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RESUMO

MARTINS FERREIRA, Silvana. Estudo comparativo da evolução dos modelos epidemio-
lógicos: SI, SIS, SIR, SIRS e com o advento da vacinação, SIRV. Silvana Martins Ferreira
2024 . 2025. 115f. Dissertação (Mestrado em Modelagem Matemática e Computacional).
Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ,
2025.

O objetivo deste trabalho é realizar um levantamento bibliográfico, sobre os modelos epidemi-
ológicos básicos, diante do contexto gerado pelas epidemias causadas por agentes infecciosos,
além de propor um estudo sobre o método de Runge kutta de primeira ou segunda ordens, apli-
cado a estes modelos e suas evoluções temporais. O foco estará nas possibilidades de uso da
modelagem, por sistemas de equações diferenciais ordinárias. Computacionalmente será uti-
lizado o software Octave para os gráficos, o Geogebra para a construção dos planos de fase
e o Scratch para a demonstração das iterações. Foi realizada uma seleção dos modelos, para
a devida implementação computacional, o que permitirá transitar entre abordagens teóricas e
práticas. A partir das simulações numéricas, faremos algumas análises, sobre as evoluções tem-
porais dos modelos. Partiremos do modelo mais simples SI, até a conclusão dos estudos com
o modelo SIRV. A nossa proposta é que o leitor refaça alguns dos cálculos presentes neste tra-
balho e também realize complementações. Alguns dos sistemas foram adimensionalizados, e
priorizamos utilizar a linearização, quando isto foi possível.

Palavras-chave: Modelagens Matemáticas Epidemiológicas, Modelagens Epidemiológicas, Mo-
delagens Matemáticas de Doenças Infecciosas,....



ABSTRACT

MARTINS FERREIRA, Silvana. Comparative study of the evolution of models epidemio-
logical factors: SI, SIS, SIR, SIRS and with the advent of vaccination, SIRV.
. 2025. 115p. Dissertation (Master in Mathematical and Computational Modeling). Instituto de
Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2025.

The objective of this work is to carry out a bibliographic survey on the epidemiological models
of the in view of the context generated by epidemics caused by infectious agents, in addition
to proposing a study on the Runge kutta method, applied to these models and their temporal
evolutions. The focus will be on the possibilities of using modeling, by systems of ordinary
differential equations. Computationally, the Octave software will be used to the graphics, Ge-
ogebra for the construction of the phase plans and Scratch for the demonstration of iterations.
A selection of the models was carried out for the proper computational implementation of the
which will allow the transition between theoretical and practical approaches. From the simula-
tions We will make some analyses on the temporal evolutions of the models. Leave from the
simplest SI model, to the conclusion of studies with the SIRV model. Our proposal It is for
the reader to redo some of the calculations present in this work and also to make complements.
Some of the systems were dimensionalized, and we prioritized using linearization, when this
was possible.

Keywords: Epidemiological Mathematical Modeling, Epidemiological Modeling, Mathemati-
cal Modeling of Infectious Diseases,....

.
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1
Introdução

A modelagem matemática em Epidemiologia, de acordo com [1], é desenvolvida através
do estudo de equações que descrevem a interação entre a população de uma região e o ambiente
em que ela vive, resultando numa análise detalhada a respeito da doença. A importância desse
estudo se dá ao fato de que quanto mais se conhece a respeito da doença e o modo como ela se
propaga, mais eficazes serão os métodos para impedir sua transmissão, e até mesmo o estudo
de ações preventivas, como por exemplo, campanhas de vacinação.

Diversos pesquisadores estão usando modelos matemáticos para analisar a forma de evo-
lução de algumas doenças e o comportamento dos seus agentes transmissores. Uma ferramenta
que auxilia esse estudo é a modelagem matemática. A modelagem é uma etapa fundamental
nesse processo de investigação, pois permite uma melhor compreensão e análise da situação
gerada pela disseminação de uma doença infecciosa.

Através da modelagem, transformamos uma situação caótica, como o caso das doenças
infecciosas, em algo que pode vir a ter solução ou ter seus efeitos atenuados. Em vista disso, a
modelagem epidêmica intenta conter a propagação de uma doença, quando possível, pois, a par-
tir de modelos matemáticos pode-se analisar a disseminação e controle de doenças infecciosas
[2][3].

É necessário analisar com muito cuidado os dados obtidos através da modelagem, pois
estamos considerando a possibilidade de se diminuir ou evitar os casos de mortes em uma deter-
minada população. A modelagem permite após a identificação do problema, várias simulações
e tomada de decisões mais conscientes e fundamentadas.

A dinâmica entre os compartimentos é estudada pelos pesquisadores, que possuem uma
missão importante para a Epidemiologia, que consiste em fazer previsões, acerca da evolução
dessa e de outras doenças, a partir dos gráficos e dos dados numéricos. A transferência con-
tínua entre esses grupos de indivíduos organizados em compartimentos, pode representar algo
extremamente benéfico ou muito prejudicial à saúde.

São estudados e criados pela modelagem matemática através de etapas como escolha
de tema, coleta de dados, análise de dados, formulação do modelo e a validação. A modela-
gem formaliza um contexto através do modelo e, assim, trabalha este modelo de forma intelec-
tual, desenvolvendo e absorvendo as habilidades matemáticas adquiridas para sua resolução [4].
Com isso, a população passa a ser organizada em grupos, como o de suscetíveis ou infectados.
Em seguida, evolui para outras categorias, como SIS, SIR, SIRS ou SIRV.

