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RESUMO GERAL 

COSTA, Elias Mendes. Caracterização de solos e avaliação da vulnerabilidade de 

ambientes no Parque Nacional de Itatiaia, Brasil. 2019. 121f. Tese (Doutorado em 

Agronomia - Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de 

Janeiro, Seropédica, RJ, 2019. 

 

O conhecimento dos solos e suas propriedades é essencial para o planejamento ambiental em 

sistemas naturais especialmente em unidade de conservação como o Parque Nacional de Itatiaia 

(PNI). O PNI apesar da importância ecologia e de preservação não tem informações sobre seus 

solos em nível de detalhe que possa dar suporte a pesquisas e ao plano de manejo. Buscando 

entender o processo envolvendo a gênese e distribuição dos solos no ambiente montanhoso do 

PNI e fatores que envolvem a vulnerabilidade ambiental nessa região o presente estudo foi 

desenvolvido. Os objetivos foram desenvolver uma base de dados num ambiente SIG com 

informação sobre os solos (classes e atributos), vegetação, relevo, geologia e (covariáveis 

ambientais) para apoiar ações de investigação interdisciplinar, programas de educação 

ambiental e plano do manejo do parque. Ainda avaliar a vulnerabilidade ambiental integrando 

informações do ambiente físico com conhecimento de especialistas para conciliar a demanda 

de uso público com a conservação dos ecossistemas. Para tanto foi feita amostragem, coleta, 

descrição, caracterização, classificação e mapeamento dos solos e foi preparado uma base de 

dados com todas as covariáveis ambientais de posse dos dados, métodos robustos de 

mapeamento digital de solos foram testados a fim de se otimizar o desempenho dos algoritmos 

para a predição de atributos de solo e avaliação de incerteza. Por fim, dados da revisão de 

literatura, abordagem participativa e conhecimento especializado e variáveis biofísicas 

produzidas nas etapas anteriores foram incorporadas em uma rede de crença Bayesiana (BBN, 

inglês) para predizer a vulnerabilidade ambiental, bem como para produzir a incerteza 

associada. Os resultados produzidos foram suficientes para preencher a lacuna da falta de 

informação sobre solos no PNI e entender os fatores relacionados a relação solo paisagem do 

PNI e são úteis para diversos fins. Algoritmos como o Modelos Aditivos Generalizados (GAM) 

com seleção de covariáveis baseado no modelo scorpan são eficientes em predizer atributos do 

mesmo utilizando limitado número de pontos. E apesar da complexidade da área de estudo, 

BBN conseguiu produzir um resultado significativo da distribuição espacial da vulnerabilidade 

ambiental e se mostrou uma abordagem alternativa menos subjetiva do que os convencionais 

métodos de avaliação da vulnerabilidade ambiental.  
 

Palavras-chave: Pedometria. Mapeamento Digital de Solos. Levantamento de Solo. Funções 

do Solo. 



 
 

GENERAL ABSTRACT 

COSTA, Elias Mendes. Soil characterization and evaluation of environments vulnerability 

in Itatiaia National Park, Brazil. 2019. 121p. Thesis (Doctor in Agronomy-Soil Science). 

Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019. 

 

Knowledge of soils and their properties is essential for environmental planning in natural 

systems especially in a conservation unit such as the Itatiaia National Park (INP). The INP, 

despite the importance of ecology and preservation, does not have information on its soils in 

detail that can support research and management plan. Aiming to understand the process 

involving the genesis and soils distribution in the mountainous environment of the INP and 

factors that involve the environmental vulnerability in this region the present study was 

developed. The objectives were to develop a database in a GIS environment with information 

on soils (classes and attributes), vegetation, relief, geology and geomorphology and to produce 

(environmental covariates) to support interdisciplinary research actions, environmental 

education programs and plan of park management. To further evaluate environmental 

vulnerability by integrating information from the physical environment with expert knowledge 

to reconcile public use demand with ecosystem conservation. In order to do so, sampling, 

collection, description, characterization, classification and mapping of soils was prepared and 

a database was prepared with all the environmental variables of data ownership, robust methods 

of digital soil mapping were tested in order to optimize the performance of the algorithms for 

the prediction of soil attributes and uncertainty evaluation. Finally, data from the literature 

review, participatory approach and specialized knowledge and biophysical variables produced 

in the previous steps were incorporated into a Bayesian belief network (BBN) to predict 

environmental vulnerability as well as to produce associated uncertainty. The results produced 

were sufficient to fill the gap in the lack of information on soils in the INP and to understand 

the factors related to the landscape soil relationship of the INP and are useful for several 

purposes. Generalized Additive Model Algorithms (GAM) with covariates selection based on 

the scorpan model are efficient in predicting attributes of the same using a limited number of 

points. And despite the complexity of the study area, the BBN was able to produce a significant 

result of the spatial distribution of environmental vulnerability and proved to be an alternative 

approach less subjective than conventional methods of assessing environmental vulnerability. 
 

Keywords: Pedometrics. Digital Soil Mapping. Soil Survey. Soil Functions 
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1 GENERAL INTRODUCTION 

Among all Brazilian biomes, the Atlantic Forest stands out for its importance in 

preserving biodiversity and as source and protection of water resources for the states along the 

coast of Brazil. It contributes to 7 of the 9 largest river basins in the country. In the case of the 

Itatiaia National Park (INP), which is located in the southeast portion of the Atlantic Forest, its 

preservation gains strength, since the park area holds the sources of 12 important regional 

watersheds. These waters drain into the basins of the Rio Grande, which is an affluent of the 

rivers Paraiba do Sul and Paraná. The Paraiba do Sul is the main river of Rio de Janeiro state 

and is responsible for supplying water for most of the cities of Rio de Janeiro and São Paulo 

States. 

INP was selected to be a conservation unit due to the ecological relevance, as a site for 

integral protection of nature, preservation of natural resources, especially endemic species, and 

springs of important rivers of the Brazilian south-eastern region. It is the first national park of 

Brazil, and due to the scenic beauty, it has a high tourist potential. The park has been used 

intensively for scientific research on fauna and flora, and it presents many opportunities for 

environmental education and leisure activities. 

The INP can be considered an "island of conservation", since it is located between Rio 

de Janeiro and São Paulo, the two largest metropolises in the country, which intensifies the 

degree of vulnerability and the relevance of this area. The analysis of environmental 

vulnerability is related to the susceptibility of the area, which is linked to natural factors such 

as relief type, geological material, vegetation cover, soils and climate and can be aggravated by 

anthropic factors, in the case of INP public use and/or agricultural/urban use pressure within its 

limits and boundaries. These factors can exacerbate erosive processes in the environments that 

are naturally fragile. It is important to reconcile preservation and public use, in addition to the 

guarantees of continuous provision of ecosystem services provided by INP, for example, water 

production and protection of biodiversity. This goal is even more strained in the upper part of 

INP, the plateau.  

The geotechnology techniques applied to landscape analysis and environmental 

modelling are potentially useful both to produce information of soils, in the case of digital soil 

mapping (DSM) techniques, and the spatial environmental vulnerability analysis. These tools 

deliver useful quantitative information, of less subjectivity, with associated errors and 

uncertainty. 

Thus, this study aimed to understand aspects that involve environmental vulnerability 

and the relation of environmental and anthropic factors related to the soil’s degradation, which 

environmental factors are more related to the properties of the soils and how they vary in space 

in this singular condition that is the upper part of the INP. Also, investigate the best approach 

(soil sampling and variable selection) and survey techniques to predict soil classes and 

attributes, with an uncertainty assessment, in areas with a difficult access in the park. 

To that end, three scientific hypotheses have been raised: the first is that the use of 

environmental covariates associated with modern DSM techniques can be applied for selection 

of soil samples, better understanding of the soil-landscape relationship and for the soil mapping. 

The second that powerful MDS techniques can improve spatial prediction results even using 

limited number of points in a poorly accessible area. And the third is that Physiographic 

variables associated with models that use specialist knowledge and participatory process, allow 

better evaluation of environmental vulnerability 
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To answer these hypotheses, the thesis is organized in three chapters, with the following 

titles and objectives:  

Chapter 1: The Itatiaia National Park - soils and physiography database. The objectives, 

to develop a database in a Geographic Information System (GIS) environment with information 

on the soils, satellite images, digital elevation model, terrain attributes, map and land cover, 

geology and geomorphology. Also, to produce information on soil and environmental 

covariates to support this thesis (subsequent chapters), interdisciplinary research actions, 

environmental education programs and INP management plan. 

Chapter 2: Mapping soil properties in a poorly accessible area. Case study - Itatiaia 

national park: as objective creating maps of soil properties 2 and 3D, using as examples, pH, 

carbon content and cation exchange capacity at fine resolution (25 m) with associated spatial 

uncertainty. Further elaborate a sampling strategy that balances accessibility, costs, area and 

environmental covariates; and model soil properties with a limited number of available samples. 

Chapter 3: Spatial Bayesian belief network: a participatory approach for mapping 

environmental vulnerability at the Itatiaia national park: as objectives, to assess soil 

vulnerability in the INP, integrating information from the physical environment with expert 

knowledge to reconcile the demand for public use with conservation of ecosystems. In addition, 

to reduce the subjectivity of the traditional process of environmental vulnerability analysis, 

incorporating specialized knowledge and literature review with a quantitative/probabilistic 

approach called the Bayesian belief network (BBN). 

  



 

3 

 

2 LITERATURE REVIEW 

 Ecotourism, Soil and Environmental Degradation and Vulnerability Analysis 

Among the studies in Brazil that deal with ecotourism and its relationship with the 

landscape and environmental conservation, it is highlighted Oliveira et al. (2007), who 

identified landscape units using remote sensing and terrain attributes. In this study, information 

was generated for ecotourism planning in the Serra dos Órgãos National Park, RJ. According 

to the authors, the analysis of the heterogeneity of the landscape is fundamental for the planning 

of ecotourism because it allows to estimate the optimal relation between the conservation and 

the tourist alternatives. Landscape research for ecotourism integrates the different natural 

components (relief, climatic conditions, soil, vegetation cover, etc.) and evaluates their 

interrelations with the characteristics of the tourist destination. Soils are understood as a 

component that influences the landscape and is influenced by other components such as relief, 

climate, parent material, organisms (fauna and flora) and time. 

In order to understand the effect of ecotourism and soil degradation on environmental 

preservation areas (EPA) in Brazil, Figueiredo et al. (2010) studied soil compaction as a 

pedogeomorphological indicator for erosion in trails of a conservation area, with a case study 

in the National Park of Serra do Cipó, MG. Sena et al. (2014) studied the degradation of soils 

along an attraction trail of the geotouristic monument of the Serra de São José, Tiradentes, MG. 

According to these authors, the highest rates of soil erosion were a direct function of the slope; 

and soil compaction rates were higher within the trail and less marked at the edges, 

corroborating results from Figueiredo et al. (2010). Oliveira et al. (2013) studied the soil quality 

of the trails of Cerrado State Park, Paraná, regarding the effect of people's traffic on soil physical 

attributes, to guide future actions to plan the use and occupation of the area in a way that would 

not affect the preservation of the ecosystem. 

Barbosa et al. (2015) studied aspects of the environmental degradation of a recreational 

trail in Serra do Lenheiro, São João del-Rei, MG. According to the authors, inappropriate 

recreational use has contributed to a greater intensification of the degradation processes and 

factors such as slope and pedological characteristics of the trail are important for the analysis 

of the data and also to determine the local fragility. 

At the international level, we highlight the work of Tomczyk (2011), who studied the 

Geographic Information System (GIS) evaluation and environmental sensitivity modelling of 

recreational trails in Gorce National Park, Poland. According to the author, the understanding 

and modelling of the factors related to the degradation of forest tracks and roads are crucial for 

park managers, and he proposes a methodology using basically two variables: vulnerability of 

plants community to trampling and vulnerability of soils to erosion processes, to assess the 

spatial distribution of areas with varying degrees of environmental sensitivity to the impact on 

the trail. 

For the recreational planning in trails in protected areas of the Gorce National Park, 

Poland (Tomczyk and Ewertowski, 2013a) proposed the application of regression trees and 

geographic information system, using data of soils, geology, geomorphology, relief and 

information of the type and intensity of recreational use for modelling. A new method was 

proposed for detailed surveys of surface dynamics in small tracks under study. It involved the 

analysis of the spatial aspect of the microscale surface change, the quantification of soil loss 

and depositional processes, and the method used the topographic survey and different digital 

elevation models (Tomczyk and Ewertowski, 2013b). 

In a study of soil loss on recreational trails at a US National Park Service, Olive and 

Marion (2009) found, through the use of the adjusted regression model, that the drainage, 

position, degree of slope and the alignment angle of the trail added to administrative factors 

were determinant in the soil loss. D'Antonio et al. (2013) assessed the impacts of visitors to the 
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parks and protected areas located within Rocky Mountain National Park, in the North Central 

region of the Colorado state, through a combined social and ecological approach. The authors 

concluded that social and biophysical data provide important information to park managers and 

an integrated approach increases the usefulness of the data. 

Barros et al. (2013) indicate the lack of studies on ecological recreation in South 

America, especially those on informal trails. In a survey carried out in the largest protected area 

of the Southern Hemisphere, the Aconcagua Provincial Park located in the South Andean 

ecoregion (Argentina), the authors verified impacts on the area such as damage to vegetation 

and soil erosion resulting from the creation of informal trails formed by passers-by and animals 

associated with the lack of regulation and management in the trails. They pointed as a solution 

to the problem the limitation of the propagation of informal trails by the administrators. 

The analysis of environmental vulnerability is linked to the susceptibility of the system 

to undergoing interventions, or of being changed. The destabilization of the system may have 

as inductors both natural processes and human actions (Sporl, 2007). From the point of view of 

environmental vulnerability analysis methodologies, there are two main approaches in Brazil. 

One defined by Ross (1994), where it is empirically described how to analyse the fragility of 

natural and anthropogenic environments. Another approach is by Crepani et al. (2001) that 

using the idea of basic territorial units describe the analysis of vulnerability applied to 

economic-ecological zoning and land use planning. The main difference between the two 

approaches is that the geological material is not directly considered in the methodology 

proposed by Ross. Variants or applications of these methodologies were made by Adami et al. 

(2012); Ross (2012); Manfré et al. (2013); Valle et al. (2016); Choudhary et al. (2017); 

Calderano Filho et al. (2018). 

  Machine Learning Techniques Applied to Digital Soil Mapping 

According to some authors, the 1970s and 1990s were the most fruitful time for 

Brazilian soil surveys (Araújo Filho and Jacomine, 2014; Nolasco-Carvalho et al., 2013), where 

there were major investments in the sector, especially with the creation of the most ambitious 

project of Brazil until now the "Radam" (Radar of the Amazon) that later came to be called 

"RadamBrasil" (Araújo Filho and Jacomine, 2014). From this time to the present, several 

transformations occurred in the methods and mainly in the materials used to produce soil maps. 

In the XXI century, with the large expansion of computing (computing power), the ease to 

access data such as digital elevation models (DEM), satellite imagery and in some cases 

geology, geomorphology and climate data sped the work of soil surveying and made it more 

dynamic. For example, one of the challenges pointed out in 2004, the spatial prediction 

algorithms (Hengl and Heuvelink, 2004), today can be considered as an advance in the digital 

soil mapping (DSM) and it opened an infinity of possibilities. 

Algorithms such as Random Forest, Artificial Neural Networks, Support Vector 

Machines, Regression Trees, Decision Trees, Generalized Additives, Linear Regression among 

others are examples of machine learning methods, also called automatic learning. Automatic 

learning is a subfield of artificial intelligence dedicated to the development of techniques that 

allow the computer to learn, that is, extract rules and patterns from large data sets, and this is 

the reasoning it is known as inductive (Monard and Baranauskas, 2003). 

For this study, we focused on the most popular and/or recent techniques for DSM as the 

regression, widely used in many different areas of science, nonlinear models such as the 

generalized additive model (GAM), which is relatively recent in the soil science and does not 

have so many works related to thematic. And one of the most recently developed and easy to 

use, the Random Forest (RF) has a great potential for learning and generalization (Meier et al., 

2018; Jeune et al. 2018), and it can be used both for predicting soil attributes and classes. 
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In the RF case, it’s learning and hierarchical form consist of a set of classification trees 

(for categorical variables) or random regression (continuous variables) (Breiman, 2001). In both 

cases, large numbers of trees are generated within the algorithm and then aggregated to obtain 

a single value or prediction class. For example, as a value, soil attributes can be predicted. 

When the objective is to predict continuous variables (for example soil properties) the 

prediction is an average of the results of individual trees, while in the classification, categorical 

variables (for example soil classes), the predicted value is represented by the tree with the 

majority of the votes on the correct classification (Grimm et al., 2008). Under the training 

procedure, each RF tree algorithm is constructed based on a subset, different from the original 

data identified as bootstrap. This subset of predictor variables is randomly selected across all 

variables, and that variable that provides the best division, according to a function or goal, is 

used to divide each node. At the next node, the procedure is repeated; this procedure avoids 

overfitting (Cavazzi et al., 2013). The use of bootstrap-type sampling in RF modelling allows 

the out-of-bag (OOB) subassembly to be used to estimate general errors (Yang et al. 2016). 

The RF depends only on three user-defined parameters: the number of trees in the forest, 

the minimum number of data points on each terminal node (nodesize), and the number of 

variables used to produce each tree (mtry). The values indicated by the literature are ntree = 

500 nodesize = 5 and mtry = (one-third of the total number of predictors). However, other 

values can be tested with the smallest error, for which the RF provides error estimates using the 

so-called OOB data (which is a portion of the data not used in the bootstrap subset (Grimm et 

al., 2008; Mutanga et al., 2012; Rad et al., 2014; Taghizadeh-mehrjardi et al., 2015; Were et 

al., 2015; Yang et al., 2016). A scheme showing the RF formation procedure is presented in the 

Figure 1. 

 
(a) 

 
(b) 

Figure 1.(a) Random Forest general architecture. (b) Subset bootstrap and out-of-bag in 

Random Forest. Source: Adapted from Nguyen et al. (2013) 

 

The linear regression is used in several areas of knowledge and it consists of modelling 

linear relations between a target variable and predictor variables (Hastie et al., 2009). The 

general equation of multiple linear regression is given by Equation 1:  

 

Yi = β0, β1X1, β2X2, β3X3 ... βiXi + ε Eq. 01 

 

where Yi is the value of the dependent variable (target) in the i-th observation, β0, β1, β2, β3 ... 

βi are parameters, X1, X2, X3 ... Xi are known constants, that is, the value of the predictor 
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variables in the i-th observation, ε is the random error with mean E {ε} = 0 and variance σ² {εi} 

= σ², and i = 1, ..., n (Hastie et al., 2009). 

In soil science, it is used for spatial prediction of several soil properties (Chagas et al., 

2016; Hengl et al., 2015; Pinheiro et al., 2018; Samuel-Rosa et al., 2013; Silva et al., 2017) as 

well as for the generation of functions called pedotransfer functions used to estimate attributes 

that are difficult to obtain from data that are easier to obtain (McBratney et al., 2002; Medeiros 

et al., 2014; Rodríguez-Lado et al., 2015; Souza et al., 2016). In addition, the regression models 

are relatively simple, and their interpretation is facilitated because it is possible to construct 

prediction equations. It is still possible to evaluate the contribution of each variable to 

adjustment of the regression model, as well as to select (for example Stepwise method) the 

variables most relevant to the model. It does not require large computational capacity 

comparing to the computational requirement of non-parametric models, usually more complex. 

Although linear models are widely used to describe natural phenomena, in some cases 

these models do not work well simply because in real life the effects between covariates and 

target variables are generally nonlinear (Wood, 2006; Hastie et al., 2009). To capture non-linear 

relationships between covariates and a given phenomenon, GAM was developed, which is an 

extension of the generalized linear model (Hastie et al., 2009). The general equation of the 

GAM is given by Equation 2:  

 

E (Y|X1, X2, ..., Xi) = α + f1 (X1) + f2 (X2) + (Xi) Eq. 2. 

 

As usual X1, X2, And Xi represents the predictors (covariables) and Y the output (target 

variable), α is a parameter to be estimated, f is unspecified (non-parametric) smoothing 

functions (Hastie et al., 2009). 

To model nonlinear relationships, GAM uses a smoothing function (f). There are 

different smoothing functions, but the most used are based on the spline function and its variants 

(Wood, 2006). GAM models, although more flexible than linear models, have maintained their 

interpretability, which differentiates them from, for example, methods such as Artificial Neural 

Networks, Support Vector Machine, Random Forest, and other machine learning methods 

(Hastie et al., 2009). In addition to modelling non-linear relationships, additive models may 

have limitations for variable selection in a large number of covariates and small sample size, 

which are mainly related to the number of degrees of freedom in the model (Poggio et al., 2013). 

The algorithm adjusts all covariates that are not feasible or desirable when a large number is 

available (Hastie et al., 2009). In this sense, it is worth using selection strategies, which can 

vary in the gradual selection (forward or backward) using stepwise selection (Poggio et al., 

2013, de Brogniez et al., 2015, Chartin et al., 2017), or Recursive Feature Elimination (RFE) 

(Jeong et al., 2017) or other possible approaches (Marra et al., 2011). In the field of soil science, 

the use of GAM models is relatively recent, and despite the great potential, it is a still underused 

technique. In relation to the use of GAM to predict soil attributes, we highlight the studies of 

Poggio et al. (2010, 2013), Poggio and Gimona (2014, 2017a, 2017b), by Brogniez et al. (2015) 

and Jeong et al. (2017). 

 Models Based on Bayesian Inference 

Bayesian inference is based on the Bayes’ theorem that involves a prior (or a priori) 

distribution of a variable which may be based on observed data, some theoretical reason or on 

the investigator’s judgment about the likely behavior of the variable and is fundamental for 

methods related to data mining and more currently digital soil and environmental mapping 

(Xiong et al., 2015; Poggio et al., 2016; Huang et al., 2017).Although there are a multitude of 

models, including some combinations with classic statistical models for this study, we will 

consider the method of Bayesian Belief Network (BBN) that is a multivariate statistical model 
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for a set of variables (nodes) (Aguilera et al., 2011) and can be used in various disciplines such 

as social, economic and environmental aspects. Due to the powerful theory of probability 

involved, BBNs are able to deal with a wide range of problems (Aguilera et al., 2011). The 

probability distribution of a node X is determined by the realized states of its preceding or 

parent nodes, using the conditional probability P(X|parents(X)) described in Bayes’ theorem 

Equation 3.  

 

P(X|parents(X)) = P(parents(X)|X) * P(X) / (P(parents(X)) Eq.3 

 

BBNs are also known as probabilistic graphical models that represent variables and their 

dependencies by specifying probabilistic relationships and when applied to spatial data are 

called spatial BBN (Gonzalez-Redin et al., 2016). The BBN approach can capture and structure 

available knowledge and rationalize complex interactions where empirical data are limited or 

poorly compatible and processes are complex or uncertain (Aalders et al., 2011). The model 

consists of nodes, spatial or not, a set of links representing the relationship between nodes and 

a set of conditional probability tables (CPT), the strength of the probabilistic relationships 

between the different variables and their states is defined by CPT.  

