102–1107, 2008. MAY, R. Plagues and peoples. New York: Anchor Books, 2006. v. 58 MEYER, H.; VITAVSKA, O.; WIECZOREK, H. Identification of an animal sucrose transporter. Journal of Cell Science, v. 124, n. 12, p. 1984–1991, 15 jun. 2011. MILLER, J. C. Atlas of the Transatlantic Slave Trade. New Haven: Yale University Press, 2011. v. 32 NATAL, D. Bioecologia do Aedes aegypti. Biológico, São Paulo, v. 64, n. 2, p. 205–207, 2002. NATION, J. L. Insect Physiology and and Biochemistry. 3. ed. GAINESVILLE: CRC Press, 2016. v. 672 NELSON, M. J. Aedes aegypti: biology and ecology. Washington: [s.n.]. NIWA, R.; NIWA, Y. S. Enzymes for ecdysteroid biosynthesis: Their biological functions in insects and beyond. Bioscience, Biotechnology and Biochemistry, v. 78, n. 8, p. 1283–1292, 2014. POTTER, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Research, v. 46, n. W1, p. W200–W204, 2018. POWELL, J. R.; TABACHNICK, W. J. History of domestication and spread of Aedes aegypti--a reviewMemórias do Instituto Oswaldo Cruz, 2013. PRICE, D. P. et al. Small mosquitoes, large implications: Crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasites and Vectors, v. 8, n. 1, 2015. RASMUSSEN, R. Quantification on the LightCycler. Heidelberg: Springer US, 2001. RODGERS, R. J.; TSCHÖP, M. H.; WILDING, J. P. H. Anti-obesity drugs: Past, present and future. DMM Disease Models and Mechanisms, v. 5, n. 5, p. 621–626, 2012. ROMA, G. C.; BUENO, O. C.; CAMARGO-MATHIAS, M. I. Morpho-physiological analysis of the insect fat body: A review. Micron, v. 41, n. 5, p. 395–401, jul. 2010. ROMER, F.; EMMERICH, H.; NOWOCK, J. Biosynthesis of ecdysones in isolated prothoracic glands and oenocytes of Tenebrio molitor in vitro. Journal of Insect Physiology, v. 20, n. 10, p. 1975–1987, 1974. ROY, S. et al. Regulation of Reproductive Processes in Female Mosquitoes. In: Advances in Insect Physiology. [s.l: s.n.]. v. 51p. 115–144. RUIZ, J. I.; OCHOA, B. Quantification in the subnanomolar range of phospholipids and neutral lipids by monodimensional thin-layer chromatography and image analysis. Journal of Lipid Research, v. 38, n. 7, p. 1482–1489, 1997. RUVOLO, M. C. C.; LANDIM, C. DA C. Morphologic and morphometric aspects of oenocytes of Apis mellifera queens and workers in different phases of life. Memórias do Instituto Oswaldo Cruz, v. 88, n. 3, p. 387–395, 1993. SCHWEDES, C. C.; CARNEY, G. E. Ecdysone signaling in adult Drosophila melanogasterJournal of Insect PhysiologyPergamon, , 1 mar. 2012. SHI, Y.; BURN, P. Lipid metabolic enzymes: Emerging drug targets for the treatment of obesityNature Reviews Drug Discovery, 2004. SILVA, E. R. M. N. et al. The influence of larval density on triacylglycerol content in Aedes aegypti (Linnaeus) (Diptera: Culicidae). Archives of Insect Biochemistry and Physiology, p. 1–11, 3 nov. 2020. SØNDERGAARD, L. Homology between the mammalian liver and the Drosophila fat body. Trends in Genetics, v. 9, n. 6, p. 193, jun. 1993. TABACHNICK, W. J. Evolutionary Genetics and Arthropod-borne Disease: The Yellow Fever Mosquito. American Entomologist, v. 37, n. 1, p. 14–26, 1991. TAKKEN, W. et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasites and Vectors, v. 6, n. 1, p. 345, 10 dez. 2013. TAVEIRA, L. A.; FONTES, L. R.; NATAL, D. Manual de diretrizes e procedimentos no controle do Aedes aegypti. Ribeirão Preto: [s.n.]. TEICH, V.; ARINELLI, R.; FAHHAM, L. Aedes aegypti e sociedade: o impacto econômico das arboviroses no Brasil. Jornal Brasileiro de Economia da Saúde, v. 9, n. 3, p. 267–276, 2017. TERRA, W. R.; FERREIRA, C. Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology -- Part B: Biochemistry and, v. 109, n. 1, p. 1–62, set. 1994. TOPRAK, U. et al. A chitin deacetylase and putative insect intestinal lipases are components of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix. Insect Molecular Biology, v. 17, n. 5, p. 573–585, out. 2008. TOPRAK, U. et al. A journey into the world of insect lipid metabolism. Archives of Insect Biochemistry and Physiology, v. 104, n. 2, p. 1–67, 2020. TURGAY-İZZETOĞLU, G.; GÜLMEZ, M. Characterization of fat body cells at different developmental stages of Culex pipiens. Acta Histochemica, v. 121, n. 4, p. 460–471, maio 2019. TZOU, P.; DE GREGORIO, E.; LEMAITRE, B. How Drosophila combats microbial infection: A model to study innate immunity and host-pathogen interactions. Current Opinion in Microbiology, v. 5, n. 1, p. 102–110, 1 fev. 2002. UPSHUR, I. F. et al. Temperature and sugar feeding effects on the activity of a laboratory strain of aedes aegypti. Insects, v. 10, n. 10, 16 out. 2019. VAN HOUTEN, B.; WOSHNER, V.; SANTOS, J. H. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair, v. 5, n. 2, p. 145–152, 2006. VENANCIO, T. M. et al. The Aedes aegypti larval transcriptome: A comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Molecular Biology, v. 18, n. 1, p. 33–44, fev. 2009. WANG, B. et al. A hormone-dependent module regulating energy balance. Cell, v. 145, n. 4, p. 596–606, 13 maio 2011. WANG, S. et al. 20-Hydroxyecdysone reduces insect food consumption resulting in fat body lipolysis during molting and pupation. Journal of Molecular Cell Biology, v. 2, n. 3, p. 128–138, 2010. WANG, X. et al. Hormone and receptor interplay in the regulation of mosquito lipid metabolism. Proceedings of the National Academy of Sciences of the United States of America, v. 114, n. 13, p. E2709–E2718, 2017. WAT, L. W. et al. A role for triglyceride lipase brummer in the regulation of sex differences in Drosophila fat storage and breakdown. [s.l: s.n.]. v. 18 WIGGLESWORTH, V. B. The Storage of Protein, Fat, Glycogen and Uric Acid in the Fat Body and other Tissues of Mosquito Larvae. Journal of Experimental Biology, v. 19, n. 1, p. 56–77, 1942. YONGMEI XI, Y. Z. Fat Body Development and its Function in Energy Storage and Nutrient Sensing in Drosophila melanogaster. Journal of Tissue Science & Engineering, v. 06, n. 01, p. 1–8, 2015. ZARA, A. L. DE S. A. et al. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e servicos de saude : revista do Sistema Unico de Saude do Brasil, v. 25, n. 2, p. 391–404, 2016. ZHOU, G. et al. Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes. Journal of Insect Physiology, v. 50, n. 4, p. 337–349, 1 abr. 2004. ZHOU, G.; PENNINGTON, J. E.; WELLS, M. A. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle. Insect Biochemistry and Molecular Biology, v. 34, n. 9, p. 919–925, set. 2004. ZHOU, J. et al. Characterization of a Nilaparvata lugens (Stål) brummer gene and analysis of its role in lipid metabolism. Archives of Insect Biochemistry and Physiology, v. 97, n. 3, p. e21442, 2018a. ZHOU, J. et al. Brummer-dependent lipid mobilization regulates starvation resistance in Nilaparvata lugens. Archives of Insect Biochemistry and Physiology, v. 99, n. 2, 1 out. 2018b. ZIEGLER, R.; IBRAHIM, M. M. Formation of lipid reserves in fat body and eggs of the yellow fever mosquito, aedes aegypti. Journal of Insect Physiology, v. 47, n. 6, p. 623–627, 2001. ZIMMERMANN, R. et al. Fate of fat: The role of adipose triglyceride lipase in lipolysisBiochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, jun. 2009. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1388198108001881>. Acesso em: 9 maio. 2020 ZUCKERKANDL, E.; PAULING, L. Evolutionary divergence and convergence in proteins BT - Evolving genes and proteins. Evolving genes and proteins, p. 97–166, 1965.por
dc.subject.cnpqBioquímicapor
dc.subject.cnpqBiotecnologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71984/2020%20-%20Luan%20Valim%20dos%20Santos.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6283
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-01-26T21:03:34Z No. of bitstreams: 1 2020 - Luan Valim dos Santos.pdf: 1396482 bytes, checksum: a8e0f6d40454689565eae1ac5b368628 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-01-26T21:03:34Z (GMT). No. of bitstreams: 1 2020 - Luan Valim dos Santos.pdf: 1396482 bytes, checksum: a8e0f6d40454689565eae1ac5b368628 (MD5) Previous issue date: 2020-12-14eng
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Luan Valim dos Santos.pdf1.36 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.