Dessa forma, podemos utilizar a modelagem matemática como um método de pesquisa
científica, a fim de representar diversas situações reais através de modelos e analisar suas pro-
váveis soluções.



Por exemplo, a Aids é representada por um modelo denominado SI, onde só existem
indivíduos suscetíveis ou infectados, portanto há apenas dois compartimentos S e I. A evolução
temporal deste modelo, irá nos mostrar que depois de um período, todos os suscetíveis, ou
seja, todos os indivíduos que tiveram algum contato com o sangue de indivíduos infectados,
se tornam contaminados. Quando estivermos considerando uma evolução para este modelo,
estaremos idealizando algo que não é real, pelo menos neste momento.

Já no caso do modelo que será proposto para a Tuberculose, temos um caso de Pro-
gressão Direta (modelo SI) e indireta (modelo SLI). O que significa que o indivíduo poderá
passar por um período de latência, ou seja, período superior a um ano, sem o desenvolvimento
da doença. Apesar de existir possibilidade de cura, o indivíduo não é imunizado, retornando a
situação de latência. Como o modelo foi simplificado, a nossa proposta é que seja incorporada
uma vacinação, complementando-o.

Tais dinâmicas de transferências de indivíduos são de grande importância para a Epide-
miologia, assim como todos os agentes envolvidos em seu desenvolvimento. Para isso, preci-
samos entender, segundo [5] que as concepções sobre doenças infecciosas e sua disseminação,
nem sempre foram as mesmas, e suas causas pouco conhecidas. As concepções atuais sobre a
disseminação de doenças infecciosas, são resultado de muitos anos de pesquisa, isso se deve ao
fato de que inúmeras doenças infecciosas já atingiram países por todo o mundo e, consequen-
temente, provocaram consequências graves, como um número significativo de mortes. A todo
momento surgem novas doenças, além disso, os seres causadores dessas infecções, conhecidos
pela medicina, podem sofrer mutações, se tornando mais resistentes aos medicamentos e aos
efeitos da vacinação, o que torna esta tarefa de conter a propagação, ainda mais complexa.

Dependendo da doença, podemos ter ou não, acesso a uma vacinação, que contenha
esse crescimento. A compreensão dessas doenças evoluiu ao longo do tempo, à medida que
os avanços na ciência e na medicina nos permitiram identificar e combater esses patógenos de
maneira mais eficaz.

O Aedes aegypti, por exemplo, transmite algumas doenças, chamadas de arboviroses
como a dengue, zika, chikungunya e febre-amarela. Segundo [6] o controle da população de
mosquitos Aedes Aegypti, torna-se necessária, principalmente porque não existem vacinas com-
pletamente seguras e eficazes. O mosquito está presente principalmente nas regiões tropicais
e subtropicais do planeta, onde a temperatura e a pluviosidade oferecem condições favoráveis
para a proliferação deste. A variabilidade climática é um dos principais condicionantes que
pode favorecer o processo de reprodução, desenvolvimento e sobrevivência da população de
Aedes aegypti [7].

Devido ao crescimento da quantidade de infectados e hospitalizados, além do faleci-
mento de indivíduos, é fundamental a busca por estratégias que reduzam a propagação dessas
doenças. Por isso, faz se necessário traçar estratégias para tentar reduzir a disseminação e o
surgimento de novas epidemias.

No caso, as estratégias tradicionais usadas para o controle da população são o controle
mecânico, químico e biológico [8], porém o que podemos perceber é que a população de Aedes
aegypti tem se tornado resistente [9]. Isso faz com que os mosquitos se reproduzam em grande
quantidade e se espalhem, picando novas pessoas, e estas transmitindo a doença, de forma
grandiosa. Este ciclo provoca uma disseminação muito rápida, onde toda a população em pouco
tempo, torna-se infectada. Por isso, os três tipos de controle possuem extrema importância, pois
deverão agir em conjunto em prol de extinguir ou substituir a população de mosquitos por outra
que não transmita a doença.

Segundo [5] antes de buscar vacinas e novos tratamentos para as doenças transmitidas
pelo Aedes aegypti, é preciso entender de que forma as pessoas são afetadas, como a transmis-
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são ocorre entre os mosquitos e entre as pessoas, como erradicar o vírus, ou até mesmo como
tratar. Só que esta tarefa é bem complicada e árdua, pois envolve muitos fatores, além de ser
necessário observar características do mosquito como as do hospedeiro que irá desenvolver a
doença.

A dengue tornou-se endêmica no Brasil, contando com ciclos epidêmicos todo ano [10].
Se por algum motivo não houver água suficiente para os ovos eclodirem, como por causa das
variações climáticas sazonais, eles podem permanecer adormecidos por 492 dias na seca e eclo-
dem assim que houver a quantidade de água suficiente [11]. O que nos permite perceber a
facilidade que tem esse mosquito de se reproduzir, mesmo em situações extremas. Outra infor-
mação interessante é que apenas a fêmea do mosquito é capaz de contaminar uma pessoa, pois
só ela se alimenta de sangue. Quando a fêmea pica uma pessoa infectada, o vírus se aloja nas
glândulas salivares e ali se multiplica. Com isso, o mosquito permanece infectado, transmitindo
a doença até a sua morte, ou seja, por cerca de um mês.

A fêmea consegue fazer ingestões múltiplas de sangue, durante um único ciclo gonado-
trófico, o que amplia a sua capacidade de se infectar e de transmitir os vírus [12]. A dengue
causa febre alta súbita, dor de cabeça, dor no corpo e articulações, prostração, fraqueza, dor
atrás dos olhos, erupção, náuseas e vômitos, dores abdominais, também pode haver manchas
vermelhas no corpo e coceira. Esses são alguns dos sintomas que resultam do indivíduo infec-
tado, que teve o seu organismo afetado, ocasionando dificuldades na execução de suas tarefas
cotidianas básicas.