The modelling of the BBN is a useful tool to integrate a participatory process with 

qualitative and quantitative information and spatial data (Celio et al., 2014, Meyer et al., 2014, 

Landuyt et al., 2015, Bashari et al., 2016; Gonzalez-Redin et al., 2016). In addition, BBN's 

ability to take into account the uncertainties and their propagation makes BBN a very useful 

tool (Marcot et al., 2012, Landuyt et al., 2015, Huang et al., 2017). 
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3  CHAPTER I:  

 

 

THE ITATIAIA NATIONAL PARK SOILS AND PHYSIOGRAPHY 

DATABASE 
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 RESUMO 

Ambientes como a "Serra da Mantiqueira" onde se encontra o Parque Nacional de Itatiaia (PNI) 

apresentam elevada complexidade de solos, pois possuem grande variação geológica, 

geomorfológica, relevo, clima e vegetação. Como nesses ambientes as relações nos fatores 

envolvidos com a gênese do solo são ainda mais complexas é relevante a sua caracterização 

detalhada. O desafio, porém, é que a informação disponível é reduzida e dispersa em materiais 

de acesso restrito, aumentando a dificuldade de organizar essas informações em uma base de 

dados. Além disso o PNI possui acessibilidade muito limitada, em especial na sua parte alta, o 

que dificulta por exemplo o levantamento de solos. Na tentativa de suprimir a falta de 

informação de solos e pela necessidade da criação de uma base de dados em ambiente SIG que 

possa dar suporte a pesquisa, a programas de educação ambiental e ao plano de manejo do 

parque foi feita uma caracterização detalhada do ambiente usando as modernas ferramentas 

pedométricas como suporte. O levantamento e a caracterização do solo, apoiados pelas técnicas 

quantitativas de análise de dados do solo, juntamente com a criação de uma base de dados em 

ambiente SIG fornecem informações para pesquisas futuras, bem como para apoiar a tomada 

de decisão. A caracterização mostrou que os solos do PNI são predominantemente rasos, com 

altos teores de C, N e H + AL, elevada CEC, baixos valores de pH e de densidade do solo, e 

possuem alta capacidade de armazenar água. Esses solos são altamente vulneráveis à 

degradação, especialmente por erosão, compactação e deslizamento de encostas. Alguns solos 

identificados no PNI não foram antes relatados na literatura. Assim, pode-se afirmar que as 

informações produzidas neste estudo são potencialmente úteis para diversas pesquisas 

multidisciplinares e, em particular, para melhorar o plano de gestão do PNI, bem como para a 

avaliação da vulnerabilidade ambiental da parte alta do parque e orientar normas de acesso do 

público. 

 

Palavras-chave: Banco de dados de solos. Levantamento de solos. Plano de manejo. 
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 ABSTRACT 

Areas such as the "Serra da Mantiqueira", where the National Park of Itatiaia (INP) is located, 

present high soil complexity, as they have great geological, geomorphological, relief, climate 

and vegetation variation. In these environments, the relationships of the factors involved with 

soil genesis are even more complex, and its detailed characterization is highly relevant. The 

challenge, however, is that the available information is reduced and dispersed in restricted 

access materials, increasing the difficulty of organizing this information in a database. In 

addition, the INP has very limited accessibility, especially in the upper part, which makes it 

difficult, for example, to survey the soils. In an attempt to overcome the lack of soil information 

and the need to create a database in a GIS environment that can support research, environmental 

education programs and the park management plan, a detailed characterization of the 

environment was made using modern pedometrics tools. Soil survey and characterization, 

supported by quantitative soil data analysis techniques, together with the creation of a GIS 

database provide information for future research as well as to support decision making. The 

characterization showed that INP soils are predominantly shallow, with high levels of C, N and 

H + Al, high CEC, low pH and soil density, and high-water storage capacity. And these soils 

are highly vulnerable to degradation, especially by erosion, compaction and land sliding. Some 

soils identified in the INP were not previously reported in the literature. Thus, it can be stated 

that the information produced in this study is potentially useful for several multidisciplinary 

kinds of research and, in particular, to improve the INP Management Plan, as well as to assess 

the environmental vulnerability of the upper part of the park and guide public access rules. 

 

Keywords: Soil database. Soil survey. Management plan.  
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 INTRODUCTION 

The Itatiaia National Park (INP) is the first Brazilian national park. The area was chosen 

to be preserved because of its broad geological, geomorphological, hydrological and vegetation 

variation, making it an area rich in diversity, and a great potential for tourism due to its singular 

and attractive landscapes (Barreto et al., 2013). Several studies have been carried out in the INP 

since its creation, with emphasis on floristic composition and description of endemic species 

on the INP ecosystems. Among the pioneers are the bulletins 05 and 08, from 1965, of the 

Ministry of Agriculture Forest Service, which are a major contribution to the knowledge on the 

flora of INP (Brade, 1956). More recently, many other studies of the flora of the park were 

developed (Lima and Guedes-Bruni, 2004; Morim and Barroso 2007; Barberena et al, 2008; 

Silva Neto and Peixoto, 2012; and Mezabarba et al., 2013). As for the characterization of the 

geological, geomorphological and soil resources, few studies were done in the park. Among the 

most relevant, the geological and geomorphological mapping of the Brazilian Foundation for 

Sustainable Development, in the 1: 50,000 scale (Santos et al., 2000). 

Of the 29 INP Bulletins published (until the time of the search) since 1949 (the year the 

first one was published), none brings detailed information about the soils of the park. The vast 

majority of articles and news refer to research on fauna and flora, as well as the public usage of 

INP. In this sense, soil characterization and its distribution in the space are important to the 

implementation of the INP Management Plan and to subside other studies in the park. As an 

example, studies on forest resilience, ecology, climate changes, nutrients cycling, evaluation of 

ecotourism impact or risks of degradation. Also, to contribute to the definition of areas that 

have to be of limit to the public, among others. 

The soil studies for the INP Management Plan (Almeida et al., 2011) used information 

from Rio de Janeiro and Minas Gerais maps (Carvalho Junior et al., 2000; Fernandes Filho et 

al., 2010), and the identification of soil classes is based on outdated soil classification. Both, 

the INP Management Plan (Barreto et al., 2013) and the Bulletin 18 of the Ministry of the 

Environment (Aximoff et al., 2014) bring generalized information about the soils, in a scale of 

1: 500,000, which does not allow adequate subsidy to INP's planning regarding the vulnerability 

of soils and environments. Rodrigues (2011), which mapped soils in a small part of the park's 

area, and Soares et al. (2016) that studied the genesis of Organossolos in the upper part of the 

INP, show soil classes that were not reported in the previous studies. Thus, a more detailed soil 

survey is essential to guide environmental researches in the INP, and for the park management 

plan, including to establish fire prevention plans and trail conservation. 

On the evaluation of impacts of public activities on the park's trails, the following studies 

stand out: Magro and Barros (2004); Barros and Magro (2007), Iwamoto and Rodrigues (2011), 

Richter e Souza (2013), Freire and Lemos (2014). Also, relevant works on burnings and fires 

in the INP (Aximoff and Rodrigues, 2011, Tomzhinski et al., 2011, Tomzhinski et al., 2012 and 

Sousa et al., 2015). 

The INP has limited access, due to steep slopes, dense forest cover in the forested areas 

or by rocky outcrops in the altitude fields of the plateau region (Barreto et al., 2013). The INP 

landscape makes it an excellent case study for digital soil mapping (DSM), in order to produce 

a viable result at a lower cost than conventional methods. Thus, the usage of DSM tools, ranging 

from optimization of the sampling site (Minasny and McBratney, 2006; Roudier et al., 2012; 

Stumpf et al., 2016) to the covariate selection in powerful predictive algorithms (Beguin et al., 

2017; Chagas et al., 2017; Jeong et al., 2017) was proposed in this work. 
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The general objective of this chapter was to compile and organize the soils database and 

physiographic variables to subsidize the subsequent chapters. As specific objectives: 

a) To develop a database in a GIS environment with information on the soils, satellite 

images, digital elevation model, terrain attributes, land use map and coverage, geology and 

geomorphology. 

b) To produce pedological and environmental covariate information to support this 

thesis (subsequent chapters), interdisciplinary research actions, environmental education 

programs and the INP management plan. 
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 MATERIAL AND METHODS 

3.4.1 Study area characterization and covariates description 

3.4.1.1 Location 

The INP has an area of 225.54 km2 and it is located in the Serra da Mantiqueira, at the 

boundary of Minas Gerais (MG) and Rio de Janeiro (RJ) States (Barreto et al., 2013). According 

to Tomzhinski et al. (2012), the INP can be divided into three broad areas: the "lower part", 

which comprises the southern part of the park, the "upper part" of the plateau (Erro! Fonte de 

referência não encontrada.) and Visconde de Mauá in the east side. The upper part, our study 

case, has about 164.01 km2. 

 

Figure 2. The red polygon marks the total area of the INP in the south-eastern region of Brazil 

and the area in relief corresponds to the upper part of the park.  The major roads and 

trails are in black. Blue points are soil sampling points selected according to cLHS 

method (Minasny and McBratney, 2006). 

 

The division into two regions is used as reference by park managers, where the "lower 

part" covers the areas of Posto 1, Visitor Centre, Mirante do Último Adeus, Serrinha, Três 

Picos, Abrigo Macieiras and Maromba; while the "upper part" includes the areas of plateau, 

Posto 3, Abrigo Rebouças, Morro do Couto, Pedra do Camelo, Pedra Cabeça de Leão, Picos 

das Agulhas Negras e Abrigo Massena (Barreto et al., 2013). 

 

3.4.1.2 Climate 

The climate of the INP varies according to the elevation, that influences mainly the 

temperature since the higher the elevation the lower the temperature (Figure 3). Besides that, 

the mountain range conditions specific orographic processes that will influence the amount and 
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intensity of rainfall. In the INP management plan, Barreto et al. (2013), the climate is described 

as mesothermic with a mild summer and a rainy season in the summer (Cwb), and mesothermic 

with a mild summer without a dry season (Cfb). The Cwb type occurs mainly in the upper part 

of the park, usually above 1,600 m altitude; while the Cfb climate characterizes the lower part 

(Alvares et al., 2013; Barreto et al., 2013). 

However, the predominant climate in the park is the humid subtropical zone, where the 

averages vary from 15 to 18 ºC. In the area of the park located in Minas Gerais State, the climate 

is denominated mesothermic with average temperatures below 10 ºC, with three months of 

drought per year. In the Alto dos Brejos and Serra Negra regions there is a mild-mesothermic 

climatic influence range, where the average temperatures vary between 10 ºC and 15 ºC and 

there is practically no dry season (Barreto et al., 2013). There is no map of climatic variables 

spatial distribution, rainfall and temperature in high spatial resolution for INP. However, a 30-

year average data set, from 1970 to 2000, is available worldwide (Fick and Hijmans, 2017; 

Poggio et al., 2018) with 1 km spatial resolution and those were interpolated to 25 m using 

bilinear interpolation. As pointed above, the upper part of INP has the lowest temperature and 

higher rainfall (Figure 3). 

 

  

Figure 3. Average annual rainfall value (left) and mean temperature (right) over a period of 

30 years. Adapted from Fick and Hijmans (2017). 

 

3.4.1.3 Geology and geomorphology 

Information of geology and geomorphology was obtained through the survey realized 

by the Brazilian Foundation for the Sustainable Development, authored by Santos et al. (2000) 

in a 1: 50,000 scale. Subsequently, Barreto et al. (2013) added specific information in the INP 

Management Plan. According to these sources, the following types of parent materials occur in 

the INP: magmatic breccia, homogeneous gneisses, alkaline granite, nepheline syenite, quartz 

syenites, alluvium sediments and colluvial sediments (Erro! Fonte de referência não 

encontrada.). 

Those authors report that homogeneous gneiss rock is predominant in the northern part 

of the park and are mainly composed of orthoclase, plagioclase, quartz, biotite and hornblende 

minerals. The predominant rocks in the park are composed by nepheline, syenites and foyaite 

that are predominantly constituted by micropertite, albite, nepheline and sodalite minerals. The 

quartz syenite occurs mainly in the central portion of the INP, having as main constituent 

minerals the micropertite and the quartz. Alkaline granite consists essentially of micropertite 

and quartz and can be found in the vicinity of the "Abrigo Rebouças” and the “Prateleiras". 

The magmatic breccia, also found in the central region of the park, has a feldspathic nature and 
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also contains minerals such as chlorite, pyrite, magnetite, calcite, sericite, apatite and biotite. 

Colluvium sediments are predominantly composed of blocks and boulders of alkaline rocks. 

The oldest depositions form hills with many boulders on their slopes. Alluvial sediments 

correspond to the fluvial plains that are filled by sandy and clayey sediments rich in organic 

matter, which corresponds to flooded areas that often are constituted by peatlands (Santos et 

al., 2000). 

 

 
Figure 4. Geological map of the Itatiaia National Park. Adapted from Santos et al. (2000). 

 

As for the geomorphology, the main features are: fluvial plains with a slope of less than 

2% and average elevation of 2,300 to 2,400 m above mean sea level; talus deposits with slopes 

from 10 to 35 %; mountains with elevation from 900 to 2300 m and slopes higher than 45%; 

rocky outcrops and escarpments with 2200 to 2700 m and slopes higher than 50 % (Figure 5) 

(Santos et al., 2000). 

The fluvial plains mapped in the INP (1: 50,000 scale) correspond to the flatlands along 

the Campo Belo, Aiuruoca and Preto rivers. They are depositional zones or stream terrace 

systems that seasonally become flooded and allow the accumulation of organic matter. The 

talus bodies are depositional ramps associated with the bottoms of valleys and the foothills of 

steep slopes. The mountain is the dominant geomorphological form in the park, a degradation 

system of relief that has a high slope and more developed soils than in the rocky outcrops and 

escarpments. Erosional processes of high intensity occur in this form, with ravines, gullies and 

mass movements (Santos et al., 2000). 

The escarpments are characterized by rocky outcrops and a rugged and high rocky 

massif occurring in the central and highest part of the park, comprising the Serras das 

Prateleiras, Negra, Lambari and Itatiaia, where the Agulhas Negras peak is located. Due to the 

presence of exposed rocks, fewer sediments are produced and soils are dominantly shallow, and 

large boulders are often observed (Santos et al., 2000). 
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Figure 5. Geomorphological map of the Itatiaia National Park. Adapted from Santos et al. 

(2000). 

 

In order to use the geology and geomorphology maps, which were in PDF format, they 

were georeferenced using the INP limits provided by the park administration as a reference 

base. After the georeferencing the maps were vectorized and transformed into a raster file in 

.tif format. The maps were generated in the same spatial resolution of the DEM (25 m), since 

these were initially produced in the same cartographic scale, which is the IBGE database used 

to generate DEM (1: 50,000). All the procedures for geology and geomorphology maps were 

made using ArcGis 10.2.2 software (ESRI, 2015). 

 

3.4.1.4  Soils 

The previous information about distribution of soils of the INP results from a 

generalized map where the soil mapping units are dominantly associations (Barreto et al., 2013, 

Aximoff et al., 2014). As a result, the current INP management plan reports only four soil 

classes, with the Cambissolos Humicos (Cambisols) predominant and occurring in the slope 

areas of the mountains geomorphological unit. In the steeper slopes and elevated areas, 

Neossolos Regolíticos (Regosols) alternate with rock outcrops, and are associated with the 

geomorphological units described as a mountain and rocky outcrops and escarpments. 

Argissolos (Lixisols or Acrisols) and Cambissolos (Cambisols) can be found in the mountain 

geomorphological unit. In the lower part of the park, due to conditions more favourable to 

weathering and pedogenetic processes, Latossolos (Ferralsols) can be found. 

Soil data of the park management plan and in the Bulletin Number 18 of the Ministry of 

the Environment (MMA) were compiled from the 1: 500,000 soil survey of the state of Rio de 

Janeiro (Carvalho Filho, 2000), and the Map of Soils of the State of Minas Gerais with the 

expanded legend and scale of 1: 650,000 (Fernandes Filho et al. 2010). 

Other soil classes, such as that of the Organossolos (Soares et al., 2016), were found 

that were not identified in the soil survey used for the management plan of the park. In Minas 

Gerais, Rodrigues (2011) described 4 profiles that were classified in 3 soil orders according to 

the Brazilian Soil Classification System - SiBCS (Santos et al., 2018): Cambissolo Húmico 

Distrófico típico (Umbrisols), Cambissolo Húmico Distrófico latossólico (Umbrisols), 
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Organossolo Háplico Hêmico típico (Histosols), and Neossolo Litólico Húmico típico 

(Leptosols). 

The level of soil information, as a result of the common soil survey methodologies 

employed at the time the INP management plan was developed, was one of the reasons why the 

DSM was essential to this work. 

 

3.4.1.5 Digital elevation model and terrain attributes  

The Digital Elevation Model (DEM), with a spatial resolution of 25 m, was generated 

from the contour lines with 20 m equidistance and hydrography extracted from the plani-

altimetric charts, both in the 1:50,000 scale used (Figure 6). The sheets used were SF-23-ZA-I-

2 “Alagoa”, SF-23-ZA-I-3 “Passa Quatro” and SF-23-ZA-I-4 “Agulhas Negras”. They were 

obtained in vector format from the cartographic base of Brazilian Institute of Geography and 

Statistics (IBGE). The dataset was provided by the INP administration. 

 

 
Figure 6. Digital elevation model of the Itatiaia National Park. 

 

Terrain attributes that allegedly have high relation with soils genesis and their properties 

and/or commonly used in the literature in DSM projects were extracted from the DEM, using 

R software (R Core Team, 2018) and RSAGA package (Brenning et al., 2008). They were:  

a) Elevation (Acronym: DEM, unit: m): represents the elevation relative to the 

reference plane, the sea; 

b) Slope (Acronym: Slope, unit: %): which affects the velocity of surface and 

subsurface flows, soil loss and soil erosion; 

c) Aspect (Acronym: Aspect, unit: degrees): attribute representing the exposure faces, 

represented by values in degrees ranging from 0 to 360 °; 

d) Northernness (Acronym: Northernness, unit: degrees): indicates the direction of the 

slope relative to the northern. Northernness =abs(180°−Aspect); 

e) Plan curvature (Acronym: Plan_curv, unit: m-1): the shape of the hillside on the 

horizontal plane (concave, rectilinear or convex); 

f) Profile curvature (Acronym: Prof_curv, unit: m-1): the shape of the hillside on the 

vertical plane (concave, rectilinear or convex); 

https://en.wikipedia.org/wiki/Methodologies
ftp://geoftp.ibge.gov.br/cartas_e_mapas/folhas_topograficas/vetoriais/escala_50mil/projeto_conv_digital/
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g) Convergence index (Acronym: Convergence, unit: %): the general shape of the 

hillside in all directions (concave, rectilinear or convex); 

h) Catchment area (Acronym: Cat_area, unit: m-2): it is related to the volume of 

flooding that reaches a certain cell;  

i) Topographic wetness index (Acronym: TWI, unit: dimensionless): describes a 

tendency for a cell to accumulate water;  

j) LS factor (Acronym: LS_factor, unit: dimensionless): attribute equivalent to the 

topographic factor of the Revised Universal Soil Loss Equation (RUSLE); 

k)  Relative slope position (Acronym: RSP, unit: dimensionless): represents the 

relative slope position based on the base channel network;  

l) Channel network distance (Acronym: CHND, unit: m): altitude above the channel 

network (CHNB- original elevation); 

m) Channel network base level (Acronym: CHNB, unit: m): interpolation of a channel 

network base level elevation 

 

3.4.1.6 Remote sensing images and indexes 

Two scenes from the RapidEye sensor (2011) were used. They have 12-bit radiometric 

resolution, 6.5m spatial resolution, and were orthorectified to 5m spatial resolution (RapidEye, 

2012). To reconcile the spatial resolution of the image with that of the DEM, the image was 

interpolated to a resolution of 25 m using the value of the neighbouring 5 pixels to calculate a 

mean value. The images were atmospherically corrected using the 6S (Second Simulation of 

Satellite Signal in the Solar Spectrum) model (Vermote et al., 1997) to convert radiance at the 

satellite level into a physical variable, surface reflectance and remove the atmosphere effect 

(Antunes et al., 2014). Processing details are in Costa et al. (2016) and the image´s 

characteristics are listed in Erro! Fonte de referência não encontrada. 

Table 1. General technical characteristics of RapidEye satellite. 

Characteristics Information 

Number of Satellites 5 

Orbit Altitude 630 km in Sun-synchronous orbit  

Equator Crossing Time 11:00 am local time 

Sensor Type Multi-spectral push-broom imager 

Spectral Bands Ground Band 

Blue (1) 

Green (2) 

Red (3) 

Red-Edge (4) 

NIR (5) 

Spectrum band (nm) 

440 – 510 

520 – 590 

630 – 685 

690 – 730 

760 – 850 

Ground sampling distance (nadir) 6.5 m 

Pixel size (orthorectified) 5.0 m 

Swath Width 77 km 

Satellite life expectancy 7 years 

Revisit time Daily (off-nadir) / 5.5 days (at nadir) 

Horizontal Datum WGS84 

Camera dynamic range 12 bits 

Font: (RapidEye, 2012) 
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For image atmospheric correction were used the following input parameters (Table 2). 

Table 2. Input parameters used in 6S Model 

Parameters Scene 1 Scene 2 

Image date 02/07/2011 16/08/2011 

UTC time decimal 11.120833 11.143889 

Gas model Tropical Tropical 

Aerosol Model Continental Continental 

Longitude of the centre of the scene -44.65035º -44.64981º 
Latitude of the centre of the scene -22.35798º -22.57479º 

Average altitude 1470 m 1470 m 

Sun-Earth Distance  1,01668 1,01263 

Solar Zenital Angle 42,12º 38,84º 

Visibility 25 km 25 km 

Total number of rows and columns 25000000 (5000 R 

x5000 C) 

25000000 (5000 

R x5000 C) 

 

After the atmospheric correction there were obtained the normalized difference 

vegetation index (NDVI) and the soil adjusted vegetation index (SAVI) by using arithmetic 

operations (equations 1 and 2, respectively) in the raster package (Hijmans, 2016) of R software 

(R Core Team, 2018). 

NDVI =
ρnir − ρred

ρnir + 𝜌𝑟𝑒𝑑
 

Eq.4  

 

𝑆𝐴𝑉𝐼 =
(1 + 𝐿)(ρnir − ρred)

ρnir + 𝜌𝑟𝑒𝑑 + 𝐿
 

Eq.5  

 

Where ρnir is the radiant flux reflected in the near infrared, represented by the band 5 

of the RapidEye sensor, ρred is the radiant flux reflected in the red, represented by the band 3. 

The constant L can present values from 0 to 1, varying according to the own biomass; the 

reference values of L are (Huete 1988): 

L = 1 (for low vegetation densities) 

L = 0.5 (for medium vegetation densities) 

L = 0.25 (for high vegetation densities) 

 

3.4.2 Soil sampling selection: important aspects for the Itatiaia National Park 

One of the most important steps for digital soil mapping (DSM) is the selection of 

sampling points (Carvalho Júnior et al., 2014). For conventional soil mapping, the prospecting 

method and sampling frequency will depend on the survey level of detail (survey objective) 

(IBGE, 2015). For example, in the third edition of the Pedology Technical Manual (IBGE, 

2015) the method indicated for an exploratory survey is the extrapolation, generalization, and 

correlation, with a few if any number of field observations; plus, the sampling frequency is of 

a complete profile per class of predominant soil in the association. For a detailed survey, the 

prospecting method includes planned transects with field checks along toposequences or free 

walking and relating to geomorphic surfaces; where the sampling frequency is of a complete 

profile and two complementary ones per soil class at the lowest taxonomic levels (usually 

subgroup and phases). 

However, for the DSM this sampling scheme is not applied, since it does not allow for 

a representative statistical estimation. In DSM it is necessary to use statistically robust sampling 
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strategies to reduce subjectivity and consequently to make possible to calculate prediction errors 

(Minasny and McBratney, 2007). In this sense some studies were developed about sampling 

optimization for the DSM (Minasny and McBratney, 2006; Roudier et al., 2012, Cambule et 

al., 2013; Carvalho Júnior et al. 2014, Clifford et al., 2014, Ließ, 2015; Brus et al., 2015). 

In this study, the technique known as conditioning Latin hypercube (cLHS) was chosen. 

This method was proposed by Minasny and McBratney (2006), and it is built on sampling based 

on the use of ancillary data. It is considered a robust tool for allocation of sampling points by 

using a set of auxiliary covariates, which can be categorical or continuous, such as terrain 

attributes derived from the DEM, geological and geomorphological data, satellite images and 

their derived indices. It has as assumption that the auxiliary data (covariables) must be able to 

capture all the variation of geo-environmental characteristics (Minasny and McBratney, 2006). 

Works by Minasny and McBratney (2006); Minasny and McBratney (2007); Roudier et 

al. (2012); Carvalho Júnior et al. (2014) show how cLHS can be efficient to allocate points in 

DSM studies. However, a limitation observed by Roudier et al. (2012) and confirmed by Kidd 

et al. (2015) is that cLHS can present points allocation in inaccessible areas, considering only 

the distribution of available covariables, thus presenting operational limitation due to access 

restrictions. Trying to solve this problem, Roudier et al. (2012) proposed a methodology 

considering the cost of access. In turn, Carvalho Júnior et al. (2014) proposed a methodology 

using as a rule of spatial restriction a buffer (in the case of this study, 100 m wide) along the 

main roads and access roads, besides the exclusion of urban areas, conservation units and bodies 

of water; thus, configuring the effective area of study. 

Still, in this sense, Cambule et al. (2013) proposed a sampling methodology for DSM 

in areas that are not accessible, as it happens in the INP. In this methodology, the authors 

proposed the sampling in an area of greater accessibility that is representative of the total area 

(accessible and not accessible) for the construction, application and validation of a predictive 

model for the accessible area, and later the application and validation of the model in the area 

that is not accessible. 

The approach used in this work follows the principles proposed by Minasny and 

McBratney (2006), with the selection of points by the cLHS method using auxiliary variables; 

however, considering the access costs (Roudier et al., 2012). As a rule of constraint, 3 buffers 

sizes were created in relation to roads and trails, as proposed by Carvalho Júnior et al. (2014), 

being tested the distances of 100, 200 and 400 m. These values were chosen to reconcile what 

is feasible to be sampled and to obtain a good representation of the environmental 

characteristics of the total area (upper part of INP), considering it has predominantly areas of 

difficult access. Also, the trails pass through great outcrops of rock and can reach more than 15 

km of extension as it is the case of the crossing “Rancho Caído” and the trail that leads to 

"Pedra Cabeça de Leão" going from "Rebouça" shelter. In this particular case this was the 

furthest point from which it is only possible to reach on foot and lasted two days to reach and 

required to camp along the trail, since it was not possible to go to the sampling point and return 

on the same day. Considering that a point could be allocated to any region occupying an area 

of 1913.37 ha (buffer 100 m) it would be even more difficult to reach the farthest point allocated 

in any region of the 200 and 400 m buffers, that have areas respectively of 3468.56 and 5877.81 

ha. 

Throughout the procedure of selection of the points, the software R (R Core Team, 

2018) and the clhs package (Roudier et al., 2012) were used. The auxiliary variables used were: 

geology, elevation, slope, northernness, and soil-adjusted vegetation index. For the allocation 

of the sample points, a collection with 80 points was chosen, which includes complete profiles 

and extra soil samples. The number of iterations used in the algorithm was equal to 5000. 

The auxiliary variables (environmental covariates) used were chosen to represent to the 

maximum the factors involved in the soil genesis with the minimum as possible covariables 
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(model parsimony). Thus, based on the pedological knowledge and from the study area the 

variables selected were: geology, which is related to the factor source material; elevation, which 

is related to the relief factor and directly influences the climatic factor in the INP; slope, which 

is related to the relief factor and soil removal rates; northernness, which is related to the relief 

factor and influences the amount of light that the exposure face receives  which influences the 

soil moisture and organic matter decomposition rates; soil- adjusted vegetation index, that 

represents the organism factor explained by the soil cover/land use 

The representativity analysis of the effective area tested (buffer 100, 200 and 400 m) 

was done qualitatively and quantitatively. The qualitative form followed the evaluation of the 

histograms of the continuous (auxiliary) environmental variables, as proposed by Cambule et 

al. (2013). The quantitative evaluation consisted of descriptive statistics of the total area and 

buffers. Data analysis was performed using the Lilliefors test, after that the buffers data set and 

the total area were tested. 

3.4.3 Soil’s description, analysis, classification and mapping 

In the horizon morphological description, the following attributes were evaluated: 

thickness, colour, mottling (if present), texture, structure, consistency and transition between 

horizons; as well as the general description of the landscape and the profile of the conditions of 

the source material, relief and slope, stoniness, drainage, among other characteristics, according 

to the Manual of Description and Soil Collection in the Field (Santos et al., 2015). 

The soil samples were passed through a 2.00 mm mesh screen, obtaining the sample for 

laboratory analyses. In this material, pH (H2O), calcium (Ca), magnesium (Mg), potassium (K), 

sodium (Na), phosphorus (P), potential acidity (H + Al) were analysed, and base sum (S value) 

(Ca + Mg + K + Na), cation exchange capacity (CEC) or T value and base saturation (V%) 

(S/T) were calculated according to the methodology in Donagemma et al. (2011). Soil bulk 

density (BD), sample taken with the aid of cutting ring, soil moisture (SM) at the time of 

sampling and soil particle size were also determined. The percentage of fine gravel and coarse 

gravel were also quantified in relation to the fine material as recommended by the Santos et al 

(2015). Since many of the selected profiles are organic types, specific analyses were made as 

recommended by the Brazilian Soil Classification System – SiBCS (Santos et al., 2018). 

Based on the morphological, chemical and physical data of the horizons of each profile, 

the soils were classified based on SiBCS (Santos et al., 2018) and made the equivalence to the 

classes (Table 3) in the World Reference Base for Soil Resources - WRB (IUSS Working Group 

WRB, 2015). 

To map the soil spatial variation a Random Forest (RF) model was calibrated using all 

covariates described, from climate, geology and geomorphology, terrain attributes and remote 

sensing data, for covariate selection the Recursive Feature Elimination was used, this is a robust 

method to select covariates in RF (Jeong et al., 2017; Jeune et al., 2018; Meier et al., 2018). 

The algorithm performs a backward selection. When the full model is created, a measure of 

variable importance is computed and shows the ranks of predictors from most to least important 

ones and those more important to the model are selected (Kuhn, 2017). To access the map 

accuracy the leave one out cross validation was carried out using the total observations, n=107. 
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Table 3. Soil map units, soil classes and number of soil pits surveyed per map unit 

MU(1) Taxonomic unit n(4) n(5) 

IUSS-WRB(2) SiBCS(3)   

RL Leptosols Neossolos Litólicos (Histíco típico, Distrófico 

típico and Húmico típico) 

5 3 

RR Regosols Neossolos Regolíticos (Distrófico leptico, Húmico 

lítico and Húmico típico) 

6 1 

CI Folic Umbrisols Cambissolos Histícos (Distrófico típico and 

Distrófico Leptofragmentário) 

8 1 

CH1 Cambic Umbrisols Cambissolos Húmicos (Distrófico saprolítico) 14 3 

CH2 Umbrisols+Ferrasols Cambissolos Húmicos (Distrófico típico, 

Alumínico típico and Distrófico latossólico) + 

Latossolo Bruno Distrófico húmico 

9 0 

CX Cambisols + Rhodic 

Acrisols 
Cambissolo Háplico Tb Ditrófico típico + 

Argissolo Vermelho Amarelo Distrófico 

nitossólico 

2 1 

OO1 Folic Leptic Histosols Organossolos Fólicos (Hêmico lítico, Sáprico 

lítico and Hêmico fragmentário) 

17 1 

OO2 Folic Histosols Organossolos Fólicos (Hêmico típico, Sáprico 

típico and Sáprico cambissólico) 

8 6 

OX Histosols Organossolos Háplicos (Hêmico típico and 

Sáprico típico) 

2 5 

Rock Rock outcrop Rock outcrop 9 6 

Total   80 27 

Total   107 

(1) Map units. (2) International soil classification system (IUSS Working Group WRB, 2015). (3) 

Brazilian Soil Classification System (Santos et al., 2018) (4) n = number of soil data selected by the 

cLHS approach; (5) n = number of soil data from legacy data and extra soil points collection 

 

3.4.4 Pedometric tools for quantitative soil characterization of the Itatiaia National 

Park database 

For the quantitative characterization of the soil database, the legacy data and those 

obtained during the development of this work were combined, totalizing 90 profiles and 359 

horizons. For the soil profiles analysis, the morphological, physic and chemical characteristics 

of the horizons were considered. In order to analyse the data, the Algorithm for Quantitative 

Pedology (AQP), developed by Beaudette et al. (2013), was used. This algorithm was 

developed to address some of the difficulties associated with the processing of soil information, 

such as visualization, aggregation and data classification of soil profiles (Beaudette et al., 2013) 

from the profile perspective (vertical variability). Although the AQP method was presented in 

2013, few studies have been developed with this technique for analysis of soil databases. In 

Brazil, the most recent are from Pinheiro et al. (2016, 2018). 

The main functions used for data analysis were: plotting functions that seek to show the 

vertical distribution of soil properties, sketch plot; and functions such as boxplot, which gives 

an idea of the behaviour of soil properties and functions for data harmonization, and enables to 

standardize the soil depths as defined by GlobalSoilMap (Arrouays et al., 2014). 
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 RESULTS AND DISCUSSION 

3.5.1 Representativeness of the accessible area for soil sampling  

According to the descriptive statistics (Table 4), in general, all buffers tested were able 

to represent the variation pattern of the covariates used as auxiliaries in the selection of sampling 

points by the cLHS method. 

Table 4. Descriptive statistics for the variables: elevation, slope, northernness, and SAVI for 

buffers of 100, 200 and 400 m, and total area. 

Variables Unit Area Min 1º Qu Mean 3º Qu Max SD 

Elevation m buffer 100 1456 2019 2206 2418 2772 277.91 

  buffer 200 1455 2027 2206 2420 2776 276.29 

  buffer 400 1446 2033 2201 2413 2776 267.21 

  Total area 1446 1903 2083 2278 2776 249.67 

Slope % buffer 100 0.1 18.5 33.1 45.6 151.2 18.7 

  buffer 200 0.1 21.0 35.3 47.9 156.7 19.4 

  buffer 400 0.1 23.5 37.1 49.4 156.7 19.0 

  Total area 0.1 26.0 39.1 51.15 156.7 18.6 

Northernness degrees buffer 100 0.0 58.8 100.1 144.0 180.0 51.2 

  buffer 200 0.0 54.36 98.3 134.5 180.0 52.0 

  buffer 400 0.0 50.4 96.45 142.3 180.0 52.6 

  Total area 0.0 46.0 95.6 144.2 180.0 54.2 

SAVI dime buffer 100 0.01 0.40 0.52 0.66 0.91 0.16 

  buffer 200 0.02 0.40 0.53 0.67 0.91 0.16 

  buffer 400 0.00 0.41 0.52 0.68 0.91 0.16 

  Total area 0.00 0.46 0.60 0.73 0.93 0.16 

Note: SD= Standard deviation; Qu= Quartile; dime= dimensionless 

 

For the elevation attribute a variation from 1446 to 2776 m is observed (Table 4) and 

both the maximum and minimum values were included in the 400 m buffer. However, the 

difference of these values in relation to the 100 m buffer can be considered small, only 10 m in 

relation to the minimum elevation value and 4 m in relation to the maximum value. As for the 

average value, the three buffers presented similar values, with 5 m difference in buffers 1 and 

2 in relation to 4, and 123 m in relation to the total area. The standard deviation was larger in 

the 100 m buffer and greater than the standard deviation of the total area by 28.24 m. 

The slope followed the same pattern of elevation at which all buffers were able to pick 

up the variation pattern. The minimum value and the total area were 0.1% and the maximum of 

156.7% for buffers 200 and 400 and total area. Differing only 5.5% in relation to buffer 100. 

The mean slope for total area was 39.1%, higher by 2 percentage points than the 400 m buffer 

and by 6 percentage points than the 100 m buffer. The standard deviation value that most 

approached the total area (18.6%) was that of the 100 m buffer (18.7%). 
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As for northernness, both the total area and the buffers had pixels on the north-south 

line, i.e. the exposure index equal to 0 (minimum value), and maximum exposure values of 180 

degrees, which is equivalent to the values of 0 and 360 degrees (Samuel-Rosa et al., 2015) 

For the SAVI, virtually all the results of the descriptive statistics were the same or very 

similar between the buffers and the total area. The maximum variation for the study area was 

0.0 to 0.93 with an average value of 0.6. The values closest to 0 are associated to rock outcrops 

and / or shaded area, while values closer to 0.93 are associated with dense vegetation cover as 

in forest areas. The vegetation cover of altitude field is associated to values around 0.25 to 0.45. 

As with the descriptive statistics, the analysis of the results of the histograms indicates 

that the areas considered accessible (buffers 100, 200 and 400 m) were representative of the 

total area (upper part of the INP, Figure 2). In general, the variables have a great similarity 

between the buffers, presenting almost the same distribution. 

The elevation histogram, apparently, shows a normal distribution, especially for total 

area, with a frequency of values of more than 2,100 m for total area and 2,400 m in the 

accessible area (all buffers) (Figure 7).  The accessible area presented greater asymmetry and 

toward the left, because the arithmetic mean is less than the median which, in turn, is less than 

the mode. This pattern differed from the total area, in which the distribution is symmetrical 

(normal) because the mean "is close" with the median and the mode. However, the maximum 

and minimum elevation values were represented similarly. This characterizes some 

representativeness of the elevation data obtained with the buffer and elevation data of the total 

area. 

(a)  (b)  

(c)  (d)  

Figure 7. Histogram with frequency distribution of elevation (m) for buffers of 100 (a), 200 

(b), 400 m (c) and total area (d). 

 

Similar to elevation, the slope presented a distribution that approximates the normal 

distribution (visually), being more symmetrical in the total data of the area (higher part of the 

INP), but with high similarity between this and the buffers. The slope varied from 0 to a little 

more than 156.7%, with a predominance of values (higher frequency) in the range of 30-40%, 

values close to the mean values for the buffers and total area (Table 4).  

By the analysis of the histogram (Figure 9) it is evident that the northernness does not 

present normal distribution and, in general, the buffers presented distribution similar to total 
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area. Also, with a higher frequency of values with exposure above 140 degrees in all cases, for 

buffers and total area. 

 

(a) (b) 

(c) (d) 

Figure 8. Histogram with slope frequency distribution (%) for buffers of 100 (a), 200 (b), 

400 m (c) and total area (d). 

 
(a) 

 

(b)  

(c)  (d)  

Figure 9. Histogram with frequency distribution of the northernness (degrees) for buffers of 

100 (a), 200 (b), 400 m (c) and total area (d). 

 

For SAVI (Figure 10) despite the similar distribution among the data sets, the buffers 

had a higher frequency of values in the range of 0.4 and around 0.7, approaching a bimodal 

frequency. However, in the total area this effect was less pronounced, and the frequency of 
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values was higher in the range of 0.7. Among the buffers, there was little difference and the 

highest frequency occurred in the range of 0.4. 

(a) (b) 

(c) (d) 

Figure 10. Histogram with the frequency distribution of SAVI (dimensionless) for buffers 

of 100 (a), 200 (b), 400 m (c) and total area (d). 

 

As shown in Table 4 and Figures 7, 8, 9 and 10, the 100 m buffer does not differ 

significantly from the others, 200 and 400 m, and it implies in a much smaller area to survey 

(1913 hectares) compared to the 200 m (3468 hectares) and 400 m (5877 hectares) buffers. 

Thus, considering that and taken in account the limited access in the upper part of the INP, the 

100 m was chosen as accessible and representative area for selection of the 80 sampling points. 

 

3.5.2 Quantitative analysis for soil characterization  

The shallow soils and/or with more fine and coarse gravel represented almost 50 and 

75%, respectively, of the samples, and they are often associated with rock outcrops. On the 

other hand, the more developed and deeper soils did not show coarse fragments in the samples 

(Table 5). 

Both the bulk density and the soil moisture content at the time the sample was taken 

showed a great variation in values. The soil moisture value was around 1.53% for the sampling 

in the driest season and horizons with a lower content of organic matter. The values were much 

higher (up to 600% for horizons of organic constitution under conditions of impeded drainage 

and taken in the wet season). In the same way, the density varied from 0.12 Mg.m-3 (organic 

constitution horizon) to 1.45 Mg.m-3 (mineral constitution horizon), with an average value of 

around 0.77 Mg.m-3, which is much lower than the average for soils in Brazil. 

In general, the soils of the INP have pH values from the maximum of 5.72 to the 

minimum of 3.24; base saturation from the maximum of 46.6%, that is, all the soils are 

dystrophic and, in some horizons, the value does not reach 1%. The potential acidity (H + Al) 

is up to 67.16 cmolc.dm-3, close to the maximum for the T value (69.01 cmolc.dm-3), that is, 

despite the high cation exchange capacity, most exchangeable ions are Al +3 and H +. 
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The base contents are low, with maximum of 2.55 cmolc.dm-3 for Ca, 1.67 cmolc.dm-3 

for Mg, and Na and K not reaching 0.8 and 1.26 cmolc.dm-3, respectively. Therefore, the sum 

of bases (S value) reaches a maximum of 4.24 cmolc.dm-3. 

 

Table 5. Descriptive statistics of the soil dataset 

Variable Unit Min 1º Qu Mean 3º Qu Max 

SM % 1.53 28.04 61.83 72.63 662.96 

BD Mg.m-3 0.12 0.54 0.77 0.97 1.45 

Fine gravel % 0.00 0.00 1.56 0.00 42.00 

Coarse gravel % 0.00 0.00 4.54 5.00 75.00 

pH ---- 3.24 4.24 4.51 4.77 5.72 

Ca cmolc.dm-3 0.00 0.00 0.16 0.20 2.55 

Mg cmolc.dm-3 0.00 0.30 0.55 0.65 1.67 

Al cmolc.dm-3 0.00 1.00 2.12 2.70 9.20 

Na cmolc.dm-3 0.00 0.02 0.04 0.04 0.80 

K cmolc.dm-3 0.00 0.04 0.13 0.19 1.26 

P mg.dm-3 0.00 1.51 7.38 9.33 97.52 

H+Al cmolc.dm-3 2.3 6.05 12.80 16.33 67.16 

C g.kg-1 2.40 16.25 64.25 95.62 294.80 

N g.kg-1 0.00 0.929 3.89 6.28 10.85 

S value cmolc.dm-3 0.20 0.52 0.88 1.08 4.24 

T value cmolc.dm-3 3.00 6.71 13.68 17.57 69.01 

V% % 0.95 4.37 8.20 9.60 46.46 

Note: SM: soil moisture; BD: bulk density; pH(H2O): pH in water-saturated soil paste (1:2.5); Ca2+: 

Calcium; MG2+: Magnesium; Al3+: Aluminium; Na+: Sodium; K+: Potassium; P: phosphorus; H+Al: 

potential acidity; C: total carbon; N total nitrogen; S: sum of bases (Ca, Mg, K, and Na); T: cation 

exchange capacity V: base saturation 
 

The properties of most INP soils are associated to the parent material, generally of acid 

nature, and the relief, predominantly mountainous and with high elevations that influence the 

climate and organisms leading to conditions favouring the accumulation of organic matter 

(Soares et al., 2016). The large amount of organic material accumulated, which in terms of soil 

organic carbon can reach almost 300 g.kg-1, influences directly other attributes, such as the high 

potential acidity, associated with the low pH values, and the high CEC due to a large number 

of phenolic and carboxylic radicals from the organic matter. The high levels of organic matter 

also explain the low bulk density and the high-water storage capacity of some horizons. 
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The plots in standardized sketches for some soil attributes, such as pH, carbon, CEC 

and bulk density give us an idea of the distribution, both in depth and in the different horizons, 

in each type of soil (Figures 11, 12, 13, 14, 15). For example, except for soils with imperfect or 

more limited drainage, organic soils, which are found in the valleys, there is a tendency to 

increase the pH (Figure 11) and bulk density (Figure 14) with soil depth. Also, a decrease in 

the organic carbon (Figure 12), nitrogen and H+Al (not shown here), and CEC (Figure 13) 

content with soil depth. An exception for this pattern is the profile 62, with a variation of carbon, 

pH and CEC contents, probably due to different events of deposition of organic material and 

mineral sediments. 

An important function of the AQP is the option of plotting standardized sketches with 

Munsell colours staining the soil horizons or layers according to the variations of attributes. It 

is possible to create a colour vector with the hue, value and chrome information of each horizon. 

In general, the more vivid the colouring the greater influence of the hue, for the subsurface 

horizons of mineral soils. The AQP also was important to differentiate better drained 

Organossolos (Histosols), with a mineral subsurface horizon closer to the surface, from those 

with a thicker organic horizon above the mineral layer; since the organic matter "masks" the 

soil hue, that would be more expressed in the mineral horizons, as can be seen in Figure 15. 