Adaptações permitiram que se tornassem abundantes nas cidades e fossem facilmente
levados para outras áreas pelos meios de transporte, o que aumentou sua competência vetorial,
ou seja, a sua habilidade em tornar-se infectado por um vírus, replicá-lo e transmiti-lo [13].
Essa transmissão inicia-se com uma pessoa ou um conjunto pequeno de pessoas que atuam
como agentes do vírus, espalhando a doença e não tomando as devidas precauções para evitar
novas infecções. O crescimento da população infectada torna-se tão grande que acaba por
atingir uma parcela ou toda a população de suscetíveis. Dependendo do modelo matemático
que estudaremos, haverá ou não, uma possibilidade de recuperação.

Durante o século XIV, doenças como varíola e gripe atingiram muitos países, demorando
muito tempo para suas formas de contaminação e prevenção serem descobertas. No entanto,
doenças infecciosas continuam sendo motivo de grandes preocupações e mortes [2]. Apesar de
já termos evoluído bastante nas pesquisas relacionadas as doenças, ainda somos surpreendidos
com novos ou antigos agentes infecciosos que tornaram-se mais resistentes ao longo do tempo.

Segundo [14], podemos verificar através de relatos, que o vírus H1N1, estava presente
em 1918, com o aparecimento da gripe espanhola, sendo esta erradicada em 1919. O vírus
H1N1 também foi responsável pela gripe suína de 1931. Entretanto, o vírus não chegou ao seu
fim, sofrendo mutações no decorrer dos anos e, assim, originando o H2N2 (gripe asiática) de
1957. Em 1968, foi constatada uma nova mutação do vírus, o H3N2, o qual foi responsável
pela gripe de Hong Kong.

Observe que ambos os vírus, H1N1 e H3N2, agem até este momento. O H1N1 é o
responsável pela gripe comum, que possui uma propagação muito poderosa. Essa capacidade
de se modificar representa um desafio para os pesquisadores, que para construirem um modelo,
precisam conhecer tais agentes. A cada mutação sofrida, esses seres causadores de doenças
recebem uma nova nomenclatura, já que possuem alterações em algumas de suas características
e nos sintomas que são capazes de produzir em seus hospedeiros.

De acordo com [15], em 2009, tivemos uma variação do vírus H1N1, a Influenza A
H1N1, popularmente denominada gripe suína, pelo fato de sua transmissão ser rápida dentro
dos rebanhos suínos. A influenza A H1N1 originou-se no México em 2009 e rapidamente
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espalhou-se por mais de 80 países, indicando o início de uma pandemia global. Esses são
apenas alguns exemplos de doenças que prejudicam a saúde de muitos indivíduos da população
mundial.

Ademais, diante do que foi exposto, a sociedade mundial, segundo [5], esforça-se para
combater e inibir os efeitos econômicos, sociais, educacionais, entre outros. Salientando prin-
cipalmente a crise em que os sistemas de saúde vêm tendo que lidar, há um grande destaque
para as diversas contribuições proporcionadas pelos modelos matemáticos e as análises acerca
da modelagem, no que tange à busca de uma compreensão e de projeções do comportamento
da COVID-19.

O coronavírus é uma família de vírus que provocam infecções respiratórias. Desde a sua
descoberta e consequente divulgação, o grande avanço da COVID-19 preocupa especialistas do
mundo inteiro, fato esse que fez com que a Organização Mundial da Saúde (OMS) decretasse
estado de pandemia em março de 2020 [16].Assim, a COVID-19 é uma doença causada pelo
coronavírus SARS-CoV-2, e que apresenta um quadro clínico que varia de infecções assinto-
máticas a quadros respiratórios graves [17].

Diante dos desafios de controle dessas doenças, torna-se imprescindível a adoção de
estratégias específicas, com maiores investimentos em métodos adequados, que forneçam sus-
tentabilidade às ações estabelecidas pelas redes de vigilância, além de ensejarem a análise de
sua efetividade. Devido à existência dessas doenças, estudos começaram a ser realizados com o
objetivo de caracterizar cada tipo de epidemia, determinar os fatores causadores e buscar formas
de controle das mesmas.
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2
Metodologia

Em face do atual cenário, este estudo torna-se relevante, pois propõe modelos iniciais
mais simplificados, avançando para um modelo mais complexo, resultante da possibilidade de
vacinação. Nossa estratégia foi tentar compreender alguns desses modelos, para então termos
condições de aprofundar nossos estudos. Por isso, propomos uma revisitação ao passado, to-
mando por base conhecimentos matemáticos já adquiridos por estudiosos.

Modelos simples como SIS, SIR e SIRS são úteis para compreender os mecanismos bá-
sicos de transmissão de doenças, enquanto modelos mais complexos incorporam variáveis como
mobilidade populacional, heterogeneidade de contato e intervenções sanitárias, permitindo si-
mulações mais realistas [14]. Modelos simples são ideais para introduzir o tema e análises
teóricas, enquanto os modelos complexos são fundamentais para contextualizar a realidade,
como pandemias, onde múltiplos fatores influenciam a dinâmica da doença.

Com base nisso, a modelagem matemática através de seus pesquisadores, busca por
soluções para os problemas da atualidade, mas para isso, há que se fazer um resgate, daquilo
que já foi implementado por outros, para assim, podermos prosseguir. O estudante precisa
compreender modelos mais básicos, para ser capaz de assimilar e utilizar como ferramenta
modelos mais complexos.