In general, the surface horizons with higher organic matter have low values of value and 

chroma, that is, they are darker in colour. Mineral soils are generally deeper and are covered 

predominantly by the Atlantic Forest, differing from the Organossolos (Histosols), usually 

shallow soils with sparse vegetation of grasses and shrubs typical of the altitude fields (Figure 

15), varying with drainage and landscape position. There is a predominance of yellow and red-

yellowish colorations for the mineral horizons. In addition to the climate and relief, the parent 

material influences this colouration, since it is poor in iron and the humid conditions favour 

formation of goethite as iron oxide. 
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Figure 11. pH values for the soil profile collection from the upper part of INP. 
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Figure 12. Total soil carbon content (%) for the soil profile collection from the upper part of 

INP. 
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Figure 13. Cation exchange capacity (g.dm-3) for the soil profile collection from the 

upper part of INP. 
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Figure 14. Bulk density (Mg.m-3) for the soil profile collection from the upper part of INP. 

 



 

33 

 

 

Figure 15. Plotting the sketches standardized according to the Munsell coloration for the soil 

profile collection from the upper part of INP. 
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By grouping all the horizons of the different profiles in a boxplot (Figure 16) some 

conclusions can be drawn regarding some soil properties. For example, the phosphorus content 

does not depend on the type of horizon, with high values in the organic and in the C horizons, 

both types showing high and low values of P, in other words, high amplitude variation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 16. Boxplot for values of phosphorus (a), pH (b), carbon (c), CEC (d), BD (e) content 

and midpoint depth of soils (f) for each soil horizon. 
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Another interesting pattern is that among the organic horizons the H horizons had an 

average carbon content and CEC larger than the O horizons and reach deeper in the soil (Figure 

16). As expected, the mineral horizons presented lower levels of C and CEC. Corroborating 

with the carbon content, the lowest values of bulk density were for the horizons O and H. The 

highest averages were for the horizons B and BA. As for the pH, it is observed that the organic 

matter is not the only factor influencing the acidity and, consequently, the pH values. For 

example, the O horizon has high amplitude of pH variation, from less than 3.5 to 5.5. 

The correlation between contents of carbon and terrain attributes showed positive 

tendencies regarding elevation (correlation of 0. 59) and negative (correlation of -0,44; -0,35; -

0,21; -0,40; -0,49 with bands 1, 2, 3, 4 and 5 respectively) for spectral bands data (Figure 17).  

 

Figure 17. Matrix of correlation between some environmental covariates and some soil 

properties. Correlations with "X" are not significant at 5% of confidence. 

 

This result indicates that with increasing elevation, which in turn conditions the climate 

(lower temperatures and higher precipitation Figure 3), there is an increase in the accumulation 

of organic material due to its slow decomposition. Besides that, a reduction of the reflectance 

values coincides with the decrease of the forest vegetal coverage and its substitution by high-

altitude fields. 

Another high and positive correlation was the total carbon contents with the channel 

network base level (correlation of 0.54) (Figure 17). This is probably due to the relief, the 

second most important factor that conditions the accumulation of organic matter. In this case 

accumulation of organic material is conditioned by its slow decomposition due to prevalent 

anaerobic conditions, such as in figure 16, where the highest C and N contents were observed 

for the H horizons formed in this climatic and relief conditions. 

The same result was observed for CEC and H + Al contents, in which they presented a 

high correlation with carbon content (correlation of 0.59 and 0.58, CEC and H+Al respectively) 

and consequently high correlation (positive) with elevation (correlation of 0.45 for both, CEC 
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and H+Al) and negative with spectral bands of the RapidEye sensor (correlation of -0.42; -0.36; 

-0.21; -0.41; -0.48 between the CEC and bands 1, 2, 3, 4 and 5 respectively) and (correlation of 

-0.42; -0.37; -0.24; -0.42; -0.48 between the H+Al and bands 1, 2, 3, 4 and 5 respectively on 

Figure 17. This high relation between carbon and CEC can also be observed on figures 16 and 

17, where the pattern was similar for these attributes in the different types of horizons. 

3.5.3 Soil types, landscape aspect and spatial distribution 

Most of the profiles were classified as Organossolos (Histosols) n=39 (Table 3). The 

deeper organic soils are found in flat areas and dominantly from by coluvial-alluvial sediments 

and organic material deposits (Histosols with a histic horizon in the WRB, ex. profile G1 - 

Figure 18). The drainage is imperfect or impeded and have high levels of carbon and total 

nitrogen. The Organossolos (Histosols) on slopes are generally shallower, well-drained or 

moderately well-drained, and have lower carbon and nitrogen content. Both types are under 

high altitude fields coverage. The better drained Organossolos (Histosols), in many places, had 

a folic horizon of little more than 20 cm, and directly in contact with rock (Figure 18 and 19). 

Another soil classes, without a subsurface horizon and with shallow depth over the rock, 

is the Neossolo Regolítico (Regosol), map unit RR (Figure 20), and the Neossolo Litólico 

(Leptosols), map unit RL. In some cases, the profile has a surface organic horizon but it is less 

than 20 cm depth. These soils are often associated with the rocky outcrops. The dominant 

vegetation is of high-altitude fields. 

 

    

    

Figure 18. Typical mineral soils on the Atlantic forest (upper left); soil profile with an organic 

surface horizon and deep mineral subsurface horizon (upper right); soil with shallow 

organic horizon over the rock and on the slope (bottom left); soil with thick organic 

horizon in a flat valley area (bottom right). 
 

There are also deep soils with high organic matter content on surface and mineral 

subsurface horizons, generally with a yellowish colour (Figure 18 and 19). The Argissolos 

(Lixisols and Acrisols) and Cambissolos (Cambisols), map unit CX, are associated with forest 

coverage, have lower carbon content, CEC, are more developed than the Neossolos Litólicos 

(Regosols) and Neossolos Regolíticos (Leptosols), and have higher pH values. Some soils have 

a high carbon content in the surface horizons, but they still meet the mineral soil criteria, and 

most were classified as Umbrisols (Folic Umbrisols, Cambic Umbrisols and Umbrisols), 

respectively in the map units - CI, CH1 and CH2 (Figure 20). 
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Figure 19. Schematic distribution of vegetation, geology and soils along an transect in the INP (Made by Orlando Carlos Huertas Tavares) 
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Twelve covariates for soil mapping were selected by the recursive feature elimination 

algorithm, ranked by importance, and they were: 4 morphometric covariates (elevation, channel 

network base level, channel network distance and relative slope position); 3 from the images 

(bands 1, SAVI and NDVI); 2 from climatic maps (rainfall and temperature), 2 from spatial 

information (Latitude [Y] and a polygon of second order of X and Y [XY]), plus 1 from parent 

material and relief information associated (geomorphology).  

Soils distribution in the upper part of the INP shows a predominance of profiles with a 

high organic matter content, shallow depth and located in high slopes (Figure 20). Although, 

these soils are very fragile they were not reported in the survey for the INP's management plan, 

nor in most of the previous studies of soils in the park, except for Soares et al. (2016) and Silva 

Neto et al. (2018) that had only point descriptions without spatial information or spatial 

distribution of these soils.  

 

Figure 20. Current and more detailed soil map for the upper part of INP using the DSM 

techniques 

 

In terms of importance for the final model the top 5 covariates were Y, DEM, XY, 

rainfall and SAVI. This result shows that the soil formation factors that influence most the soil 

classes discrimination and their spatialization are the space position (Y and XY), relief 

(elevation), climate (rainfall) and organisms (vegetal cover, SAVI).  

When the fitted model is evaluated the results (using leave-one-out cross validation 

[LOO-CV] approach) show an overall accuracy of 0.41 and Kappa of 0.32 with a confidence 

interval of 0.31-0.51 (Table 6). That can be considered as a reliable result in terms of soil classes 

prediction for a very complex mountainous area such as the INP plateau. 

These results are comparable to those of Jeune et al. (2018) and Meier et al. (2018) that 

found values of Kappa index from 0.42 to 0.47 respectively using RF algorithm. In addition, 

the RF has a strong ability for learning and generalizing soil data of larger geographic areas 

(Jeune et al., 2018). Thus, pedometric methods should be seriously considered as a 
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complementary approach to conventional methods for mapping complex mountainous tropical 

areas with limited access (Meier et al., 2018). 

In terms of percentage of predicted area for each soil mapping unit the largest one is 

constituted by the association of CH1 and CH2 (Cambic Umbrisols Umbrisols + Ferrasols, 

respectively), where the Cambissolo Húmico (SiBCS) is the dominant class. The total area is 

of 8470.75 hectares that represents more than half of the total studied area (51.64%) (Table 6). 

The organic soils (OO1, OO2 and OX) occupy an area of 4148.38 hectares (25.29% of 

the total area). Although the Histosols with better drainage are dominant, 1.79% of the total 

area (294.25 hectares) is constituted of imperfect or impeded drainage (OX) soils, classified as 

Organossolos Háplicos (SiBCS). 

Table 6. Area and percentage in relation to the total area of the soil map units in the upper part 

of the INP. 

Map unit Area (ha) Area % 

CH1 5812.81 35,44 

CH2 2657.94 16,20 

CI 1285.25 7,84 

CX 498.438 3,04 

OO1 1647.44 10,04 

OO2 2206.69 13,45 

OX 294.25 1,79 

RL 184.61 1,13 

Rock 653.13 3,98 

RR 1163.13 7,09 

Total 16403.69 100,00 

 

The less developed soils Neossolo Litólico (Leptosols) (RL) and Neossolo Regolítico 

(Regosols) (RR) represent 1.13% and 7.09% of the total area respectively, and in addition to 

rock outcrops (3.98% of the total area) correspond to 2000.87 hectares, that is, 12.20% of the 

total area and are mainly concentrated in the central area of the upper part of INP (Figure 20).  

The Cambissolos Húmicos (Folic Umbrisols) (CI) represent less than 8% of the total 

area and Cambissolos Háplicos (Cambisols) (CX) slightly more than 3%. The latter mainly 

predicted in the upper part of the Serra Negra. 

When analysing the confusion matrix (Table 7), it is observed that both the CX and CI 

soil map units were erroneously classified in all soil samples. In the case of the CX it is 

explained by  the low representativity (only three soil samples); while the CI is usually 

occupying similar landscape position with other map units that also have elevated carbon 

contents in the surface, for example OO1 had 4 profiles classified in that unit when in truth they 

belonged to CI unit. 

The classes CH1 and CH2 had a reasonable accuracy (0.47 and 0.44, respectively), 

where the greatest confusion was between the two units, which have similar characteristics (soil 

attributes and landscape position) differing mainly in soil depth. For the class OO1 that had 

0.56 of accuracy of the predictions, the biggest confusion was with RL and Rock classes. This 

is explained because this class has a lower depth of soil compared to OO2, which leads to being 

predicted together with classes that have short soil depth, example RL, or even as a rock outcrop 

(Rock class). On the other hand, the OO2 class, which had greater confusion (0.36 accuracy), 

was more confounded with OO1 and CI. Both OO classes have similar soil properties and they 

differ mainly in soil depth. Also, CI and OO2 have similar organic matter content in the surface 
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and depth, where the main difference is that CI presents mineral subsurface horizons at a 

shallower depth and/or superficial horizon of smaller thickness compared to OO2.  

Table 7. Confusion matrix of soil classification using Random Forest with LOO-CV.  

 Reference classes  

OO1 CH2 OO2 OX RR RL ROCK CX CI CH1 Total 

P
re

d
ic

te
d

 c
la

ss
es

 

OO1 10 0 3 2 0 1 4 0 4 2 26 

CH2 0 4 0 0 0 0 0 1 1 3 9 

OO2 0 0 5 2 0 1 0 0 2 2 12 

OX 1 0 2 2 0 2 0 0 0 1 8 

RR 0 0 0 0 4 0 0 1 1 1 7 

RL 2 0 0 0 0 1 0 0 0 0 3 

ROCK 2 0 1 1 0 3 10 0 0 0 17 

CX 0 1 0 0 1 0 0 0 0 0 2 

CI 2 1 3 0 1 0 0 0 0 0 7 

CH1 1 3 0 0 1 0 1 1 1 8 16 

 Total 18 9 14 7 7 8 15 3 9 17 107 

Overall accuracy 0.41 

Confidence interval (95%) (0.31-0.51) 

Kappa 0.32 

 

For the less developed mineral soils RR and RL, there was a considerable difference in 

the accuracy; while the RR unit had an accuracy of 0.57, the RL unit showed 0.13 and for this 

class the confusion was greater with the rock outcrop. The poorly drained organic soils, which 

showed an accuracy of 0.22, presented confusion mainly with the well-drained organic soil 

classes (OO1 and OO2), with the same confounding proportion.  

Despite the confusions, which occurred mainly in classes very similar between 

themselves and that occupy similar positions in the landscape, the result of the prediction may 

be considered good. Also, when considered the spatial distribution the map discriminates well 

the mapping units in the landscape. The results show the importance of DSM as a potential tool 

to predict soil types in mountainous areas in Brazil for the purpose of environmental 

vulnerability analysis and land use planning. 

In addition, the more detailed information, now available and with calculation of error, 

may contribute better to future research and implementation of the INP management plan. 

When analysed spatially it is possible to see that the central part of the INP, where there is a 

predominance of the organic soils, the climate is marked by greater precipitation, lower 

temperature and  a relief more rugged and with higher elevation; besides the dominant 

geological material is quartz syenite and the geomorphology is of the escarpments type. Also, 

in this area, there is a predominance of vegetation cover of the Altitude Fields, characteristic of 

Altomontanas region (Soares et al., 2016).  There is a great amount of rock outcropping, such 

as in the uppermost part of the park, where the Pico das Agulhas Negras (Figure 19) is located. 

Areas with poorly drained organic soils are in similar climate conditions but they are located in 

the lower part of the valleys among the high elevations, with alluvial sediments as parent 

material and fluvial plain (comprising mineral and organic sediments) geomorphology. 

In the lower part of the plateau predominate deeper and better-developed soils, mainly 

under forest vegetation, and although they have high levels of organic matter they are not 

enough to identify as folic classes. These soils are placed in relatively lower slopes and 

elevations, developed from homogeneous gneisses and nepheline syenite geological material 

and with Mountain geomorphology. 
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 CONCLUSIONS 

In terms of terrain surface representation in the smallest area for defining soil sampling 

locations in the upper part of the INP, the best restriction rule was the 100 m buffer, In addition 

to having the points allocated closest to the roads and trails, it adequately represented the 

characteristics of the study area, and in relation to the environmental covariates, there is only a 

slight difference from buffers of 200 and 400 m. 

One of the advantages of using the cLHS and buffer as a rule of restriction for the 

allocation of sampling points was the increase in work efficiency, which leads to lower cost and 

time, without losses of the representativeness of environmental conditions. Thus, this procedure 

can be indicated for areas such as INP, where access is very restrictive. 

In general, the soils of the Itatiaia National Park plateau are predominantly shallow, 

with high levels of C, N, H + Al, and CEC; with low values of pH and bulk density; and a high 

capacity to store water. Dominantly, the soils are highly vulnerable to degradation, especially 

due to erosion, compaction and land sliding. 

Soil survey and characterization supported by the quantitative techniques of soil data 

analysis, through the AQP and with the creation of a database in a GIS environment, are an 

effective way to support future researches in the park as well as INP decision making. 

In the upper part of the INP, some of the soils identified were not reported there 

previously, specifically in the soil survey for the INP management plan. This is partly due to 

the low level of detail of that survey. Thus, it can be affirmed that the information produced in 

this study is potentially useful for several multidisciplinary researches and, in particular, to 

improve the INP management plan, in order to evaluate the environmental vulnerability of these 

soils and to possible install access restrictions for public use. 
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4  CHAPTER II:  

 

 

MAPPING SOIL PROPERTIES IN A POORLY ACCESSIBLE 

AREA. CASE STUDY - ITATIAIA NATIONAL PARK  

  



 

43 

 

 RESUMO 

Os mapas de solo são importantes para avaliar as funções do solo e apoiar a tomada de decisão, 

particularmente para propriedades do solo, como pH, teor de carbono e capacidade de troca de 

cátions (CTC). A resolução espacial e a profundidade devem atender às necessidades dos 

usuários. A eficiência dos modelos estatísticos para criar mapas de propriedades do solo, com 

um nível de precisão aceitável, geralmente requer um grande número de amostras com uma 

distribuição apropriada na área de teste considerada. No entanto, a acessibilidade para 

amostragem pode ser um problema em muitas áreas remotas, como no Parque Nacional do 

Itatiaia (PNI). Os objetivos deste estudo foram: delinear uma estratégia de amostragem que 

equilibrasse a acessibilidade, os custos relativos, o tamanho da área e as covariáveis ambientais; 

e modelar as propriedades do solo com um número limitado de amostras. O objetivo foi 

produzir mapas de propriedades de solo 2D e 3D com acurácia aceitáveis e com incerteza 

associada. As propriedades do solo testadas foram pH, teor de carbono, CTC. A estratégia de 

amostragem foi projetada usando o método do Hipercubo Latino condicionado (cLHS). 

Diferentes métodos foram testados para produzir os mapas das propriedades do solo. Para 

calibração dos modelos foram usados: linear (MLR, regressão linear múltipla) e não linear 

(GAM, Generalized Additive Models) e Random Forest, como exemplo de um modelo de 

aprendizado de máquina. Os resultados mostraram diferenças no desempenho preditivo para 

todos os métodos estatísticos e abordagens de seleção de covariáveis. O GAM, com abordagem 

scorpan, foi o melhor método para o número limitado de amostras de solo. O modelo de RF 

não foi muito sensível à seleção da covariável. A maior incerteza foi associada às áreas de 

menor acessibilidade e, consequentemente, com baixa densidade amostral e/ou ruídos nas 

covariáveis. Mesmo assim, a modelagem de mapas de propriedades de solos 2D e 3D, com 

propagação de incerteza, contribuirá para a análise de vulnerabilidade ambiental do PNI, 

fornecendo informações que de outra forma não estariam disponíveis. 

 

Palavras-chave: Função de profundidade. Modelos Aditivos Generalizados. GlobalSoilMap, 

Propagação de Incerteza. Seleção de Preditor. 
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 ABSTRACT 

Soil maps are important to evaluate soil functions and support decision-making particularly for 

soil properties such as pH, carbon content and cation exchange capacity (CEC). The spatial 

resolution and depth should meet the needs of users. The efficiency of statistical models to 

create soil properties maps, with an acceptable level of accuracy, often require a large number 

of samples with an appropriate distribution across the considered test area. However, 

accessibility for sampling can be a problem in many remote areas, such as in the Itatiaia 

National Park (INP).  The objectives of this study were: to design a sampling strategy balancing 

accessibility, relative costs, area size and environmental covariates; and to model soil properties 

with a limited number of samples. The goal was to produce acceptable accurate 2D and 3D soil 

properties maps with the associated uncertainty. The soil properties tested were pH, carbon 

content, CEC. The sampling strategy was designed using conditioned Latin Hypercube Sample 

(cLHS).  Different methods were tested to produce the maps of the soil properties. For 

calibration of the models: linear (MLR, multiple linear regression) and nonlinear (GAM, 

Generalised Additive Models), and Random Forest, as an example of a machine learning model, 

were used. The results showed differences in the predictive performance for all statistical 

methods and covariate selection approaches. The GAM, with scorpan approach, was the best 

method for the limited number of soil samples. The RF model was not very sensitive to the 

covariate selection. The greater uncertainty was associated with the areas with lowest 

accessibility and, consequently, with low sampling density and/or noises in covariates. Even 

though, the 2D and 3D soil properties maps modelling, with uncertainty propagation, will 

contribute to the INP analysis of environmental vulnerability by providing information 

otherwise not available. 

 

Keywords: Depth function. Generalized Additive Models. GlobalSoilMap. Uncertainty 

Propagation. Predictor Selection. 
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 INTRODUCTION 

Soil is a vital part of the natural environment and it has crucial role in ecosystem 

functioning (Adhikari and Hartemink, 2016). Soil functions can be derived from soil properties 

and their interaction and assessment of soil functions can provide detailed spatial information 

particularly useful in complex mountain terrain (Jeong et al., 2017). Soil information is an 

essential factor for environment conservation and sustainable management, in the formulation 

of sustainable agricultural policies and the monitoring of impacts caused by inappropriate use 

of this resource (Carvalho Junior et al., 2016), especially in mountain areas. 

In recent years, there was a considerable advance in digital soil mapping (DSM) due to 

new approaches, such as powerful predictive algorithms (Beguin., et al 2017; Sindayihebura et 

al., 2017); models combining machine learning and geostatistical tools (Hengl et al., 2007; 

Poggio et al., 2014); expert knowledge-based methods (Ashtekar et al., 2013; Poggio et al., 

2016; Menezes et al., 2014; 2018) and high-resolution soil maps (Ashtekar et al., 2013; Camera 

et al., 2017; Forkuor et al., 2017; Meersmans et al., 2012; Mulder et al., 2016 a; Nussbaum et 

al., 2018). The advantage of modelling the soil properties in 3D space has been evaluated in 

several studies (Adhikari et al., 2013; Amirian Chakan et al., 2017; Kidd et al., 2015; Liu et al., 

2013; Mulder et al., 2016b), including the assessment of associated uncertainty (Kempen et al., 

2011; Malone et al., 2011; Poggio and Gimona, 2017a, 2017b, 2014). With the progress of 

digital soil mapping, there is a rising use of 3D modelling to provide information on soil pattern 

for many applications, from agricultural management to ecosystem services (Zhang et al., 

2017). It is important to deliver uncertainty associated with prediction, since it can help the land 

management choices (Poggio and Gimona, 2017a) and the decision makers (Poggio and 

Gimona, 2014). 

However, the limiting factor is often the reduced amount of soil data used for the model 

calibration (Samuel-Rosa et al., 2015; Somarathna et al., 2017), and Somarathna et al. (2017) 

suggested that more data is more important than a better model. However, obtaining more data 

can be a problem because of a large size and/or accessibility of some test areas. To facilitate 

DSM in poor-accessible areas, Cambule et al. (2013) proposed a methodology of sampling in 

a small area of greater accessibility, which is representative of the total area, and to evaluate 

the representativeness using, e.g., the similarity between the histogram of the covariates for the 

total and accessible areas. Other studies considered the costs of accessibility in soil sampling 

(Carvalho Júnior et al., 2014; Clifford et al., 2014; Ließ, 2015; Roudier et al., 2012; Stumpf et 

al., 2016) using a variation/optimization of the method known as conditioned Latin Hypercube 

Sampling (cLHS), proposed by Minasny and McBratney (2006). The cLHS is a robust tool for 

the allocation of sampling points using a set of auxiliary covariates. The idea is to be able to 

capture the maximum of soil variation, and its properties, by using environmental covariates as 

auxiliary information. 

The general goal of this paper was to create 2 and 3D soil properties map, using as 

examples, pH, carbon content and cation exchange capacity at fine resolution (25 m) in a poorly 

accessible area, the Itatiaia National Park (Brazil), with spatial uncertainty. The main objectives 

were: to design a sampling strategy balancing accessibility, costs, area and environmental 

covariates; and to model soil properties, with a limited number of samples available. The maps 

would provide necessary information for the analysis of environmental vulnerability in the INP. 

INP has limited access, due to the steep slope, dense forest cover in forested areas or by 

rocky outcrops in the altitude field (Barreto et al., 2013). The INP is an excellent case study, 

because in order to obtain a viable result at a low cost, it is necessary to use the DSM tools, 

ranging from optimization of the sampling site (Minasny and McBratney, 2006; Roudier et al., 

2012; Stumpf et al., 2016) to the covariate selection in powerful predictive algorithms (Beguin 

et al., 2017; Chagas et al., 2017; Jeong et al., 2017). 
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 MATERIAL AND METHODS 

4.4.1 Data sources and environmental covariates 

The environmental covariates were derived from three data sources: digital elevation 

model, remote sensing data (orbital image) and geology map.  

Digital Elevation Model (DEM): The DEM used, with a spatial resolution of 25 cm, 

was generated from the contour lines with 20 m equidistance and hydrography extracted from 

the plani-altimetric charts, both in the 1:50,000 scale. The sheets used were SF-23-ZA-I-2 

Alagoa, SF-23-ZA-I-3 Passa Quatro and SF-23-ZA-I-4 Agulhas Negras. They were obtained 

from the in vector format from the cartographic base of Brazilian Institute of Geography and 

Statistics (IBGE). The dataset was provided by the INP administration. 

Satellite image: Two scenes from the RapidEye sensor (2011) were used. They have 

12-bit radiometric resolution, 6.5m spatial resolution, and were orthorectified to 5m spatial 

resolution (RapidEye, 2012). Both images were atmospherically corrected using the 6S model 

(Vermote et al., 1997). The details of processing can be found in Costa et al. (2016) 

Geology map: The geology map was obtained from Santos et al. (2000), and it was 

scanned, vectorised and georeferenced. The file was rasterized at the same spatial resolution as 

the DEM (25m). The environmental covariates used to model the soil properties are listed in 

Table 8. They were chosen to describe the main soil forming factors, according to the scorpan 

approach (McBratney et al., 2003) 

 

ftp://geoftp.ibge.gov.br/cartas_e_mapas/folhas_topograficas/vetoriais/escala_50mil/projeto_conv_digital/
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Table 8. Environmental covariates, soil formation factor that represents their sources, resolution, and definition. 

Formation 

factor 

Covariate Source Spatial 

resolution 

Definition Acronym 

Organism 

(O) 

Bands (1, 2, 3, 4, 5) RapidEye 

(2011) 

5 m Bands in the spectrum of 440 – 510 nm (Blue), 

520 – 590 nm (Green), 630 – 685 nm (Red), 690 – 

730 nm (Red Edge), 760 – 850 nm (Near IR) 

Bands 

(1,2,3,4, 5) 

 Normalized difference 

vegetation index 

RapidEye 

(2011) 

5 m 
NDVI=(NIR–Red)/(NIR+Red); 

NDVI 

 Soil-adjusted 

vegetation index 

RapidEye 

(2011) 

5 m SAVI=(1+0.5)(NIR–Red)/(NIR+Red+0.5) SAVI 

Relief (R) Digital elevation 

model 

INP 

managers 

25 m Digital elevation model of the area- representation 

of the terrain’s surface made by contour lines and 

hydrology (scale 1:50.00, IBGE data) 

DEM 

 Slope DEM 25 m The gradient or rate of change of elevation 

between neighboring cells 

Slope 

 Aspect DEM 25 m Attribute representing the exposure faces, 

represented by values in degrees ranging from 0 to 

360 ° 

Aspect 

 Northernness DEM 25 m Indicates the direction of the slope relative to the 

northern. Northernness =abs(180°−Aspect) 

Northernness 

 Plan curvature DEM 25 m The shape of the hillside on the horizontal plane 

(concave, rectilinear or convex) 

Plan_curv 

 Profile curvature DEM 25 m The shape of the hillside on the vertical plane 

(concave, rectilinear or convex) 

Prof_curv 

 Convergence index DEM 25 m The general shape of the hillside in all directions 

(concave, rectilinear or convex) 

Convergence 

 Catchment area DEM 25 m It is related to the volume of flooding that reaches 

a certain cell 

 

 Topographic wetness 

index 

DEM 25 m Describes a tendency for a cell to accumulate 

water 

TWI 
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 LS factor DEM 25 m Attribute equivalent to topographic factor of 

Revised Universal Soil Loss Equation (RUSLE) 

LS_factor 

 Relative slope 

position 

DEM 25 m Represents relative slope position based on the 

base channel network 

RSP 

 Channel network 

distance 

DEM 25 m Altitude above the channel network (CHNB- 

original elevation) 

CHND 

 Channel network base 

level 

DEM 25 m Interpolation of a channel network base level 

elevation 

CHNB 

Parent 

material (P) 

Geology Santos et al., 

2000 

25 m Categorical map with geological information 

(scale 1:50.000) 

Geology 

Spatial 

position (N) 

X, Y Grid data ----- X=longitude, Y=latitude in UTM system, zone 

23S, projection Sirgas 2000 

X, Y 

 XY Grid data ----- XY= polygon of second order of X and Y XY 
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4.4.2 Covariates selection approach 

In order to evaluate the relationships between soil properties as pH, total carbon content 

(C) and cation exchange capacity (CEC), and environmental covariates, Multiple Linear 

Regression (MLR), Random Forest (RF) and Generalized Additive Models (GAM) were tested 

(Figure 21). 

 

 
 

 

Figure 21. Covariate selection approach, model fitting, validation and prediction workflow. 

Note: AIC= Akaike's information criterion; RFE= Recursive feature elimination; R2= Coefficient of determination; 

RMSE=Root mean square error; MSE= Mean square error; LOO-CV= Leave-one-out cross validation 

 

The MLR is a parametric method which assumes that the relationships between 

dependent variable and covariates are linear (Hastie et al., 2009). The RF techniques is a 

nonparametric method created by Breiman (2001) and it was based on a bootstrap aggregation 

(bagging) approach for reducing the variance of an estimated prediction function (Hastie et al., 

2009). The GAM is a flexible statistical method that may be used to identify and characterize 

nonlinear regression effects through smoothing functions (Hastie et al., 2009; Wood, 2006). 

The selection of the covariates available was carried out in order to produce simpler 

models with the minimum number of covariates, and still able to explain the maximum of the 

data variability. Different strategies were used and they are described in the sections below: 

The first step evaluated the correlation between covariates. If two covariates had a 

correlation coefficient greater than 0.85 (the cut-off value considered for this study), only one 

was maintained. The covariate maintained in the model was the one that was believed to have 

a greater relationship with the SCORPAN (McBratney et al., 2003) model, i.e. greater 

pedological information and/or less correlation with other environmental covariates 

It involved fitting models using the covariates maintained in the first step. But whereas 

fitted MLR and RF models were fitted with all covariates, the same was not possible for GAM, 
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due to limitation of degrees of freedom for many covariates and the few soil samples (Poggio 

et al., 2013). The purpose of the model with all covariates is to have a basis of comparison with 

different methods of selection commonly used.  

 

a) MLR 

4 models were fitted: with all covariates (MLR_full); with correlation selection inferior 

to 0.85 (MLR_cor); with the popular technique used in each method, stepwise AIC (Akaike's 

Information Criterion) (Carvalho Junior et al., 2016; Chagas et al., 2016; Meersmans et al., 

2012; Samuel-Rosa et al., 2015; Vermeulen and Niekerk, 2017) in this case "forward" approach 

was used (MLR_step); and the technique of Recursive Feature Elimination (RFE) (MLR_RFE). 

This last has recently been used in soil science for variable selection in machine learning 

algorithm, and it is a backward selection using rank (Bachofer et al., 2015; Brungard et al., 

2015; Jeong et al., 2017; Montanarella et al., 2013; Vašát et al., 2017). 

 

b) RF 

The same number of models was tested for RF that is: the full model (RF_full); 

correlation selection inferior to 0.85 (RF_cor), and RFE selection (RF_RFE). The variable 

importance, a popular technique for RF also was used (Carvalho Junior et al., 2016; Chagas et 

al., 2016; Rodriguez-Galiano et al., 2012; Were et al., 2015). In the RF case, the default set 

values have always been used, namely the number of trees equal to 500 (ntree = 500) and the 

number of covariates in each split equivalent to one third of the number of covariates. For 

example, model full mtry = 8, model with correlation selection mtry = 6 and importance of the 

variable mtry = 2. To build the RF with covariate selection by importance (RF_imp) the six 

most important covariates were always chosen, which is one-third of input covariates in RF 

whose importance was calculated (RF_cor). 

 

c) GAM 

The approach was different due to the degree of freedom limitation in GAM. The 

model´s degrees of freedom are calculated by adding up the degrees of freedom used by the 

parametric and non-parametric (or smooth) terms in the model, and it is not possible to fit the 

model if there are many covariates (terms) and a few points. 

The models were fitted based on the stepwise forward approach, where covariates are 

added according AIC. All models began with geographic coordinates (X, Y) and geology as 

fixed covariates. Three models were fitted. The first using the base model, where each covariate 

was added in the base model individually, and then evaluated by its AIC. The model ran with 

all covariates and the four with lower AIC value composed the final model termed GAM_one. 

The second model consisted of making all possible combinations of four covariates and then 

run the model with all possible combinations. The combination with a smaller AIC was termed 

GAM_comb. This approach seeks to capture the interaction between covariates when a 

predictor model is fitted. In both cases (GAM_one and GAM_comb) it was included as many 

covariates as possible; since the base model already had 9 covariates X, Y and 7 different levels 

for geology, it was possible to include another 4 covariates totalling a model with a maximum 

of 13. The third model involved a more parsimonious model based on the scorpan approach 

(McBratney et al., 2003). In this case, in addition to the base model that already included the 

parent material (geology) and spatial position (X, Y), for 2D prediction and geology, and X, Y 

and depth (Z) for 3D prediction, different combinations of data derived from the satellite image 

(here representing the factor organism) and data derived from the DEM (mainly represent factor 

relief, topography) were tested. 

In all, possible combinations were tested for each soil property using external validation, 

but the same procedure was repeated using cross validation. The best model in both evaluations 
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was selected and termed GAM_scorpan. A summary with all models and methods of covariate 

selection is presented in the Table 9. 

 

Table 9. Summary of covariate selection method and fit for different prediction models 

Models All 

covariates 

Cut-off 

only 

Stepwise 

AIC 

SCORPA

N 

RFE Importance 

MLR X X X ------ X ------ 

RF X X ------ ------ X X 

GAM ------ ------ X X ------ ------ 

Note: The space in blank, the model does not apply 

 

The GAM model was selected for the 3D approach due to its simplicity, and being a 

flexible approach that is able to deal with both linear and non-linear relationships between soil 

properties and the considered covariates (Poggio and Gimona, 2014). Also, the 3D smooth can 

provide better performance, considering non-linear relationships between covariates and soil 

properties (Poggio and Gimona, 2014), which are frequent when modelling natural 

environments. 

4.4.3 Validation and uncertainty 

The model’s performance was evaluated in two ways. The first by external validation, 

where points selected by the cLHS n=74 soil profiles (Minasny and McBratney, 2006) were 

used to fit the models and the legacy data (retrieved from the literature), as well as data collected 

based on the pedological knowledge and the soil-landscape relationship (without pre-selection), 

were used to validate performance of the models n=16. In the training, samples were taken 

within a 100 m buffer in relation to roads and tracks. The validation samples include points 

inside and outside the buffer, defined as accessibility criterion. The second form of evaluation 

was leave-one-out cross-validation (LOO-CV) (Brus et al., 2011; Kempen et al., 2010; Samuel-

Rosa et al., 2015). In both cases, the Mean Square Error (MSE) and Root Mean Square Error 

(RMSE) were computed. And a coefficient of determination was derived from a linear model 

between observed and predicted data (R2). For 3D soil mapping, the results of the modelling 

were summarized for the whole profile and at five depth layers, according to Global- SoilMap 

project specification (Arrouays et al., 2014), and compared with observed values from 

corresponding depths. Uncertainty propagation was analyzed through simulation (N=1000) 

from posterior distribution of the fitted GAMs to derive simultaneous confidence intervals for 

the derivatives of penalized splines (Ruppert et al., 2003). 

4.4.4 Software used 

ArcGis 10.2.2 (ESRI, 2015) was used for geology map preparation; Spring 5.2.5 

(Câmara et al., 1996) and 6S (Costa et al., 2016; Vermote et al., 1997) for atmospheric 

correction of the satellite image. 

The R software (R Core Team, 2018) was used for the covariates preparation and 

statistical modelling. The following packages were selected: clhs for conditioned Latin 

hypercube sampling (Roudier, 2015) raster, rgdal, maptools and RSAGA for data management, 

preparation and visualisation (Bivand et al., 2017; Bivand and Lewin-Koh, 2017; Brenning, 

2008; Hijmans, 2016); mgcv for GAM (Wood, 2006), randomForest for RF (Liaw and Wiener, 

2002); caret (Kuhn et al., 2017) for MLR, RF and GAM using cross validation (Kuhn et al., 

2017); aqp for preparing soil depth function on the 3D data validation (Beaudette et al., 2013). 
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 RESULTS AND DISCUSSION 

4.5.1 Correlation analysis 

It was observed a strong relationship between covariates derived from satellite image 

(Figure 22), most of them with a correlation greater than 0.85. They contributed in a similar 

way as information of vegetal coverage or land use, and their use may impair the model’s fitness 

due to multicollinearity problems (Hengl, 2009; Kempen et al., 2009; ten Caten et al., 2011). 

The covariates chnb, band1, band2, band3 and SAVI were excluded, due to a correlation 

greater than 0.85 with one or more covariates (Figure 22) were excluded those with less 

pedological information and/or more correlation with other environmental covariates and or 

easier to calculate manually. chnb showed a strong correlation with elevation values. One of 

the main reasons that lead to selection of covariates, excluding those with high correlation, is 

the fact that, mainly in regression models, it can jeopardize the prediction due multicollinearity 

among covariates (Nussbaum et al., 2018; Somarathna et al., 2017). This leads to the problem 

of inflating the variance of parameters, model over-fitting and even noise problems (Hengl, 

2009; Kempen et al., 2009; Nussbaum et al., 2018; ten Caten et al., 2011). 

It is usually necessary to decrease number of covariates in the GAM models, especially 

when there are a limited number of soil samples, as in this study. Since there was no high 

relation (no greater than the cut-off value 0.85) between covariates derived from satellite image 

and DEM (Figure 22), all possible combinations were tested to build the scorpan GAM model. 

 

Figure 22. Matrix of correlation between environmental covariates. Correlations with "X" are 

not significant at 5% of confidence.  



 

53 

 

4.5.2 2D approach 

4.5.2.1 Model comparison by soil attribute 

For the prediction of soil pH, the RF models in top soil layer (2D approach), independent 

of covariate selection method, presented the worst performance compared to models MLR and 

GAM (Table 10) the worst RF result for external validation is related to the low representativity 

of the validation sample, both in the attribute space (range of variation of the soil attribute) and 

in the geographic space. This is because much of the external validation data is legacy data that 

is concentrated in a region of the park and there is a predominance of organic soils as described 

by Soares et al. (2016) and Silva Neto et al. (2018), which are commonly acidic with pH values 

that varies very little between profiles. In the specific case of soil pH, which presented the 

greatest difference between external and cross-validation, it is more prudent to use cross-

validation to select the best mode. 

For pH prediction using linear models, the best method of covariate selection was the 

RFE, in both cases, using external e cross-validation. The same was observed for RF models 

for all attributes, where the best method of covariate selection was the RFE (Tables 10, 11 and 

12), despite the marginal difference between results of different covariate selection methods for 

RF models. 
 

Table 10. Performance of MLR, RF and GAM models to predict soil pH 

  External validation LOO-CV 

Model Cov R² MSE RMSE R² MSE RMSE 

MLR_full * 0.15 0.656 0.430 0.26 0.433 0.188 

MLR_cor ** 0.21 0.623 0.388 0.30 0.406 0.165 

MLR_step 1 0.22 0.477 0.228 0.24 0.423 0.179 

MLR_rfe 2 0.32 0.446 0.199 0.31 0.389 0.152 

RF_full * 0.04 0.512 0.262 0.25 0.405 0.164 

RF_cor ** 0.07 0.496 0.246 0.25 0.404 0.163 

RF_imp 3 0.03 0.530 0.281 0.28 0.397 0.158 

RF_rfe 4 0.09 0.486 0.236 0.29 0.392 0.154 

GAM_one 5 0.20 0.484 0.234 0.35 0.380 0.144 

GAM_comb 6 0.50 0.392 0.154 0.31 0.391 0.153 

GAM_scorpan 7 0.52 0.391 0.153 0.35 0.378 0.143 
Note: The best performing models are in bold. Cov = Covariates used in each model for predict soil pH 

*= All covariates (X, Y, DEM, slope, aspect, Northernness, plan_curv, prof_curv, convergence, cat_area, twi, 

ls_factor, rsp, chnd, chnb, band1, band2, band3, band4, band5, NDVI, SAVI, geology, XY). **= Covariates 

selected with correlation smaller than 0.85 with each other’s (X, Y, DEM, slope, aspect, Northernness, plan_curv, 

prof_curv, convergence, cat_area, twi, ls_factor, rsp, chnb, band4, band5, NDVI, geology, XY). 1= Covariates 

selected in MLR by stepwise selection (X, aspect, DEM, geology, convergence, slope, band4, chnd). 2= Covariates 

selected in MLR by RFE selection (plan_cuv, prof_cuv, NDVI, Y, convergence, ls_factor, X, twi, XY). 3= 

Covariates selected in RF by covariate importance (X, DEM, XY, Y, aspect, NDVI). 4= Covariates selected in RF 

by RFE (X, DEM, XY, Y, NDVI, geology, aspect). 5= Covariates selected in GAM by GAM_one approach (X, 

Y, geology, aspect, band4, convergence, cat_area), 6= Covariates selected in GAM by GAM_comb approach (X, 

Y, geology, slope, aspect, convergence, band4), 7= Covariates selected in GAM by GAM_scorpan approach (X, 

Y, geology, convergence, band2). The numbers indicate the covariates that were selected in the models fitted with 

cross validation approach. 
 

For the GAM models, the best method of covariate selection was the scorpan approach, 

in both cases, using external e cross validation. It was also the best model when compared with 

different models and approaches to select covariates. A different result was found by Jeong et 

al. (2017), which found that RF was better than GAM to predict soil carbon, nitrogen and 

phosphorus. For the total soil carbon content, the RFE method was the best for covariates 
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selection for RF, but for the linear model, it had the worst performance (Table 11). This 

corroborates Jeong et al. (2017) where the selection by RFE in the RF model improved the 

prediction, although with a small difference compared with methods tested especially for MLR. 

In the case of the linear model, the most commonly used method for covariate selection, 

stepwise, (Bhering et al., 2016; Chagas et al., 2016; Forkuor et al., 2017; Somarathna et al., 

2017), was the best performing; both when evaluating external validation and cross-validation. 

The scorpan model remained the best approach for covariate selection in GAM models. For 

prediction of soil carbon content, the RF was better than the linear models, regardless of method 

of covariate selection. Again, the RF was barely affected by method of selection of covariates, 

and the results were similar. 

Table 11. Performance of MLR, RF and GAM models to predict soil carbon content 

  External validation LOO-CV 

Model Cov R² MSE RMSE R² MSE RMSE 

MLR_full * 0.06 7.556 57.095 0.14 6.548 42.874 

MLR_cor ** 0.10 6.705 44.953 0.13 6.44 41.469 

MLR_step 1 0.17 5.289 27.97 0.24 5.253 27.591 

MLR_rfe 2 0.04 5.437 29.56 0.09 5.440 29.593 

RF_full * 0.24 4.804 23.082 0.38 4.486 20.128 

RF_cor ** 0.25 4.653 21.651 0.36 4.557 20.769 

RF_imp 3 0.23 4.776 22.811 0.40 4.390 19.276 

RF_rfe 4 0.24 4.683 21.931 0.40 4.374 19.131 

GAM_one 5 0.33 3.949 15.593 0.42 4.354 18.957 

GAM_comb 6 0.31 4.087 16.706 0.43 4.308 18.558 

GAM_scorpan 7 0.49 3.851 14.834 0.45 4.212 17.742 
Note: The best performing models are in bold. Cov = Covariates used in each model for predict soil carbon content 

*= All covariates (X, Y, DEM, slope, aspect, Northernness, plan_curv, prof_curv, convergence, cat_area, twi, 

ls_factor, rsp, chnd, chnb, band1, band2, band3, band4, band5, NDVI, SAVI, geology, XY). **= Covariates 

selected with correlation smaller than 0.85 with each other’s (X, Y, DEM, slope, aspect, Northernness, plan_curv, 

prof_curv, convergence, cat_area, twi, ls_factor, rsp, chnb, band4, band5, NDVI, geology, XY). 1= Covariates 

selected in MLR by stepwise selection (DEM, Northernness, geology, X, NDVI). 2= Covariates selected in MLR 

by RFE selection (plan_curv, prof_curv, NDVI, Y, X, twi). 3= Covariates selected in RF by covariate importance 

(DEM, northernness, Y, chnd, geology, XY). 4= Covariates selected in RF by RFE (DEM, Y, Northernness, 

geology, band4, chnd, band5, XY). 5= Covariates selected in GAM by GAM_one approach (X, Y, geology, DEM, 

northernness, chnd, band5). 6= Covariates selected in GAM by GAM_comb approach (X, Y, geology, DEM, 

aspect, plan_curv, cat_area). 7= Covariates selected in GAM by GAM_scorpan approach (X, Y, geology, 

prof_cuv, band3). The numbers indicate the covariates that were selected in the models fitted with cross validation 

approach. 