Iniciaremos nossos estudos no capítulo 3, que apresenta os Sistemas de Equações Dife-
renciais Ordinárias Lineares, ditas homogêneas, representadas por equações autônomas, com
uma análise quanto às suas características fundamentais. Faremos uma revisão, quanto ao
cálculo dos autovalores e autovetores de uma matriz, assim como, a construção do conjunto
solução, como apresentado em [18].

Podemos perceber que dependendo do conjunto numérico a que pertencem, reais ou
complexos e do sinal destes autovalores, situações semelhantes ocorrem nos seus planos de
fase, como pode ser observado em [5]. Estes planos foram obtidos no Geogebra. Eles irão
representar curvas dos conjuntos soluções, com sentidos a serem determinados pelos sinais. Em
alguns casos, o sentido das curvas tende a zero, e em outras, ao infinito. Isso as caracteriza como
estáveis ou instáveis. Quando a solução apenas se aproxima de zero, ela é dita assintoticamente
estável, e no caso de assumir a origem como uma das soluções, ela será estável. Com isso, ao
calcularmos os autovalores de uma matriz, já somos capazes de prever como será o formato
de seu plano de fase. Estes possuem propriedades de acordo com o tipo de ponto crítico e sua
estabilidade. Por este motivo, iniciamos nossos estudos com a teoria sobre estes sistemas.

O objetivo principal desta dissertação será a análise quantitativa e qualitativa de alguns
modelos matemáticos epidemiológicos, apresentados no capítulo 4, descritos através de Siste-
mas de Equações Diferenciais Ordinárias não Lineares. Fizemos, quando possível, os mesmos



procedimentos do capítulo 3, de determinação dos autovalores da matriz jacobiana, quando apli-
cada nos pontos críticos, só que algebricamente. Com isso, classificamos a estabilidade desses
pontos. A partir de simulações, interpretamos biologicamente os modelos, com a utilização
do Octave. Este foi utilizado para a construção dos gráficos. Para uma melhor compreensão
por parte do leitor, propomos simulações, contendo uma sequência de iterações para o grupo
dos suscetíveis e outras para o grupo dos infectados, ou ainda, para os recuperados. Assim,
em alguns modelos, o leitor poderá participar dos cálculos para a obtenção dos resultados das
iterações e não somente analisar as evoluções temporais. As iterações para a determinação dos
suscetíveis e infectados, ou ainda recuperados, são muito extensas e numerosas, por isso, foram
apresentadas de forma resumida. Estas iterações foram construídas no Scratch. Alguns modelos
apresentam somente os gráficos das evoluções temporais, onde constam a quantidade de dias
no eixo x e os resultados finais aproximados das iterações, que podem ser observados no eixo y.

A metodologia utilizada almeja ser elucidativa, buscando a compreensão e posterior
resolução de questões numéricas. Este trabalho caracteriza-se como uma pesquisa explora-
tória, que busca contribuir para a proximidade em torno de um problema causado pelo cres-
cimento desordenado de doenças, tornando-o mais compreensível e auxiliando na elaboração
de conjecturas e/ou hipóteses. Em uma pesquisa exploratória, geralmente, seu planejamento
está na forma de pesquisa bibliográfica ou estudo de caso, sendo que, a pesquisa bibliográfica
fundamenta-se em trabalhos já desenvolvidos por diversos pesquisadores e o estudo de caso
limita-se à conhecer de forma detalhada um ou poucos objetos de estudo [19].

Temos a intenção de propor um estudo sobre os Sistemas de Equações Diferenciais
Ordinárias Lineares, apresentando a maior parte das etapas de cálculos envolvidas, mesmo que
sejam conteúdos do Ensino Fundamental ou Médio, assim estaremos agindo na tentativa de
desbloquear possíveis acessos aos conteúdos do Ensino Superior. Essa etapa de estudo referente
aos sistemas lineares é muito importante para que o estudante observe os cálculos envolvendo a
Aritmética e seja capaz de utilizar seus conhecimentos algébricos para encontrar os autovalores
dos sistemas não lineares quando linearizados. Nem todos os modelos foram linearizados, para
isso, nos baseamos principalmente na análise feita em [20].

Iremos estudar os sistemas não lineares ou quase lineares, representados pelos modelos
compartimentais, principalmente, através do procedimento de linearização, através da Série de
Taylor e utilização da matriz jacobiana, fazendo com que as soluções do novo sistema linear,
estejam mais próximas das soluções dos sistemas não lineares. Serão estudados os modelos SI,
SIS, SIR, SIRS e SIRV. Em alguns dos modelos foi feita a adimensionalização e todos os pro-
cedimentos envolvidos apresentados. Além disso, podemos observar que alguns dos modelos
incluem a dinâmica vital, ou seja, esses modelos consideram a porcentagem de nascimentos e
mortes em uma população. Nos modelos em que não foi possível calcular os autovalores, já que
o determinante se anulava, foi obtido o traço da matriz, de uma forma resumida. Não temos a
intenção de aprofundar este conceito, pelo menos por enquanto.