 

For pH (Table 10) and Carbon content (Table 11) the prediction using the RF_rfe 

showed greater performance for models that used the cross-validation method. On another hand, 

in the CEC prediction (Table 12) the performance was higher when using the external 

validation. CEC and carbon content presented similar behaviour, where RF with the RFE 

selection method had the best performance, and for the linear model it was the stepwise 

selection (Table 11 and 12). 
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Table 12. Performance of MLR, RF and GAM models to predict soil cation exchange capacity 

 External validation LOO-CV 

Model R² MSE RMSE R² MSE RMSE 

MLR_full 0.20 14.956 223.691 0.05 12.915 166.805 

MLR_cor 0.18 15.281 233.500 0.03 13.254 175.669 

MLR_step 0.19 14.777 218.369 0.04 11.179 124.972 

MLR_rfe 0.00 16.781 281.609 0.02 9.283 86.167 

RF_full 0.30 13.283 176.432 0.25 7.823 61.205 

RF_cor 0.27 13.629 185.747 0.17 8.275 68.478 

RF_imp 0.29 13.344 178.058 0.26 7.832 61.335 

RF_rfe 0.36 13.153 173.007 0.28 7.657 58.624 

GAM_one 0.38 13.708 187.917 0.22 8.289 68.715 

GAM_comb 0.32 13.168 173.406 0.17 8.581 73.626 

GAM_scorpan 0.41 13.604 185.056 0.27 7.764 60.285 
Note: The best performing models are in bold. Cov = Covariates used in each model for predict soil carbon content 

*= All covariates (X, Y, DEM, slope, aspect, Northernness, plan_curv, prof_curv, convergence, cat_area, twi, 

ls_factor, rsp, chnd, chnb, band1, band2, band3, band4, band5, NDVI, SAVI, geology, XY). **= Covariates 

selected with correlation smaller than 0.85 with each other’s (X, Y, DEM, slope, aspect, Northernness, plan_curv, 

prof_curv, convergence, cat_area, twi, ls_factor, rsp, chnb, band4, band5, NDVI, geology, XY). 1= Covariates 

selected in MLR by stepwise selection (band5, northernness, DEM, X, chnd, geology). 2= Covariates selected in 

MLR by RFE selection (plan_curv, prof_curv, NDVI, ls_factor, twi, slope, convergence). 3= Covariates selected 

in RF by covariate importance (band5, northernness, DEM, Y, NDVI, XY). 4= Covariates selected in RF by RFE 

(DEM, band5, northernness, NDVI, geology, Y, XY). 5= Covariates selected in GAM by GAM_one approach (X, 

Y, geology, band5, northernness, DEM, NDVI). 6= Covariates selected in GAM by GAM_comb approach (X, Y, 

geology, plan_curv, twi, band5, NDVI). 7= Covariates selected in GAM by GAM_scorpan approach (X, Y, 

geology, chnb, band3). The numbers indicate the covariates that were selected in the models fitted with cross 

validation approach. 

 

When analysing the models separately according to their respective methods of 

covariates selection, it is observed that, in general, the best performance results use stepwise 

selection for MLR (except for predicting soil pH), RF using RFE, and GAM using the scorpan 

approach. It is possible to separate the models and covariates selection approach. This appears 

to contradict Somarathna et al. (2017), who suggested investing in sampling rather than more 

robust models. However, it agrees with Beguin et al. (2017), who tested different statistical 

approaches and found significant differences, thus suggesting that robust methods can enhance 

DSM capabilities and support existing efforts for improving digital soil products, even with 

limited data. 

For CEC prediction, all the best models in each approach had better performance when 

used external validation for evaluating. However, the validation samples are not completely 

random, despite as suggested by Brus et al. (2011), and this may overestimate the model’s 

performance for the external validation approach. Regardless of the differences, the best model 

selected in the external validation was also the best model in the cross-validation. 

 

4.5.2.2 Model summary 

The RF model presented regular performance, usually better than MLR and worse than 

GAM. As for selection process, optimization of parameters in the RFE showed superior 

performance of the RF using this method. Although, in general, RF was not very sensitive to 
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selection of covariates. This corroborates Díaz-Uriarte and Andrés (2006) and Grimm et al. 

(2008), in which the algorithm is robust enough for overfitting, since each tree is trained on a 

bootstrap subsample of the data (Arun and Langmead, 2005; Grimm et al., 2008; Nguyen et al., 

2013). In other words, the covariates are not used all at once, but via a group of them in each 

bootstrap sample. 

Therefore, it is suggested that in the case of RFE for RF, the best performance of the 

model is related to optimization of selection of covariates and optimization of RF parameters. 

For example, the number of divisions of each tree, mtry. In the case of other selection methods, 

the mtry parameter was always the default, 1/3 of the covariates. In the RFE this parameter is 

optimized using LOO-CV validation, thus selecting an optimal value. Even so, the difference 

between selection methods is small, and it does not follow the pattern observed in the linear 

models. 

The MLR with several covariates showed a tendency to have worse performance, 

because its effect of harmful multicollinearity in the parametric models; thereby impairing its 

fitting (Hengl, 2009; Kempen et al., 2009; ten Caten et al., 2011). For linear models the RFE 

selection method (using the RFE lmFuncs function) did not present good results; it was the 

model with the worst result, except for soil pH. Furthermore, it almost always selects the same 

covariates, regardless of the soil attributes tested. This suggests that selection algorithm using 

the function for linear models in the caret package should be used carefully. In general, the best 

way to select covariates for MLR is the stepwise selection with AIC criteria, a common method 

to select models in linear regression (Carvalho Junior et al., 2016; Chagas et al., 2016; 

Meersmans et al., 2012b; Samuel-Rosa et al., 2015; Vermeulen and Niekerk, 2017). 

The GAM_scorpan was the most appropriate model for prediction of all soil’s attributes. 

It presented the best performance, in both ways, when evaluated using external validation and 

with cross-validation (Tables 10, 11, 12). However, this was the only model where, in all soil 

attributes, performance in the cross-validation was lower than in the external validation. This 

result may be due to the fact that external validation samples (mostly legacy data) are not 

random and do not overlap the geographic and attribute space of the data variation. 

For the three soil attributes and selection methods, the linear models showed inferior 

performance to GAM. This is probably because relationships between soil attributes and 

covariates are not linear, and models such as the MLR fail to capture the nonlinear relationships 

efficiently (Guo et al., 2015; Jeong et al., 2017; Lagacherie et al., 2013; Poggio et al., 2013; 

Poggio and Gimona, 2014). In contrast, GAM models, where it is possible to model nonlinear 

relationships (Chartin et al., 2017; de Brogniez et al., 2015; Jeong et al., 2017; Poggio et al., 

2013; Poggio and Gimona, 2017a), had the best performance when combined a nonlinear 

modelling approach and the concept of soil formation factors for covariate selection (expert 

knowledge). 

Pedological knowledge was used by Nussbaum et al. (2018) to exclude covariates with 

low spatial variation, and aggregate levels of categorical variables with low sample density per 

level. The knowledge of soil forming factors as well as of study area is a powerful tool, and 

when associated with computational tools it may improve predictions of soils properties and 

classes. 

 

4.5.2.3 Soil formation factors and pedological elicitation 

When the importance of the variable is considered in the RF models, the RF_cor, for 

just to see the more important covariates (Figure 23), elevation (DEM) is a factor deemed highly 

important for the three evaluated attributes. It is always listed in the top three when evaluated 

in the MSE (mean squared error). 
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Figure 23. Importance of the environmental covariates derived from the RF for pH (left), soil 

carbon content (middle) and CEC (right). %IncMSE— % increase in mean squared 

error 

 

Similarly, the geological material always appears as a relevant covariate in the RF 

model, and for all soil attributes elevation and geology are included in the RF_imp model; that 

is to say, they are among the six most significant covariates. For pH, the spatial component was 

a relevant factor in which both X and Y coordinates were selected and also the covariate XY. 

For soil carbon content the Y coordinate and XY covariates were selected among the six most 

important ones. For CEC only, the Y was selected to represent spatial information among the 

six most important covariates. At least one attribute derived from satellite image was selected, 

via pH and CEC prediction, usually NDVI and band4. For soil carbon content, attributes from 

satellite image were placed as seventh and eighth (NDVI and band4, respectively) (Figure 23). 

The correlation analyses show a direct relationship between elevation and the soil attributes, 

with values of 0.35, 0.59 and 0.45 for pH, C and CEC, respectively; and a negative correlation 

with the reflectance (for example the Red Edge band) with values of -0.16, -0.48, and -0.59 for 

pH, C and CEC, respectively (Figure 17). 

All soil factors are related, for example, the relief has spatial variation, and the highest 

part is in the centre; in turn, the elevation influences the weather, that is cold and wet in the 

PNI, and that leads to a distinct distribution of plant species. This environment favours 

accumulation and preservation of soil organic matter, due to low temperatures, leading to 

formation of the organic soils in the high altitudes (Benites et al., 2007; Soares et al., 2016). 

This agreed with the results found in the GAM_scorpan models, the models selected as 

the best since they combine the most important covariates, related to parent material, relief, 

organism and position in the geographic space. For example, the higher carbon and CEC 

contents, attributes strongly related to each other, were predicted with highest values in the 

areas of INP with altitudinal fields coverage (predominant species are Poaceae and 

Cyperaceae), which are concentrated in the plateau central region, where the dominant geology 

is composed by quartz-syenites and related sediments (Santos et al., 2000; Soares et al., 2016). 
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4.5.2.4 Spatial prediction and uncertainty propagation 

When the predicted values (in the grid) and the observed values were compared, it was 

observed a tendency of the MLR to extrapolate results, especially lower values being more 

negative; as in the carbon and CEC (Table 13 and Figures S2, S3 and S4). The RF model focuses 

on values closer to the mean and with less amplitude, which is a characteristic of this model, 

that have not capacity for extrapolation in the attribute space (Table 13 and Figures S2, S3 and 

S4). Similar results were observed by Chagas et al. (2016) and Carvalho Junior et al. (2016), 

when comparing RF and MLR. 

The GAM models placed between RF and MLR regarding ability to interpolate and 

extrapolate. For carbon content, the extreme values (minimum and maximum) were similar to 

prediction made by MLR, with maximum values close to measured values, but the minimum 

showed negative values (Table 13). 

Table 13. Descriptive statistics of the observed values (original data) and predicted values 

(grid) for soil attributes using the best covariate selection approach for MLR, RF and 

GAM models 

pH Min Mean Max 

Original data 3.24 4.4 5.49 

MLR_rfe 0.69 4.22 7.19 

RF_rfe 3.63 4.32 4.99 

GAM_scorpan 2.33 4.21 5.61 

Total carbon    

Original data 3.13 11.3 27.8 

MLR_step -4.31 9.79 22.78 

RF_rfe 4.29 10.23 18.95 

GAM -4.14 8.98 23.54 

CEC    

Original data 9.39 19.39 69.01 

MLR_step -4.61 16.47 31.57 

RF_rfe 11.37 17.82 46.57 

GAM_scorpan 1.38 16.67 36.63 

 

Despite the best performance of the GAM model, evaluated by the R2, RMSE and MSE 

metrics, there was an extrapolation of values predicted in the grid. This reinforces the 

importance of evaluating the spatial propagation of uncertainty in DSMs (Merrill et al., 2016; 

Poggio and Gimona, 2014; Stumpf et al., 2016; Truong and Heuvelink, 2013; Vaysse and 

Lagacherie, 2017). The uncertainty in the predictions of soil attributes for the superficial layer 

was mainly associated with extrapolation of values for regions not sampled, and the INP 

boundaries with greater limitation of access. Besides some geology classes occurred in small 

areas, consequently they had fewer soil samples (Figure 24). A similar pattern was observed by 

Cambule et al. (2014), predicting carbon stocks in the Limpopo National Park, where they 

observed high uncertainty values and it was suggested that it was due to short-range spatial 

structure combined with the sparse sampling. 
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Figure 24. Standard error lower and upper values derived from a Bayesian posterior 

distribution of each GAM_scorpan model fitted.  

4.5.3 3D approach 

Three-dimensional quantitative modelling is relatively new in soil science especially in 

Brazil. Soil prediction in 3D space it is nothing more than prediction in three-dimensional space, 

in other words, prediction in 2D space (Latitude [Y] and Longitude [X]) plus soil depth (Z) or 

commonly described as a prediction for the whole profile (Poggio and Gimona, 2017b). And is 

possible by using manly continuous depth functions in advanced algorithms (Malone et al., 

2009) or geostatistical interpolation using 3D variogram (Poggio and Gimona, 2017a).  

To run 3D modelling using continuous depth functions, is needed to add depth of 

horizons as covariate in the model and for that is used a small function to assign depth values 

as the center depth of each horizon. As it is known where the horizons start and end, using the 

mentioned function is known at what depths the values of the properties change and 

consequently, it is possible to predict the target soil property in any depth using in the grid the 

central point of the horizon to be estimated, see Hengl and MacMillan (2019) for more 

information. Normally the predictions are done according to Global- SoilMap project 

specification, 0-5, 5-15, 5-30, 30-60, 60-100 and 100-200 cm (Arrouays et al., 2014). 

4.5.3.1 Continuous depth function using GAM scorpan 

The Figure 25 shows the vertical distribution of size fractions for each order of soil, 

according to the slice in layers of 1 cm and harmonized in five layers of predefined depths (0-
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5, 5-15, 5-30, 30-60, 60-100 cm). The dark blue line represents the mean value of the soil 

attribute and light blue spot represents the 25 and 75 percentiles of the attribute at a given depth. 

Based on results for topsoil layer prediction, the GAM scorpan approach was chosen to 

predict the soil attributes for the whole profile. In this case, besides the base model of 2D GAM 

with covariates X, Y and geology, the soil depth (Z) was added as a covariate in the base model 

to create a smoother 3D (Poggio and Gimona, 2014). As with 2D modelling, the base model 

was used to test different combinations of attributes derivate from DEM and satellite image. 

Since most of the soils in the INP are shallow, it was considered for prediction up to 100 cm 

depth. A greater depth than that represents less than 23% of the total data (Figure 25). 

 

 

Figure 25. Distribution of pH, Carbon content (%), and CEC (cmolc.dm-3) for the data 

collection. The percentage values represent the relative number of profiles that 

contributed to the estimates in each layer. 

 

4.5.3.2 Model evaluation 

The descriptive statistic for the whole soil profile was evaluated, and the predictions 

values for soil pH are very close (Tables 14) to the observed (Table 16), especially when using 

the cross-validation approach (Table 15). Values of determination coefficient for carbon content 

and CEC are higher among observed and predicted values than for pH, especially in cross-

validation (Table 15). The magnitude of errors, RMSE and MSE, shows a tendency to 

extrapolate low carbon contents. 
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Table 14. Descriptive statistics of predicted values for the whole profile using external 

validation dataset 

Attribute R2 RMSE MSE Min Mean Max 

pH 0.27 0.384 0.148 3.80 4.49 5.00 

C 0.26 5.729 32.820 -2.98 10.53 22.58 

CEC 0.42 10.749 115.540 6.61 17.67 31.52 

Table 15. Descriptive statistics of predicted values for the whole profile using cross-validation 

Attribute R2 RMSE MSE Min Mean Max 

pH 0.45 0.294 0.087 3.42 4.51 5.14 

C 0.60 3.633 13.202 -3.81 6.43 20.96 

CEC 0.59 5.947 35.362 -0.03 13.65 46.95 

 

Although there is a positive relationship between predicted and observed carbon values, 

they decrease in depth (Figure 25) and there is a tendency for values to become very low for 

depths greater than 30 cm (Tables 17 and 18). This is especially true for soils that begin with 

low levels of soil carbon, such as mineral soils, which have almost 0% of soil carbon at the 

greatest depth (Figure S5). Particularly in the deeper layers, the low number of points to 

represent these layers is a factor that affects the prediction (Tables 17 and 18). The same results 

were observed by (Kempen et al., 2011; Mulder et al., 2016b; Poggio and Gimona, 2017a) 

where the performance was much better for the top layer than for subsurface layers. 

Table 16. Descriptive statistics of complete and validation dataset 

Attribute All data  Data validation 

Min Mean Max  Min Mean Max 

pH 
3.24 4.51 5.72 

 
3.72 4.69 5.46 

C 
0.24 6.42 29.48 

 
0.43 7.95 17.46 

CEC 
3.00 13.68 69.01 

 
4.35 19.04 69.01 

 

The form of the model evaluation, external data or cross validation, leads to different 

suggestions of better result by depth. In external validation, the best performance was in the 30-

60 cm layer for all attributes, despite sub estimation of carbon content (Table 17). For cross-

validation, in which better results were obtained, the best performance was for 5-15 cm, for pH 

and C, and 60-100 cm for CEC (Table 18). 
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Table 17. Descriptive statistics of predicted values for each depth using external validation 

dataset. 

Attribute R2 RMSE MSE 

Min Mean Max Depth 

(cm) 

n* n** 

pH 0.31 0.45 0.203 3.78 4.39 5.08 0-5 90 16 

 0.33 0.439 0.192 3.81 4.41 5.00 5-15 90 16 

 0.29 0.385 0.148 3.87 4.45 4.88 15-30 85 16 

 0.28 0.334 0.112 4.00 4.50 4.88 30-60 73 14 

 0.42 0.302 0.091 4.14 4.57 5.09 60-100 51 10 

C 0.15 5.437 29.564 2.64 14.31 22.90 0-5 90 16 

 0.14 5.216 27.203 2.02 13.38 21.93 5-15 90 16 

 0.11 5.708 32.582 1.02 11.85 20.34 15-30 85 16 

 0.49 3.306 10.929 -0.41 8.38 12.95 30-60 73 14 

 0.32 4.430 19.624 -1.80 6.97 13.86 60-100 51 10 

CEC 0.29 12.978 168.417 14.47 22.61 33.27 0-5 90 16 

 0.31 13.171 173.471 13.62 21.59 32.08 5-15 90 16 

 0.41 12.707 161.461 12.11 19.84 30.08 15-30 85 16 

 0.61 10.420 108.579 9.01 16.60 26.62 30-60 73 14 

 0.52 7.214 52.045 7.52 14.78 23.44 60-100 51 10 
Note: n* number of observations in all data for each depth, and n** number of observations in validation 

dataset for each depth.  
 

Table 18. Descriptive statistics of predicted values for each depth using LOO-CV dataset. 

Attribute R2 RMSE MSE 

Min Mean Max Depth 

(cm) 

n* n** 

pH 0.43 0.354 0.126 3.78 4.39 5.08 0-5 90 16 

 0.46 0.332 0.110 3.81 4.41 5.00 5-15 90 16 

 0.41 0.299 0.089 3.87 4.45 4.88 15-30 85 16 

 0.32 0.272 0.074 4.00 4.50 4.88 30-60 73 14 

 0.38 0.282 0.079 4.14 4.57 5.09 60-100 51 10 

C 0.32 9.416 88.661 2.64 14.31 22.90 0-5 90 16 

 0.35 9.504 90.328 2.02 13.38 21.93 5-15 90 16 

 0.30 9.805 96.145 1.02 11.85 20.34 15-30 85 16 

 0.27 9.907 98.139 -0.41 8.38 12.95 30-60 73 14 

 0.28 9.027 81.489 -1.80 6.97 13.86 60-100 51 10 

CEC 0.40 7.152 51.150 14.47 22.61 33.27 0-5 90 16 

 0.41 7.154 51.173 13.62 21.59 32.08 5-15 90 16 

 0.52 6.805 46.313 12.11 19.84 30.08 15-30 85 16 

 0.58 6.292 39.594 9.01 16.60 26.62 30-60 73 14 

 0.65 4.360 19.012 7.52 14.78 23.44 60-100 51 10 

Note: n* number of observations in all data for each depth, and n** number of observations in validation 

dataset for each depth.  

4.5.4 3.3.3 Spatial prediction and uncertainty propagation 

When comparing the spatial prediction of the models using external and cross-validation 

(CV), the first had worse performance (Table 19). This is related, among other factors, to 

limitations in access, consequently, smaller number of points to calibrate the models. 
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Table 19. Descriptive statistics for grid values prediction using external validation model and 

LOO-CV model 

Attribut

e 

Depth 

(cm) 

External validation LOO-CV 

Min Mean Max Min Mean Max 

pH 0-5 3.78 4.39 5.08 3.78 4.39 5.08 

 5-15 3.81 4.41 5.00 3.81 4.41 5.00 

 15-30 3.87 4.45 4.88 3.87 4.45 4.88 

 30-60 4 4.5 4.88 4.00 4.5 4.88 

 60-100 4.14 4.57 5.09 4.14 4.57 5.09 

C 0-5 -54.62 8.83 34.89 -6.29 11.16 24.38 

 5-15 -55.29 7.9 33.43 -6.89 10.04 22.97 

 15-30 -56.41 6.41 31.14 -8.31 8.26 20.81 

 30-60 -58.18 4.24 30.01 -10.26 5.67 19.18 

 60-100 -58.34 2.98 30.47 -10.59 4.01 19.19 

CEC 0-5 14.47 22.61 33.27 14.47 22.61 33.27 

 5-15 13.62 21.59 32.08 13.62 21.59 32.08 

 15-30 12.11 19.84 30.08 12.11 19.84 30.08 

 30-60 9.01 16.6 26.62 9.01 16.60 26.62 

 60-100 7.52 14.78 23.44 7.52 14.78 23.44 
 

Thus, the cross-validation seems to be more appropriate when there is a limited number 

of samples to fit the 3D function (Amirian Chakan et al., 2017; Taghizadeh-Mehrjardi, 2016; 

Taghizadeh-Mehrjardi et al., 2016). Even if more data are available, this is a common approach 

used in recent 3D soil properties modelling (Mulder et al., 2016a, 2016b; Veronesi et al., 2014). 

The evaluation of spatial uncertainty propagation showed a greater uncertainty for the 

higher values given by the standard error (Figure 26), due to noise in the very steep areas (above 

100%) and/or shadow detected in the satellite images. Also, areas that had greater uncertainty 

occurred when the predicted values are associated with higher access limitation, with little or 

no soil samples (see Figure 2 and 26). 

Most soil attributes were produced with acceptable modelling diagnostics and 

uncertainty ranges, delivering realistic soil–landscape spatial patterns, extrapolated in limited 

access areas, especially for soil carbon content in deeper layers (Table 19). The same results 

were observed by Kidd et al. (2015), suggesting that maps should be produced with continuous 

improvements, from the input of newly collected data. Prediction uncertainty can help to choose 

supplemental sampling to improve the DSM (Li et al., 2016). 
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Figure 26. Standard error propagation derived from a Bayesian posterior distribution of each 

3D GAM model fitted for pH (left) Carbon content (%, middle), and CEC (cmolc.dm-

3, right). 
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 CONCLUSIONS 

In general, the GAM model had superior performance than RF and MLR. The approach 

based on soil forming factors showed to be a simple and viable method for covariates selection 

in the GAM model, especially considering limitations regarding degrees of freedom due to 

limited number of soil samples. 

The selection by variable importance did not present a significant improvement in 

relation to the model with all the covariates, and it is a subjective method as to number of 

covariates to be maintained in the final model. 

RF models had not been sensitive to covariate selection methods. RFE proved to be a 

viable alternative only to RF, especially since the model has optimized parameters when RFE 

is used. 

Because soil attributes do not have linear relationships with environmental covariates, 

the models that captured these relationships tend to be better. 

The elevation, parent material and covariates from the RapidEye sensor were the factors 

that most influenced the soil properties of the Itatiaia National Park plateau. 

The greater uncertainty was associated with the low accessibility areas, which had low 

sampling density and/or noises in the covariates. The 2 and 3D soil properties modelling with 

uncertainty propagation can be useful to attend the demand of INP for ecosystem management. 

The high resolution of soil attributes and uncertainties produced for INP in the 3D space 

are an important step in developing a comprehensive soil database, allowing to deliver 

quantitative soil-information on a scale adequate to the INP demands. 
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5  CHAPTER III:  

 

 

SPATIAL BAYESIAN BELIEF NETWORK: A PARTICIPATORY 

APPROACH FOR MAPPING ENVIRONMENTAL 

VULNERABILITY AT THE ITATIAIA NATIONAL PARK  
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 RESUMO 

Uma Rede de Crenças Bayesiana (BBN) foi implementada para avaliar a vulnerabilidade 

ambiental no Parque Nacional do Itatiaia (PNI). Informações sobre solos, uso/cobertura da 

terra, clima, relevo e material parental foram usadas para criar a BBN, e os nós de entrada foram 

aqueles presumidos como tendo influência direta na análise de vulnerabilidade ambiental. A 

revisão da literatura e uma abordagem participativa serviram de base para construir a estrutura 

da rede e definir as relações de dependência entre os nós através das tabelas de probabilidade 

condicional (CPTs, inglês). As áreas mais frágeis foram identificadas como as que apresentam 

solos com os seguintes atributos: altos teores de carbono orgânico, baixa densidade, baixo pH, 

alta capacidade de troca catiônica, pouco drenado, perfis menos desenvolvidos (rasos), declives 

acentuados, cobertura vegetal com gramíneas herbáceas (campos de altitude), localizados 

próximos às trilhas / fazendas e com alta suscetibilidade ao fogo. Também recebeu uma alta 

probabilidade de forte e muito forte vulnerabilidade ambiental, solos formados a partir de 

material parental do tipo coluvial. Apesar da complexidade da área de estudo, a BBN conseguiu 

produzir um resultado significativo para a distribuição espacial da vulnerabilidade ambiental. 

Além da abordagem da BBN ser menos subjetiva do que a convencionalmente utilizada em 

estudos de vulnerabilidade no Brasil, foi possível obter a propagação da incerteza associada à 

predição. Os resultados ajudarão os tomadores de decisão a identificar áreas prioritárias de 

intervenção, reduzir a degradação do solo nas áreas altamente vulneráveis e ajudar os gerentes 

do PNI a alcançar um equilíbrio entre as necessidades de conservação da natureza e as 

oportunidades de recreação. Além disso, o modelo da BBN pode ser atualizado à medida que 

novos conhecimentos ou dados são produzidos; e pode ser usado para apoiar o processo do 

plano de manejo adaptativo, bem como para contribuir com outras pesquisas, especialmente 

aquelas relacionadas aos serviços ecossistêmicos em áreas montanhosas. 

 

Palavras-chave: Degradação do solo. Raciocínio probabilístico. Sistemas baseados em 

especialistas. Incerteza. Plano de manejo 
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 ABSTRACT 

A Bayesian Belief Network (BBN) was implemented to assess environmental vulnerability in 

the Itatiaia National Park (INP). Information of soils, land use/cover, climate, relief and parent 

material were used to create the BBN, and the input nodes were those presumed as having direct 

influence in the environmental vulnerability analysis. The literature review and a participatory 

approach were the basis to construct the structure of the network and to define the relations of 

dependence between the nodes through the conditional probability tables (CPTs). The most 

fragile areas were identified as having soils showing the following attributes: high levels of 

organic carbon, low bulk density, low pH, high cation exchange capacity, poorly drained, 

profiles less developed (shallow), accentuated slopes, vegetation cover with herbaceous 

graminoid plants (high altitude fields), located close to the trails/farms and with high fire 

susceptibility. Also received a high probability for strong and very strong environmental 

vulnerability, soils formed from colluvial parent material. Despite the complexity of the study 

area, BBN was able to produce a significative result of the environmental vulnerability spatial 

distribution. In addition to the BBN approach being less subjective than that conventionally 

used in vulnerability studies in Brazil, it was possible to obtain the propagation of the 

uncertainty associated with the prediction. The results will help decision-makers to identify 

priority areas for intervention, to reduce soil degradation in the highly vulnerable areas and help 

the INP managers in achieving a balance between nature conservation needs and recreational 

opportunity. Moreover, the BBN model may be updated as new knowledge or data is produced; 

and it can be used to support the process of the adaptive management plan, as well as to 

contribute to other researches, especially those related with ecosystem services in mountainous 

areas. 

 

Keywords: Soil degradation. Probabilistic reasoning. Expert-based systems. Uncertainty. 

Management plan 
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 INTRODUCTION 

The “Serra da Mantiqueira” region, where the Itatiaia National Park (INP) is located, is 

considered to be highly vulnerable to erosion processes, mass movements and landslides, due 

to their geo-environmental characteristics, such as high slope, shallow soils, high precipitation 

in a short period of time (Barreto et al., 2013; Delgado et al., 2018). In addition, these factors 

are aggravated by anthropic pressures (land usage). 

One of the sources of pressure in the INP is the tourist visitation. According to Magro 

et al. (2004) and Barros et al. (2007) in the last years and mainly in the last decades the INP 

received a significant increase of visitation, especially for recreational activities, the practice of 

sports and ecotourism; which depend on access by trails that interconnect the various regions 

of the Park. The lack of information on land use planning, to support the park's management 

plan, associated with intensive usage may lead to the environmental degradation, especially in 

areas with high natural risks related to landslide. The pressure by people visitation contributes 

to environmental imbalances, caused by the successive trampling and compacting of the soil, 

thus reducing the soil porosity, which associated with the degree of slope can trigger other 

impacts, for instance, intensifying soil loss by erosion processes (Olive et al., 2009; Tomczyk 

et al., 2013). 

The concept of environmental vulnerability has several interpretations, for example for 

Nguyen et al. (2016) it is defined and governed by four factors: hydro-meteorology signatures, 

land resource, social economics (human activities), and topography condition. De Lange et al. 

(2010) considered that, in general, the environmental vulnerability is a function of exposure to 

a stressor, effect (also termed sensitivity or potential impact) and recovery potential (also 

termed resilience or adaptive capacity). Besides that, environmental vulnerability is one of the 

shortcomings commonly associated with tourism pressure in developing regions (Geneletti and 

Dawa, 2009), 

In Brazil, there are basically two approaches to vulnerability/fragility assessment in 

environmental projects, and they are based on the principle that nature presents an intrinsic 

functionality between its physical and biotic components which consider the relief analysis 

focused on the geomorphologic application. In one of the methodologies, the authors define the 

fragility of the environment as a function of relief, soil types/attributes, vegetation cover/land 

use and climate (rainfall) (Ross, 1994, 2012); and the second defines basic territorial units that 

consider all those factors plus parent material (Crepani et al., 2001). In both models the 

elaboration of the final map is based on map algebra and weights are given to each factor 

considered (Crepani et al., 2001; Ross, 1994; Spörl and Ross, 2004). However, these 

methodologies have limitations because the weights are arbitrarily and subjectively attributed 

(Spörl and Ross, 2004). Thus, the result is strongly dependent on the person who elaborates the 

map and there is no estimate of the uncertainty, basically one expert tells the "truth". However, 

these authors were chosen in this study of the INP, a conservation unit on the Atlantic Forest 

with a mountainous landscape, due to the parameters they take in consideration in the models. 

There are several works based on mentioned studies, such as Manfre et al. (2013), 

Rovani et al. (2016), Valle et al. (2016), and Choudhary et al. (2017). They follow the same 

principle, with small adaptations in accordance with the area of study, the experience of the 

specialist, and available data. To minimize the subjectivity, some studies implement the 

methodology of algorithms, such as artificial neural network (Spörl et al., 2011) and fuzzy logic 

(Cereda Junior and Röhm, 2013), but there is no description of application of these 

methodologies in models such as the Bayesian Belief Network (BBN), based on probability and 

specialist knowledge through participatory approach (Chen and Pollino, 2012; Landuyt et al., 

2013; Gonzalez-Redin et al. 2016). BBN modelling may facilitate the decision-making 

processes by managers, the characterization in a spatial context using GIS layers makes the 
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information more accessible (Gonzalez-Redin et al. 2016) and it is easily updated with new data 

entry (Bashari et al., 2016). 

The assumption of this study was that by using the BBN approach it is possible to 

combine the knowledge of several experts from different areas, implemented in a probabilistic 

model and based on studies involving vulnerability, to reduce the subjectivity of the 

vulnerability analysis process, as well as to produce results with the uncertainty associated with 

the prediction, which is essential in environmental analysis. 

 

The aims of this study were:  

i) to assess the soil vulnerability in the INP by integrating information of physical 

environment with knowledge of experts, in order to reconcile the demand for public use with 

ecosystems conservation;  

ii) to reduce subjectivity of the commonly used analysis of environmental vulnerability, 

by incorporating expert knowledge and results from literature in a quantitative/probabilistic 

approach, the BBN;  

iii) to compare Ross (1994) and Crepani et al. (2001) methodologies to assess the 

environmental vulnerability of INP areas, using quantitative/probabilistic approach. 
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 MATERIAL AND METHODS 

5.4.1 Study area characterization 

The study area comprises the upper part (plateau) of the Itatiaia National Park, with an 

approximate area of 164 km2 (Figure 27), high elevation and relief characterized as very steep 

(Barreto et al., 2013). The Itatiaia National Park is located in the southeastern region of Brazil 

in the Serra da Mantiqueira, between the States of Minas Gerais, Rio de Janeiro and São Paulo. 

 

 

Figure 27. Location of Itatiaia National Park (INP) in the south-eastern region of Brazil. In 

detail, the total area of INP, and the polygon with relief limits the upper part. Yellow 

points mark soil sampling  
 

 

The climate in the region is of mesothermic type (Cwb) according to the Koppen 

classification (Alvares et al., 2013), and the INP climatic domain has two mesothermal types. 

The upper part of the landscape shows a mild and rainy season during summer, and the yearly 

average temperature is 11.5°C with 8.4°C average during the winter (Barreto et al., 2013). The 

temperature may reach values below zero sporadically, for example in the winter of 2010 it was 

recorded a negative 8º C (Tomzhinski et al., 2012).  

The geology at the upper part of INP is dominated by quartz syenites and magmatic 

breccia, some alkaline granites, and in the total area homogeneous gneisses and nepheline 

syenite. Colluvial and alluvium sediments vary from sand to clayey and have blocks and 

boulders of alkaline rocks. In the upper part of INP, sediments in the valleys and bottom of 

slopes are rich in organic matter (Santos et al., 2000). Relief varies from mountainous to steep 

(Barreto et al., 2013), with slopes ranging from flat, on plains and valleys, to very steep in the 

rocky outcrops. 
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The predominant soils on the INP are: Leptosols, Regosols, Folic Umbrisols, Cambic 

Folic Histosols, Cambic Umbrisols, Umbrisols+Ferrasols, Cambisols, Folic Histosols and 

Histosols. In the upper part of the park the classes of Leptosols, Histosols and Folic Histosols 

dominate. These soils are mainly a result from the relief and high elevation, which create 

environmental conditions for accumulation of organic matter along the valleys and slopes 

among the rock outcrops (see chapter 1). 

5.4.2 BBM implementation, network construction and participatory process 

A Bayesian Belief Network (BBN) was developed to assess environmental vulnerability 

in the upper part of the INP (Figure 28). Information of, relief, parent material, climate soils 

and land use/cover were used to create the BBN, and the input nodes were those presumed as 

having direct influence in the fragility factors (environmental vulnerability). 

The main factors involved with the INP environmental vulnerability where identified 

based on literature review. The whole structure of the network was set up based on commonly 

used and well-established procedures to evaluate environmental vulnerability/fragility (Crepani 

et al., 2001; Ross, 1994; Ross, 2012), with the addition of a participatory approach 

(questionnaire, see attachment). Although these studies use mainly map algebra as a mapping 

approach (Adami et al., 2012; Manfré et al., 2013; Valle et al., 2016; Choudhary et al., 2017; 

Calderano Filho et al., 2018), which is believed to be a simplistic process of the environmental 

relationships, they provide a detailed description of the factors that involve vulnerability. This 

description was then used to create an online questionnaire, where researchers (total of 26), 

from various fields of knowledge, answered questions elaborated to capture the opinion about 

factors involved in the INP environmental vulnerability. Due to the large dispersion of 

information, a second selection was made to create and populate the conditional probability 

tables (CPTs). It was considered mainly the literature review and the expert opinion of 

researchers working directly with the environmental vulnerability project at the INP.  

It is noteworthy that for BBN implementation the results were not only considered 

quantitatively and that qualitative factors were also taken into account. In addition to the 

qualitative factors, the experience of the professional working in the INP and their expertise in 

the area on which the questions referred were taken into account when eliciting the specialist's 

knowledge (Hemming et al., 2017). Details about results of the participatory process, expert 

specialization, institution and years of work or research in the INP are presented in the figures 

from S14 to S19 and table S1. 

It is important not to use only quantitative data, because the same soil attribute may have 

very different interpretations depending on the environment (study area) and the experts. For 

example, the lowest vulnerability was considered by many as occurring in the sites with higher 

levels of soil organic matter, because these experts consider that the soil properties are more 

stable with the increase of the organic matter content of the soil, which favors aggregation, 

helps to retain cations and soil moisture, among other beneficial functions. This applies to 

mineral soils and agricultural conservationist systems, but in the case of INP, the highest levels 

of organic matter are found in the organic soils, identified by many experts as very vulnerable, 

because they are precisely that - fragile and on susceptible areas. These are the areas with the 

highest soil degradation by compaction and erosion (See Figure S13) especially close to the 

trails. 
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Figure 28. Flowchart of the BBN development with the input nodes (in our case all spatial) 

and biophysical variables. The network was based on expert opinion, literature review 

and participatory process. The CPTs population was based on expert opinion and 

literature review. The spatial BBN modelling that performed the inference of 

probability at the pixel level to obtain the final spatial outcomes is identified as 

environmental vulnerability probability (from very weak to very strong). 

Two basic networks were created, both having in common the following fragility 

factors: soil attributes (description of the main soil attributes that influence environmental 

vulnerability), relief (slope classes), land coverage or usage, climate (mainly the rainfall, 

volume and distribution) (Crepani et al., 2001; Ross 1994, 2012) (Figure 29). 
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Figure 29. BBN structure with the input nodes (spatial) on the top layers; and the intermediate nodes (not spatial) some intermediate nodes are 

used specially to translate the information into the five states of vulnerability (from very weak to very strong). The base of the network are 

the fragility factors. The bottom node is the BBN outcome (five states of environmental vulnerability). 
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In addition, the network based on Crepani et al. (2001) uses the concept of territorial 

units and the geology is considered in the environmental vulnerability analysis (Figure 30). 

 

Figure 30. The BBN structure using basic territorial units according to Crepani et al. (2001). 

In this case there are five fragility factors, with the inclusion of geology. 

 

The probability of nodes that are directly linked with the environmental fragility was 

termed here as fragility factors, to differentiate them from the other nodes because they are the 

base of the network. The fragility factors, commonly used in the analysis of environmental 

vulnerability (Crepani et al., 2001; Ross, 1994; Ross, 2012 Adami et al., 2012, Manfré et al., 

2013, Valle et al., 2016; Choudhary et al., 2017, Calderano Filho et al., 2018) receive the 

probabilities of the input and intermediate nodes and transfer to the output (environmental 

vulnerability). The CPT for the input and intermediate nodes were based mainly on the 

participatory process and expert opinion. The CPT for the base nodes, fragility factors, was 

adapted from Valle et al. (2016) and filled based on expert opinion. 

Based in Valle et al. (2016) each factor is part of the sum that influences vulnerability, 

and the environmental vulnerability varies from 1 (very weak) to 5 (very strong). The best 

possible condition observed are for the sum 4 (Table 20, without geology according to Ross, 

1994), and 5 (Table 21, with geology according to Crepani et al., 2001) in this case all the 

fragility factors have a very weak environmental vulnerability. The worst possible condition is 

for all the factors with very strong environmental vulnerability, layers sum 20 and 25, with and 

without geology respectively (Table 20 and 21). 

Table 20. Sum of scores, completion of the CPT to define the probability and description of 

the environmental vulnerability (Ross, 1994). 

Layers’ 

sum 

Environmental Vulnerability 

Very 

weak 

Weak Medium Strong Very 

strong 

Highest 

probability 
4  0.99 0.01 -  - - Very weak 

5 0.30 0.70 - - - Weak 

6 0.15 0.80 0.05 - - Weak 

7 0.10 0.80 0.10 - - Weak 

8 - 0.70 0.30 - - Weak 

9 - 0.30 0.70 - - Medium 

10 - 0.15 0.80 0.05 - Medium 

11 - 0.10 0.80 0.10 - Medium 



 

76 

 

12 - - 0.70 0.30 - Medium 

13 - - 0.30 0.70 - Strong 

14 - - 0.15 0.80 0.05 Strong 

15 - - 0.10 0.80 0.10 Strong 

16 - - - 0.70 0.30 Strong 

17 - - - 0.30 0.70 Very Strong 

18 - - - 0.15 0.85 Very Strong 

19 - - - 0.10 0.90 Very Strong 

20 - - - 0.01 0.99 Very Strong 

 

Table 21. Sum of scores, completion of the CPT to define the probability and description of 

the environmental vulnerability (Crepani et al., 2001). 
Layers’ 

sum 

Environmental Vulnerability 

Very weak  Weak Medium Strong Very strong Highest 

probability 

5 0.99 0.01 - - - Weak 

6 0.40 0.60 - - - Weak 

7 0.25 0.75 - - - Weak 

8 0.10 0.80 0.10 - - Weak 

9 0.05 0.80 0.15 - - Weak 

10 - 0.70 0.30 - - Weak 

11 - 0.40 0.60 - - Medium 

12 - 0.25 0.75 - - Medium 

13 - 0.10 0.80 0.10 - Medium 

14 - 0.05 0.80 0.15 - Medium 

15 - - 0.70 0.30 - Medium 

16 - - 0.40 0.60 - Strong 

17 - - 0.25 0.75 - Strong 

18 - - 0.10 0.80 0.10 Strong 

19 - - 0.05 0.80 0.15 Strong 

20 - - - 0.70 0.30 Strong 

21 - - - 0.40 0.60 Very Strong 

22 - - - 0.25 0.75 Very Strong 

23 - - - 0.15 0.85 Very Strong 

24 - - - 0.10 0.90 Very Strong 

25 - - - 0.01 0.99 Very Strong 

 

5.4.3 Biophysical variables (GIS layers) 

To infer the basic fragility factors that influence environmental vulnerability, several 

biophysical variables were prepared and defined as input node in the BBN (Table 22). 

In order to generate the soil properties maps, the INP database that comprises a total of 

90 profiles and 359 horizons was used. To generate the maps several predictions models were 

calibrated and tested. The two best models selected from chapter one, Generalized Additive 

Model (GAM) with selection of covariates by the SCORPAN approach (GAM_scorpan) and 

Rando Forest (RF) with covariate selection by recursive feature elimination (RFE), were used 

to predict continuous and categorical soil attributes, respectively. Also, for land use/cover 

prediction the RF_rfe was used to predict the current land use. The fragility factors are based 

on Ross (1994; 2012) and Crepani et al. (2001). The other layers are based in the literature, and 

they were defined in this study for the environmental vulnerability assessment proposal. 
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Table 22. Description of the biophysical variables used on the Bayesian network as input nodes 

to assess the vulnerability at the INP. 
Fragility 

factor 

Variable/node Description and literature sources Classes / States 

Relief (R) Slope (%) Calculated from the digital elevation 

model (DEM) of INP, and classified 

according to Santos et al. (2015)  

Flat (0-3), gently sloping 

(3-8), sloping (8-20), 

strongly sloping (20-45), 

steep (45-75), very steep 

(> 75) 

Soil (S)  Bulk density 

(g.dm-3) 

Continuous soil property (physical) 

predicted using GAM_scorpan model 

High (>0.9), medium 

(0.5-0.9), low (< 0.5) 

Depth (cm) Continuous soil property (physical) 

predicted using GAM_scorpan model  

High (>100), medium 

(50-100), low (< 50) 

Drainage 

(dimensionless) 

Categorical soil property (physical) 

predicted using RF_rfe model  

Well-drained, poorly 

drained 

Texture 

(dimensionless) 

Categorical soil property (physical) 

predicted using RF_rfe model  

Clay, loam, organic 

pH 

(dimensionless) 

Continuous soil property (chemical) 

predicted using GAM_scorpan model 

High (> 5), medium (4-

5), low (< 4) 

Carbon content 

(%) 

Continuous soil property (chemical) 

predicted using GAM_scorpan model 

High (> 8), medium (3-

8), low (< 3) 

CEC 

(cmolc.dm-3) 

Continuous soil property (chemical) 

predicted using GAM_scorpan model 

High (> 20), medium 

(10-20), low (< 10) 

Land 

cover/use 

(LU) 

Land cover Current land use predicted using 

RF_rfe. The six classes were based on 

literature, soil points observation and 

Google Earth®  

Forest, herbaceous, 

altitude fields, pasture, 

rock outcrop, and 

exposed soil 

Trails (m) Distance from the trails  Near (0 to 100), medium 

(100 to 200), far (> 200) 

Farms (m) Distance from the farms  Near (0 to 150), medium 

(150 to 300), far (> 300) 

Fire 

susceptibility 

(dimensionless) 

Derived from land cover, DEM terrain 

attributes DEM, fire history, socio-

economic factors (Tomzhinski et al., 

2012) 

High, medium, low 

Climate 

(C) 

Rainfall (mm) Obtained from the WorldClim Vers2. 

The INP upper part was divided into 

two classes (Fick et al., 2017) 

1600 to 2000 

2000 to 2500 

Parent 

material 

(P) 

Geology Map with six classes in the INP upper 

part, from Santos et al. (2000) 

Alluvial sediments, 

colluvium sediments, 

nepheline syenite, quartz 

syenite, alkaline granite, 

magmatic breccia, 

homogeneous gneisses 

Note: For the purpose of modeling soil textural classes, the soil material defined as organic was included as a 

texture class, as in Poggio et al. (2017a) 
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5.4.4 BBN parameterization  

Data from literature review, expert opinion, and participatory approach were used to 

populate the CPTs. The first step was to translate the biophysical variables states into the five 

states of fragility, in order to make the links between the networks easier, especially in the nodes 

that receive a lot of parent nodes. The bottom of the network (the outcome node) is based in a 

combination of the states of environmental vulnerability for each factor (Valle et al., 2016) and 

in the CPT there is a probability for each combination (Tables 20 and 21). This approach takes 

into account the uncertainty into the environmental vulnerability analysis (not considered in 

previous studies), and at the same time, it makes easier to populate the CPT.  

Based on the literature review, expert opinion, participatory process and expert 

elicitation, the INP environmental vulnerability was defined, in a wide-ranging sense, as a 

function of the fragility factors: relief, parent material, climate, soil, and land use/cover. 

Intermediate nodes were created to translate the information into five fragility classes, very 

weak (VW), weak (W), medium (M), strong (S) and very strong (VS), which were used to 

combine factors in the network and populate CPTs. 