No capítulo 5, apresentamos uma proposta de evolução para a Aids, onde aproveitamos
dados de uma situação real, para trilharmos um caminho evolutivo do modelo SI até o modelo
SIRV, com isso, faremos algumas simulações acerca dessa evolução, gerando o conceito de
uma Aids Idealizada, para enfim tirarmos algumas conclusões. Além disso, apresentamos a
evolução da Covid-19, que partindo do modelo SI, conseguiu alcançar um modelo SIRV, com o
advento da vacinação. Utilizamos os cálculos obtidos através do Runge-Kutta 1 ou 2 (RK1 ou
RK2). Já no capítulo 6, estudaremos um modelo da tuberculose, que pode ser desmembrado em
duas etapas: progressão direta(SI) e indireta (SLI). A partir da análise deste modelo e de seus
parâmetros, faremos considerações importantes acerca da evolução da doença.

Temos o objetivo de auxiliar a formação acadêmica e incentivar estudos futuros em
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Programas de Pós-Graduação acerca de modelos aplicados à Biologia, com a utilização de mo-
delagens matemáticas. Buscamos assim contribuir no âmbito da pesquisa e em discussões nessa
área, através do estudo e da análise de modelos matemáticos aplicados à epidemias. Esta disser-
tação é direcionada para qualquer estudante ou profissional, por isso, a intenção de resolução de
uma forma simplificada, o que poderá facilitar a compreensão, quanto aos procedimentos para
a análise dos problemas.
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3
Sistemas de Equações Diferenciais Ordinárias

Lineares

As equações diferenciais ordinárias são ferramentas fundamentais para compreender a
dinâmica da transmissão de doenças infecciosas, permitindo simular cenários e avaliar estraté-
gias de controle [21]. Se uma equação diferencial contém somente derivadas ordinárias de uma
ou mais variáveis dependentes (x1, x2, ...xn) com relação a apenas uma variável independente
(t ) ela é chamada de equação diferencial ordinária, ou EDO.

Com elas é possível descrever e formular diversos tipos de sistemas físicos numa lin-
guagem matemática, o que possibilita uma imensa gama de aplicações em modelos concretos.

Agora, considere um sistema de equações diferenciais linear, formado por um conjunto
de n equações diferenciais lineares de primeira ordem simultâneas com n variáveis, assumindo
a seguinte forma: 

d x1

d t
= a11x1(t )+a12x2(t )+ ...+a1n xn(t )+ g 1(t )

d x2

d t
= a21x1(t )+a22x2(t )+ ...+a2n x2n(t )+ g 2(t )

......
d xn

d t
= an 1x1(t )+an 2x2(t )+ ...+an n xn(t )+ g n(t ).

(3.1)

Se gn(t ) = 0, o sistema é dito homogêneo e, caso contrário, é não-homogêneo. No caso
de o sistema ser não homogêneo, ele pode ser reescrito como:

d x

d t
= x ′(t ) = A.x(t )+ g (t ). (3.2)

As matrizes são determinadas da seguinte forma:

A = (ai j )nxn ,

x(t ) = (x1(t ), x2(t ), x3(t ), ..., xn(t ))T
nx1,



g (t ) = (g1(t ), g2(t ), g3(t ), ..., gn(t ))T
nx1.

Um sistema de equações diferenciais ordinárias é dito autônomo e homogêneo quando
d x

d t
for uma função só de x, ou seja, a derivada não depende explicitamente da variável inde-

pendente t , por isso, ela não aparece no membro direito das equações. Gerando a equação:

d x

d t
= f (x). (3.3)

O nosso objetivo inicial será estudar os sistemas lineares homogêneos autônomos com
coeficientes constantes da forma:

d x

d t
= A.x. (3.4)

sendo A uma matriz de ordem 2, e x(t ) = (x1(t ), x2(t )), um vetor 2×1.
Para encontrarmos as soluções não triviais de um sistema, usamos este formato:

x(t ) = v.er t . (3.5)

considere r um autovalor e v um autovetor associado da matriz A.
Observe que se x(t) for um vetor solução do sistema, então derivando temos:

x‘(t ) = v.r.er t . (3.6)

Ao substituímos x’(t) obtido em 3.6 na equação 3.4, obtemos:

v.r.er t = A.v.er t . (3.7)

Considerando que I representa a matriz identidade,temos que:

(A− r.I).v = 0. (3.8)

Portanto, quando substituímos 3.5 e 3.6 em 3.4, obtemos 3.8. Com esta equação, deter-
minamos os autovetores associados a cada um dos dois autovalores da matriz.

Podemos determinar os autovalores que são as raízes da equação polinomial, calculando

det (A− r.I) = 0. (3.9)

Os autovalores e autovetores serão de extrema importância na análise do comportamento
da trajetória das soluções do sistema no plano cartesiano.

A combinação linear das soluções do sistema 3.10, também será solução para o sistema.{
x1(t ) =C 1.v (1).er 1.t

x2(t ) =C 2.v (2).er 2.t .
(3.10)

Então, a solução geral para o sistema é representado pela equação 3.11.

x(t ) =C1.v (1).er 1.t +C 2.v (2).er 2.t . (3.11)

Para a construção da solução geral dos sistemas lineares, considere os dois autovetores
como v (1) = (v (

1
1), v (

2
1)) e v (2) = (v (

1
2), v (

2
2)).
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3.1 Autovalores Reais

3.1.1 Primeiro Caso: Autovalores reais negativos r1 < r2 < 0. Considere o sistema:


d x1

d t
=−2.x1 +3.x2

d x2

d t
= x1 −4.x2.