In this way, the areas with very strong environmental vulnerability in the INP were those 

with soils having low bulk density, high soil carbon content, high cation exchange capacity, 

low pH, with texture identified as organic, altitude fields as land coverage, and specially the 

soils identified in the Brazilian Soil Classification System (SiBCS) (Santos et al., 2018) as 

Organossolos (Folic Histosols, according to WRB, 2015). There are two classes of these soils 

in the INP: Organossolos Háplicos (Histosols with a histic horizon), with poor drainage; and 

Organossolos Fólicos (Histosols with a folic horizon) that have a good drainage and are often 

shallow. Other areas with strong environmental vulnerability were those with very steep slopes, 

close to the trails/farms, and with highest rainfall volume (Figure 31). On the other hand, areas 

with soils having medium values of bulk density, soil organic carbon, and cation exchange 

capacity; high pH; loamy texture; forest land cover; mineral soils well developed, with deep 

profiles and good drainage; normally on flat slopes; far away from trails and farms; and with 

medium volume of rainfall had the most stable environmental condition (Figure 32). 
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Figure 31. Illustrated case of a feasible combination and the relative probability of the most unstable environmental conditions 
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Figure 32. Illustrated case of a feasible combination and the relative probability with the most stable environmental condition 

 



 

 

5.4.5 Spatial prediction and uncertainty propagation  

Spatial explicit outputs were obtained through the CPT and evidence propagation of the 

probability by using the BBN tools in GeNIe® and R software. The final spatial output of the 

BBN modelling was the environmental vulnerability probability, divided in five states: very 

weak, weak, medium, strong and very strong. Based on the BBN implementation, five sets of 

maps were obtained (one for each state), showing the probability of environmental vulnerability 

(very weak, weak, medium, strong and very strong), also a map showing the environmental 

vulnerability (from very weak to very strong) with highest probability per pixel (each pixel 

returned the most probable state of environmental vulnerability). The uncertainty of the spatial 

prediction of environmental vulnerability, a random discrete (categorical) variable C in a spatial 

location s was quantified using the Shannon entropy (Shannon, 1948). 

𝐻(𝑠) = ∑𝜋(𝑐𝑖

𝑛𝑖

𝑖=1

, 𝑠)𝑙𝑜𝑔𝑘𝜋(𝑐𝑖, 𝑠) 
Eq. 06 

Where (ci, s) is the estimated probability that the random variable C, at location s, takes 

the value ci among the k possible values (Agresti, 2002). The use of the logarithm with base k 

scales the value of H(s) between 0 and 1, where 0 means no uncertainty – one of the k categories 

has the probability of occurrence equal to 1, and the value 1 means maximum uncertainty, all 

categories have an equal probability of occurrence (Kempen et al., 2009). All maps were 

computed with a spatial resolution of 25 m. 

5.4.6 Software used 

The R software (R Core Team, 2018) with the packages: raster, rgdal, maptools and 

RSAGA for data management, preparation and visualisation (Bivand et al., 2017; Bivand and 

Lewin-Koh, 2017; Brenning, 2008; Hijmans, 2016). For the BBN inference it was used the 

James Hutton Institute tool, BayesGIS (DEMO version), a shiny app that is supported by the R 

packages bnlearn (Scutari, 2010) and gRain (Højsgaard, 2012). The GeNIe® 2.2 BBN Modeler 

software (BayesFusion LLC 2018) was used to develop the BBN structure and to fill the CPTs. 
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 RESULTS AND DISCUSSION 

5.5.1 Literature review, participatory process e expert elicitation 

The relief was represented by slope classes (Table 23), since they influence strongly the 

water infiltration and flow velocity, and the slope is one of the main factors in the risk analysis 

of landslides, soil erosion and silting of watercourses (Calderano Filho et al., 2018; Valle et al., 

2016).  

Table 23. Environmental vulnerability and probabilities (CPT) by variables slope and geology 

Slope classes 

(%) 

CPT Highest 

probability 

Geology CPT Highest 

probability 

Flat 

(0-3) 

0.99 

VW; 

0.01 W 

Very weak Alluvial 

sediments 

0.3 S; 

0.7 VS 

Very strong 

Gently sloping 

(3-8) 

0.7 W; 

0.3 M 

Weak Colluvium 

sediments 

0.45 S; 

0.55 VS 

Very strong 

Sloping 

(8-20) 

0.7 M; 

0.3 S 

Medium Nepheline 

syenite 

0.45 VW; 

0.55 W 

Weak 

Strongly 

sloping 

(20-45) 

0.7 S; 

0.3 VS 

Strong Quartz 

syenite 

0.7 VW; 

0.3 W 

Very weak 

Steep 

(45-75) 

0.3 S; 

0.7 VS 

Very 

Strong 

Alkaline 

granite 

0.55 W; 

0.45 M 

Weak 

Very steep 

(> 75) 

0.01 S; 

0.99 VS 

Very 

Strong 

Magmatic 

breccia 

0.45 W; 

0.55 M 

Medium 

   Homogeneous 

gneisses 

0.55 VW; 

0.45 W 

Very weak 

 

The somewhat flat valleys are assigned to very weak fragility, while steep and very 

steep areas are described as having high fragility. Due to the predominantly mountainous relief, 

the INP shows a high degree of environmental vulnerability, according to the slope information. 

When analyzed the geology variable, the sediments show the greatest fragility and 

gneisses and quartz syenite are the most stable are (Table 23). The classes of fragility for parent 

material are related to the geological evolution of the INP and the degree of cohesion of the 

rocks that compose the formation where INP is inserted (Crepani et al., 2001).  

Climate was evaluated based on the volume and distribution of rainfalls. Although the 

CPT has more classes, for the INP the spatial information grouped the influence of rainfall 

water surface runoff in two classes of environmental vulnerability based on highest 

probabilities, defined as: Medium (1600 to 2000 mm of precipitation, with CPT 0.3 W; 0.7 M); 

and Very strong (2000 to 2500 mm of precipitation, with CPT 0.3 W; 0.7 VS), with a short dry 

period distribution according to Ross (2012). The location of the INP favors occurrence of 

orographic rains, intensified in the summer. This explains the greater vulnerability (Ross, 2012), 

attributed especially to the higher part of the INP, where the rainfall is heaviest. 

The soil fragility was represented by soil properties reported by literature and they were: 

bulk density, soil depth, drainage, texture, pH, carbon content, and CEC. These characteristics 

were selected based on their relationship to land capability and predisposition to erosion, mass 

movements, and superficial landslides (Calderano Filho et al., 2018). For populating the CPTs 

the participatory process and expert knowledge were used, where very weak fragility is 
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associated with soils having: medium values of bulk density, organic carbon and CEC; deep 

profiles; well-drained; loamy texture; and with high pH. These properties are mainly found in 

the mineral soils of the study area. In the upper part of INP, the Organossolos (Histosols) have 

a common occurrence, and this class is described in the literature and confirmed in the 

participatory process as soils with high vulnerability. Thus, the soils with high fragility (very 

strong vulnerability) in the INP are those with low bulk density, shallow profiles, poor drainage, 

organic material, low pH, high organic carbon content and high CEC (Table 24), attributes 

found in the organic soils. 

Table 24. Environmental vulnerability and probabilities (CPT) variable soil 

Soil properties States CPT Highest probability 

Bulk density High 0.3 M; 0.7 S Strong 

 Medium 0.7 VW; 0.3 W Very weak 

 Low 0.7 VS; 0.3 S Very strong 

Depth High 0.7 VW; 0.3 W Very weak 

 Medium 0.1 W; 0.8 M; 0.1 S Medium 

 Low 0.3 S; 0.7 VS Very strong 

Drainage Well-drained 0.7 VW; 0.3 W Very weak 

 Poorly drained 0.7 VS; 0.3 S Very strong 

Texture Clay 0.3 M; 0.7 S Strong 

 Loam 0.7 VW; 0.3 W Very weak 

 Organic 0.3 S; 0.7 VS Very strong 

pH High 0.3 VW; 0.7 W Weak 

 Medium 0.1 W; 0.8 M; 0.1 S Medium 

 Low 0.7 S; 0.3 VS Strong 

Carbon content High 0.3 S; 0.7 VS Very strong 

 Medium 0.7 VW; 0.3 W Very weak 

 Low 0.3 M; 0.7 S Strong 

CEC High 0.3 S; 0.7 VS Very strong 

 Medium 0.7 VW; 0.3 W Very weak 

 Low 0.3 M; 0.7 S Strong 

 

For the land use/cover six classes were identified, where very weak and weak fragility 

were associated with forest and herbaceous cover (Table 25), and strong and very strong 

fragility associated with altitude fields, pasture, rock outcrop and exposed soils. The exposed 

soil had the highest probability of having a very strong environmental vulnerability. 

Table 25. Environmental vulnerability and probabilities (CPT) variable land use/cover 

Land use/cover CPT Highest probability 

Forest 0.9 VW; 0.1 W Very weak 

Herbaceous 0.9 W; 0.1 M Weak 

Altitude fields 0.9 S; 0. 1 VS Strong 

Pasture 0.3 S; 0.7 VS Very strong 

Rock outcrop 0.1 S; 0.9 VS Very strong 

Exposed soil 0.01 S; 0.99 VS Very strong 
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5.5.2 Model results, spatial interpolation and uncertainty propagation 

The model results for environmental vulnerability in the upper part of INP indicated 

very strong vulnerability in about 15% of the area, and strong in about 75%, for the model 

without geology (Ross, 1994); and when geology was taken into account (Crepani et al., 2001) 

the areas with strong vulnerability were more than 69 %, and very strong of 0.3 % (Table 26). 

When the geology map is used as model input there is a considerable increase in the medium 

vulnerability and a decrease of areas with very strong class.  

The predominance of strong vulnerability (Table 26) is mainly related to the slope in 

the mountainous relief. For the most sloping areas, both approaches (Ross, 1994; and Crepani 

et al., 2001) coincided with the higher class of environmental vulnerability. In addition, the soil 

types Organossolos (Histosols) are predominantly fragile. The vulnerability class very strong 

is found when a greater rainfall volume, presence of rock outcrops, and altitude fields as soil 

cover are combined (Table 26). 

 

Table 26. Areas of the upper part of INP with their environmental vulnerability classes 

according to Ross (1994) and Crepani et al. (2001). 

Vulnerability 

Class 

 

Ross (1994) 

 

Crepani et al. (2001) 

 Area (ha) Area % Area (ha) Area % 

Weak 2.75 0.02 10.19 0.06 

Medium 1592.81 9.71 5011.88 30.55 

Strong 12254.88 74.71 11333.12 69.09 

Very strong 2553.25 15.56 48.50 0.30 

Total 16403.69 100% 16403.69 100% 

 

The spatial BBN, developed using GeNIe and R software, provided a useful framework 

to represent relationships between spatial variables and environmental vulnerability. Even if 

there is a degree of uncertainty (Gonzalez-Redin et al., 2016) in the process, BBN is a better 

approach because it can deal with uncertainty (Landuyt et al., 2015; Marcot, 2012). The maps 

obtained through the spatial BBN (Figure 33) represent the highest probability of environmental 

vulnerability for each class. The results from the BBN models, according to the methods 

without the geology (Ross, 1994), and with geology (Crepani et al., 2001), led to different maps 

for INP (Figure 33a and 33b), and consequently different uncertainties (Figure 33c and 33d). 

The map of areas in the upper part of INP elaborated according to Crepani et al. (2001) 

approach shows the very strong environmental vulnerability along the valleys (Figure 33b); 

where soils with high organic matter and poor drainage predominate. For the map according to 

Ross (1994), the areas with very strong vulnerability are mainly related to organic soils or soils 

with a high content of organic matter but a shallow profile (Neossolos Litólicos, Leptosols) and 

near rock outcrops. They also include areas of altitude fields vegetation and with higher slope 

and elevations, where the volume of rainfall is greater. 
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(c) (d) 

Figure 33. Environmental vulnerability maps of the upper part of INP (a and b), and Shannon 

entropy (uncertainty) of environmental vulnerability predictions (c and d) (left - Ross, 

1994; right - Crepani et al., 2001) 

 

The main difference between the two approaches was in the proportion not in the 

number of classes, as it was in Manfré et al. (2013). According to this author, the Crepani et al. 

(2001) methodology generalized the environmental vulnerability for the geomorphic 

component, which may decrease the map accuracy, as it is shown in the uncertainty map (Figure 

33c and 33d). The results show the importance of establishing a methodology for validating the 

results using local samples, and to complement the method applied in this study where it was 

used uncertainty measurements. However, different from soil classes, which are well stablished 

by the classification system adopted, vulnerability classes have a conceptual subjectivity, which 

will affect the validation process. 

It was not possible to validate the vulnerability maps (by calculating estimates of error 

as accuracy and Kappa) as it was done in the digital soil mapping, because the degrees of 

vulnerability are not well defined as the soil classes. However, the methodology here proposed 

brings an advance by decreasing the subjectivity of the process, and it provides an element not 

previously available in this type of mapping, which is the uncertainty associated with the 

predictions. It can be observed, for example, that the regions that were described as having the 
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greatest vulnerability (central part of the park) were also the regions with the lowest uncertainty 

associated with it (or more certainty of classification), especially in the methodology proposed 

by Ross (1994), which is recommended for the INP. Not coincidentally these are the areas that 

already show greater soil degradation by compaction and erosion (Figure S13). 

In situ observations showed that human influence is higher on the lowest areas of INP, 

and mainly right outside the park boundaries, where land cultivation and access are possible. 

The conflicts over the territory, where a portion of the INP land is still used by farmers (mainly 

with pasture), and the socio-economic aspects also increase the vulnerability. Although the 

landscape and soils are not as fragile as in the upper central part of the park. Overall, the main 

goal should be protecting the most vulnerable environments at the upper part of INP, due to the 

resilience of endemic species and importance of Organossolos (Histosols) for water resources. 
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 CONCLUSIONS 

The analysis of the environmental vulnerability results, using the BBN classes, did not 

show areas with the very weak class, and most of the INP upper part areas had a strong 

vulnerability. The most fragile areas were identified with soils with high levels of carbon, 

profiles less developed (shallow), accentuated slopes, and a vegetation cover with herbaceous 

graminoid plants (high altitude fields). 

The Ross (1994) model presented larger areas with less uncertainty when compared 

with Crepani et al. (2001), and it showed a better agreement with the results of the evaluation 

of INP environmental vulnerability based on the expert's knowledge. BBN models add value to 

environmental vulnerability mapping by integrating uncertainties and expert knowledge in the 

analysis.  

The results of this study will allow decision-makers to identify priority areas for 

intervention, to reduce soil degradation in the highly vulnerable areas and to subsidize the 

management plan, as well as defining possible sites that should have limited access in the park. 
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6 GENERAL CONCLUSIONS 

This work investigated the use of environmental covariates from sources such as digital 

elevation models, satellite imagery, geology, geomorphology and climatic data to map soil 

attributes and types, and to better understand the soil-landscape relationship in the upper part 

of Itatiaia National Park (INP). Overall, the plateau has low accessibility, and the usage of 

techniques to optimize the sampling points selection in the areas with best accessibility was a 

viable alternative, in economic terms, and efficient considering the results produced. 

In general, the soils of the plateau part of the INP are predominantly shallow, with high 

levels of organic matter and low natural fertility. The organic soils have a high capacity to store 

carbon and water, on the other hand, they are very fragile. Even the mineral soils often have 

superficial horizons with high levels of organic matter and, in general, show lesser pedogenetic 

development. Many soil classes, especially those in the central part of the plateau, were not 

previously reported in the generalized soil map that is part of the INP management plan. With 

the update of the information, several classes have been included and this data will be available 

to future research projects and for environmental planning and preservation. 

The machine learning algorithm tested and the methods of covariates selection showed 

that even with few data good results could be obtained. Also, for the prediction of soil attributes 

(2D and 3D) it is indicated to use the Generalized Additive Model with covariates selection 

based on the soil forming factors equation scorpan and Random Forest; while the selection by 

recursive feature elimination method can be used for class prediction. Yet the predicted maps 

and associated uncertainty are important steps in the development of a comprehensive database, 

providing quantitative soil information in a scale more appropriate to the park's demands. 

Although the participatory process for evaluating environmental vulnerability requires 

reliability of judgment that depends on the experience of the experts consulted, taking 

advantage of this knowledge together with the literature review on the subject can be an efficient 

alternative to current vulnerability assessment methods. Models such as the Bayesian Belief 

Network (BBN) can integrate interdisciplinary knowledge, not only to ensure a useful model 

according to the needs of final users but to increase acceptance of vulnerability maps, thus 

adding value to current research. Also, BBN should be used whenever possible, as it allows the 

capture of complex relationships between vulnerability criteria in a clear way. 

The most fragile areas were those with the soils with greater capacity to store or lose 

carbon and water depending on the usage given. Finally, the methods tested and the results 

obtained will help decision-makers to identify priority areas for intervention to reduce soil 

degradation in the highly vulnerable areas. Thus, it will be possible to reconcile public use and 

conservation. The data provides a scientific background to INP projects requesting 

environmental services payment, thus increasing the efforts for Atlantic Forest Biome 

conservation and, consequently, the maintenance of ecosystem services in the park. 
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8 SUPPLEMENTARY MATERIAL 

Chapter II 

 

 

Figure S1. Optimum number of covariates selected by the RFE for each soil attributes in 

RF an MLR models.  
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Figure S2. Spatial prediction of soil attributes using the best model evaluated by external 

validation for each method tested. For pH, Carbon content (%) and CEC (cmolc.dm-3). 
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Figure S3. Spatial prediction of soil attributes using the best model evaluated by LOO-

CV for each method tested. For pH, Carbon content (%) and CEC (cmolc.dm-3). 
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Figure S4. Histogram of measured data and predicted values in the grid by better models 
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Figure S5. Box-plot of measured values for each type of horizon. Top left horizon mid- 

point (cm), top right pH, bottom left soil carbon content (%), and bottom right CEC  
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Figure S6. Maps of the soil attributes at five depths (pH left; Carbon content, %, centre; 

CEC, cmolc.dm-3, right). Predicted with models evaluated with external validation. 

The five depths are 0–5, 5–15, 15–30, 30–60, 60–100cm.  
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Figure S7. Maps of the soil attributes at five depths (pH left, Carbon content (%) centre, CEC 

(cmolc.dm-3) right). Predicted with models evaluated with cross validation. The five 

depths are 0–5, 5–15, 15–30, 30–60, 60–100cm. 

 



 

109 

 

 

Figure S8. Histogram of predicted values in the grid by the model selected in external 

validation approach. (pH left, Carbon content (%) centre, CEC (cmolc.dm-3) right) 
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Figure S9. Histogram of predicted values in the grid by the model selected in LOO-

CV approach. (pH left, Carbon content (%) centre, CEC (cmolc.dm-3) right) 

 



 

111 

 

 

 

Figure S10. Upper limit prediction derived from a Bayesian posteriori distribution of each 

3D GAM model fitted. pH left, Carbon content (%) centre, CEC (cmolc.dm-3) right  
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Figure S11. Lower limit prediction derived from a Bayesian posteriori distribution of each 

3D GAM model fitted. pH left, Carbon content (%) centre, CEC (cmolc.dm-3) right. 
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Chapter III 

Figure 12S are intermediate nodes that represent the fragility factors. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure S12. The environmental vulnerability by factors (fragility factors). (a) = relief; (b) = 

soil; (c) = Land use/cover; (d) = climate; (e) = parent material  
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Figure S13. Points where soil degradation is evident. They are mainly present in the upper 

part of the INP where it was classified as having very strong environmental 

vulnerability. 
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Dataset about the questionnaire 

 

Some of the results of the questionnaire are showed from figure S14 to S19 and table 

S1. The form is available at: 

https://docs.google.com/forms/d/1iN4JybcqtoMrjtstJVf_uYhmQ_8xzmtvnMXYs8G5qj4/edit 

(Portuguese language).  

 

 

Figure S14. Classes of environmental vulnerability per slope classes as defined by the 

questionnaire answers. 

 

https://docs.google.com/forms/d/1iN4JybcqtoMrjtstJVf_uYhmQ_8xzmtvnMXYs8G5qj4/edit
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Figure S15. Classes of environmental vulnerability per land use classes as defined by the 

questionnaire answers. 
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Figure S16. Classes of environmental vulnerability per soil classes as defined by the 

questionnaire answers. 
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Figure S17. Classes of environmental vulnerability per geology classes as defined by the 

questionnaire answers. 
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Figure S18. Classes of environmental vulnerability per anthropogenic impact as defined by 

the questionnaire answers. 
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Figure S19. Classes of environmental susceptibility per fire as defined by the questionnaire 

answers. 
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Table S1. Participants' degree and specialization, institutions and years of work/research at 

the Itatiaia National Park 

ID Degree / specialization Institution Years  

1 Agronomy / soil science UFRRJ 6 

2 Environmental remote sensing  

and applied climatology 

UFRRJ 3 

3 Environmental analyst INP-ICMBIO 18 

4 Forestry engineering / soil science UFRRJ 3 

5 Botany AEDB 12 

6 Agronomy / soil science UFRRJ 8 

7 Agronomy / soil science UFRRJ 0 

8 Soil and plant nutrition UFG 0 

9 Forestry engineering UFRRJ 3 

10 Agronomy / soil science UFRRJ 2.5 

11 Tourism and environment CEFET-MG 10 

12 Agronomy / soil science UFRRJ 2 

13 Education Not identified 4 

14 Agronomy / soil science UFRRJ 2 

15 Zootechny / soil science UFRRJ 1.5 

16 Environmental engineering ESALQ-USP 6 

17 Botany JBRJ 15 

18 Physical geography UFF 0 

19 Agronomy Autonomous 0 

20 Forestry engineering / soil science IF-Sudeste-MG 18 

21 Geography / geotechnology UFRRJ 7 

22 Pedometrics UFTPR 0 

23 Health sciences / epidemiology UFRRJ 6 

24 Agronomy / soil science UFRRJ 0 

25 Agronomy / soil science UFPI 4 

26 Environmental analyst INP-ICMBIO 7 

 

Note: Years= Means years of work or research in the INP. 0 for only visitor and/or sporadic field work or field 

lessons or planning to do some working in the park. Institution acronym: UFRRJ = Federal Rural University of 

Rio de Janeiro; INP= Itatiaia National Park; ICMBIO= Chico Mendes Institute for Biodiversity Conservation; 

AEDB= Don Bosco Educational Association; UFG= Federal University of Goiás; CEFET-MG= Federal Centre 

for Technological Education of Minas Gerais; ESALQ-USP School of Agriculture "Luiz de Queiroz"; University 

of Sao Paulo; JBRJ= Botanical Garden of Rio de Janeiro; UFF= Federal Fluminense University; IF Sudeste MG= 

Federal Southeast Institute of Minas Gerais; UTFPR= Federal Technological University of Paraná 