(3.12)

Podemos reescrevê-lo da seguinte forma:

x‘(t ) =
(−2 3

1 −4

)(
x1

x2

)
. (3.13)

Para calcular os autovalores da matriz A =
(−2 3

1 −4

)
temos que obter o determinante da

matriz (A-r.I) que deverá ser igual a zero:

det

(−2− r 3
1 −4− r

)
= 0. (3.14)

Obtemos a expressão (-2-r).(-4-r)-3=0, em 3.14, que resulta em r 2 +6.r +5 = 0. Utili-
zando o método da soma e do produto das raízes de uma equação x2−S.x+P = 0, encontramos
r1 =−5 e r2 =−1, que são os autovalores, pois a soma deles é -6 e o produto 5. Para calcularmos
os autovetores devemos substituir cada um dos autovalores na matriz (A-r.I) e depois resolver o
sistema (A− r.I).v = 0, encontrando os autovetores.

O sistema associado a r1 =−5 é:(−2+5 3
1 −4+5

)(
v (

1
1)

v (
2

1)

)
= 0 →

(
3 3
1 1

)(
v (

1
1)

v (
2

1)

)
= 0. (3.15)

O autovetor (-1,1) é a solução do sistema 3.15.
O sistema associado a r2 =−1 é:(−2+1 3

1 −4+1

)(
v (

1
2)

v (
2

2)

)
= 0 →

(−1 3
1 −3

)(
v (

1
2)

v (
2

2)

)
= 0. (3.16)

O autovetor (3,1) é a solução do sistema 3.16.
Portanto, a combinação linear das soluções x1(t ) e x2(t ) também é solução:

x(t ) =C1.(−1,1)T .e−5t +C2.(3,1)T .e−1t . (3.17)

Para observarmos o comportamento da solução x(t ) no plano cartesiano, construímos
um plano de fase. As retas em vermelho na figura 3.1, são geradas pelos autovetores, que
representam situações em que C1 = 0 ou C2 = 0. Quando C1 = 0, temos como solução apenas
x2(t ) e quando C2 = 0,temos como solução apenas x1(t ), ambas tendem a zero, já que t →∞.

A solução x(t ), quaisquer que sejam as constantes C1 e C2, diferentes de zero, represen-
tadas nas curvas azuis em 3.1, possuem x(t ) → 0 quando t →∞. Para compreendermos isso,
devemos lembrar que os expoentes r1.t e r2.t ficam negativos, o que faz com que as frações do
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tipo
1

er t
para r1 e r2, assumam valores muito pequenos, quando t tende a valores muito gran-

des. As soluções ficam mais próximas do ponto crítico na origem, que é denominado nó, ou nó
atrator, ou também sorvedouro e, portanto, dizemos que a solução é assintoticamente estável.

Podemos reescrever a equação de uma forma diferente, sem alterar o resutado de x(t ):

x(t ) = er 2.t .[C 1.v (1).e(r 1−r 2).t +C 2.v (2)]. (3.18)

Temos que r1 − r 2 =−5− (−1) =−5+1 =−4, portanto r1 − r 2 < 0. Fazendo as substitui-
ções de acordo com o exemplo dado:

x(t ) = e−1t [C 1.(−1,1).e−4t +C 2.(3,1)]. (3.19)

Assim, se C2 ̸= 0, o termo C1.(−1,1).e−4t , torna-se desprezível se comparado com
C2.(3,1), já que quando t →∞, a solução C1.(−1,1).e−4t , se aproxima de zero de uma forma

mais rápida do que C2.(3,1), por causa da fração
1

e4t
.

O que implica que x(t ) →∞ em direção à C2.(3,1).
Também, as soluções são tangentes a v (2) em x(0) ,a menos que comecem exatamente

na direção de v (1).
A figura 3.1 demonstra o plano de fase, quando os autovalores são negativos.

Figura 3.1 – Nó Atrator.
Fonte:Autora

3.1.2 Segundo Caso: r1 > r2 > 0. Considere o sistema:


d x1

d t
=−x1 +4.x2

d x2

d t
=−2.x1 +5.x2.

(3.20)

Podemos reescrevê-lo da seguinte forma:

x‘(t ) =
(−1 4
−2 5

)(
x1

x2

)
. (3.21)
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Para calcular os autovalores da matriz A =
(−1 4
−2 5

)
, temos que obter o determinante da

matriz (A− r.I) que deverá ser igual a zero.

det

(−1− r 4
−2 5− r

)
= 0. (3.22)

Obtemos a partir da equação 3.22, a expressão (−1− r ).(5− r )+8 = 0, que resulta em
r 2 − 4.r + 3 = 0. Utilizando o método da soma e do produto das raízes, encontramos r1 = 3
e r2 = 1 que são os autovalores. Para calcularmos os autovetores devemos substituir cada um
dos autovalores na matriz (A-r.I) e depois resolver o sistema (A − r.I).v = 0, encontrando os
autovetores.

O sistema associado a r1 = 3 é:(−4 4
−2 2

)(
v (

1
1)

v (
2

1)

)
= 0. (3.23)

O autovetor (1,1) é a solução do sistema 3.23.
O sistema associado a r2 = 1 é:(−2 4

−2 4

)(
v (

1
2)

v (
2

2)

)
= 0. (3.24)

O autovetor (2,1) é a solução do sistema 3.24.
Portanto, podemos construir o conjunto solução:

x(t ) =C1.(1,1)T .e3t +C 2.(2,1)T .e1t . (3.25)

A figura 3.2 representa o plano de fase, quando os autovalores são positivos.

Figura 3.2 – Nó Instável.
Fonte:Autora

As trajetórias se comportam da mesma forma que foi abordado na situação anterior,
se t →∞, as soluções x(t ) →∞, já que quando t assume valores muito grandes, as potências
tendem a valores muito grandes. Nesse caso, o sentido do movimento, na origem, é de afastar-se
do ponto crítico ao invés de aproximar-se. O ponto crítico é denominado nó instável ou fonte.
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3.1.3 Terceiro Caso: r1 < 0 e r2 > 0.

Considere o sistema: 
d x1

d t
= 2.x1 +3.x2

d x2

d t
= 2.x1 +x2.

(3.26)

Podemos reescrever o sistema 3.26 da seguinte forma:

x‘(t ) =
(
2 3
2 1

)(
x1

x2

)
. (3.27)

Para calcular os autovalores da matriz A =
(
2 3
2 1

)
, temos que obter o determinante da

matriz (A-r.I) que deverá ser igual a zero.

det

(
2− r 3

2 1− r

)
= 0. (3.28)

Com base em 3.28, obtemos a expressão (2-r).(1-r)-6=0, que resulta em r 2 −3.r −4 = 0.
Utilizando o método da soma e do produto das raízes, encontramos r1 = −1 e r2 = 4 que são
os autovalores. Para calcularmos os autovetores devemos substituir cada um dos autovalores na
matriz (A-r.I) e depois resolver o sistema (A−r.I).v = 0, encontrando os autovetores. O sistema
associado a r1 =−1 é: (

3 3
2 2

)(
v (

1
1)

v (
2

1)

)
= 0. (3.29)

O autovetor (-1,1) é a solução do sistema 3.29.
O sistema associado a r2 = 4 é(−2 3

2 −3

)(
v (

1
2)

v (
2

2)

)
= 0. (3.30)

O autovetor (1.5,1) é a solução do sistema 3.30.
Portanto,temos como solução:

x(t ) =C1.(−1,1)T .e−1t +C 2.(1.5,1)T .e4t . (3.31)

Se a solução em 3.31 começa em um ponto na reta que contém a origem, existem duas
possibilidades: A solução se afasta da origem na direção de v (1) , então C2 = 0. Dessa forma,
como r1 < 0, têm-se que ||x(t )|| → 0 conforme t → ∞ . A solução se afasta da origem na
direção de v (2), então C1 = 0. Assim, como r2 > 0, ||x(t )|| →∞ conforme t →∞. Nas curvas
que representam as soluções, para quaisquer C1 e C2,temos a mesma direção de v (2), ||x(t )|| →
∞ conforme t → ∞. Nessa situação, a origem é denominada ponto de sela, como podemos
observar na figura 3.3.
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Figura 3.3 – Ponto de Sela.
Fonte:Autora

3.1.4 Quarto Caso: r=r1 = r2 < 0, com dois autovetores independentes.

Como o nosso objetivo inicial é estudar os sistemas lineares com matrizes 2x2, onde
este caso não é possível, não exemplificaremos, pelo menos, inicialmente.

No caso em que temos ν1 e ν2, a solução geral é:

x(t ) =C1.v (1).er t +C 2.v (2).er t . (3.32)

Vamos considerar que os autovalores são iguais e negativos.
Se C1 = 0, conforme t →∞, temos que x(t ) → 0 em direção de ν2. Se C2 = 0, conforme

t →∞, temos que x(t ) → 0 em direção de v (1).
Já num caso mais geral, C1,C2 ̸= 0, reescrevendo, temos:

x(t ) = er t .[C1.v (1) +C 2.v (2)]. (3.33)

Assim, x(t ) → 0 conforme t →∞ em direção de ν qualquer, pois os vetores v (1) e v (2)

são arbitrários e independentes . Nessa situação o ponto crítico é chamado de nó próprio ou
também ponto estrela e, assim, a solução é dita assintoticamente estável. Observe o plano de
fase representado na figura 3.4.
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Figura 3.4 – Ponto Estrela.
Fonte:[5]

Consideramos os autovalores como iguais e negativos, porém, se forem positivos, o
processo é semelhante, ou seja, as trajetórias são parecidas, porém, o movimento toma um
sentido contrário, se afastando da origem.

3.1.5 Quinto caso:r=r1 = r2 < 0, com um autovetor independente.

Considere o sistema: 
d x1

d t
=−5.x1 +x2

d x2

d t
=−x1 −3.x2.

(3.34)

Podemos reescrever 3.34 da seguinte forma:

x‘(t ) =
(−5 1
−1 −3

)(
x1

x2

)
. (3.35)

Para calcular os autovalores da matriz A =
(−5 1
−1 −3

)
, temos que obter o determinante

da matriz (A-r.I) que deverá ser igual a zero.

det

(−5− r 1
−1 −3− r

)
= 0. (3.36)

Obtemos em 3.36 a expressão (-5-r).(-3-r)+1 =0, que resulta em r 2 +8.r +16 = 0. Uti-
lizando o método da soma e do produto das raízes, encontramos r1 = −4 e r2 = −4 que são os
autovalores. Para calcularmos os autovetores devemos substituir cada um dos autovalores na
matriz (A-r.I) e depois resolver o sistema (A−r.I).v = 0, encontrando os autovetores. O sistema
associado a r1 = r2 =−4 está representado em 3.37:(−1 1

−1 1

)(
v (

1
1)

v (
2

1)

)
= 0. (3.37)

Os autovetores v (1) e v (2) são iguais a (1,1). Nesse caso temos um único vetor linear-
mente independente.Todos os outros vetores que aparecerem, serão combinação linear desse.
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No caso em que temos ν como o autovetor e ζ como o autovetor generalizado associado
ao autovalor repetido, a solução geral possui o formato:

x(t ) =C1.(1,1)T .e−4t +C 2.((1,1)T .t .e−4t +ζ.e−4t ). (3.38)

Observe o plano de fase na figura 3.5, nesse caso, temos um nó impróprio assintotica-
mente estável.

Figura 3.5 – Nó Impróprio Assintoticamente Estável.
Fonte:Autora

Desta maneira, se C1 = 0, conforme t →∞ , temos que x(t ) → 0 na direção de ν= (1,1),
pois e−4t → 0 mais rapidamente que t .e−4t , independente do vetor ζ. Se C2 = 0, conforme
t → ∞ , temos que x(t ) → 0 na direção de ν. Já no caso em que C1,C2 ̸= 0 temos conforme
t →∞ , que x(t ) → 0 na direção de ν, pois o termo ν.te−4t torna-se mais significativo. Nessa
situação o ponto crítico é chamado de nó impróprio ou também degenerado e, assim, a solução
é dita assintoticamente estável.

Consideramos o caso em que os autovalores são negativos. No entanto, se forem posi-
tivos, o processo é análogo, contudo as trajetórias são percorridas para fora e suas orientações
em relação à ν e ζ também são invertidas.

Se considerássemos o sistema 3.39:

x‘(t ) =
(

5 1
−1 3

)(
x1

x2

)
, (3.39)

teríamos r1 = r 2 = 4 >0 e o autovetor resultaria da multiplicação das seguintes matrizes:(
1 1
−1 −1

)(
v (

1
1)

v (
2

1)

)
= 0. (3.40)

Os autovetores v (1) e v (2) são iguais a (-1,1). A solução obtida seria:

x(t ) =C1.(−1,1)T .e4t +C2.((−1,1)T .t .e4t +ζ.e4t ). (3.41)

Nessa situação o ponto crítico é chamado de nó impróprio ou também degenerado e,
assim, a solução é dita instável. Observe que o plano de fase da figura 3.6 sofreu uma alteração,
as soluções irão se afastar da origem.
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Figura 3.6 – Nó Impróprio Instável.
Fonte:Autora

3.2 Autovalores Complexos

3.2.1 Primeiro caso: z = a ±b.i .

Considere o sistema: 
d x1

d t
= 6.x1 −x2

d x2

d t
= 5x1 +4.x2.

(3.42)

Podemos reescrevê-lo da seguinte forma:

x‘(t ) =
(
6 −1
5 4

)(
x1

x2

)
. (3.43)

Para calcular os autovalores da matriz A =
(
6 −1
5 4

)
, temos que obter o determinante da

matriz (A-r.I) que deverá ser igual a zero.

det

(
6− r −1

5 4− r

)
= 0. (3.44)

Obtemos em 3.44, a expressão (6− r ).(4− r )+5 = 0, que resulta em r 2 −10.r +29 = 0.
Calculando o valor do discriminante da equação quadrática temos:

△= (−10)2 −4.1.29

△= 100−116

△=−16.
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Como o valor do △ resultou em um número negativo, então já podemos concluir que as raízes
r1 e r2 são números complexos. Para calcularmos as raízes, fazemos:

r = 10±p−16

2
= 10± 4i

2
= 5±2i .

Encontramos r1 = 5+2i e r2 = 5−2i que são os autovalores. Para calcularmos os autovetores
devemos substituir cada um dos autovalores na matriz (A-r.I) e depois resolver o sistema (A −
r.I).v = 0, encontrando os autovetores.

O sistema associado a r1 = 5+2i é(
1−2i −1

5 −1−2i

)(
v (

1
1)

v (
2

1)

)
= 0. (3.45)

O autovetor v (1) = (
1+2i

5
,1)T é solução do sistema, obtido pela multiplicação das matri-

zes em 3.45. Vamos obter um múltiplo desse vetor mais simplificado, que também será solução.

Para simplificar, iremos multiplicar o vetor v (1) = (
1+2i

5
,1)T por 1-2i.

(
1+2i

5
,1)T .(1−2i ) = (

1−4i 2

5
,1−2i ) = (

5

5
,1−2i ) = (1,1−2i )T .

Este vetor (1,1−2i )T que será utilizado na construção da solução.
O sistema associado a r2 = 5−2i é(

1+2i −1
5 −1+2i

)(
v (

1
2)

v (
2

2)

)
= 0. (3.46)

O autovetor v (2) = (
1−2i

5
,1)T é solução do sistema, obtido pela multiplicação das matri-

zes em 3.46. Vamos obter um múltiplo desse vetor mais simplificado, que também será solução.
Multiplicando por: 1+2i.

(
1−2i

5
,1)T .(1+2i ) = (

1−4i 2

5
,1+2i ) = (

5

5
,1+2i ) = (1,1+2i )T .

Este vetor (1,1+2i )T que será utilizado na construção da solução.
A solução geral possui o formato:

x(t ) =C1.(1,1−2i )T .e(5+2i )t +C 2.(1,1+2i )T .e(5−2i )t . (3.47)

Para analisarmos esta situação de uma forma simplificada, vamos analisar apenas os
sinais de a e b, correspondente aos dois autovalores complexos. Esses sinais irão influenciar no
sentido da trajetória e na classificação quanto à estabilidade.

Considerando que b > 0, a trajetória é no sentido horário, e se b < 0, a trajetória será no
sentido anti-horário. Em ambos os casos, a trajetória será em espiral, com o sentido e a direção
dependendo do sinal de a e b. Sendo assim, se a > 0, a solução é instável e, se a < 0, a solução
é assintoticamente estável. Os pontos críticos são denominados pontos espirais. Se acontecer
de os pontos espirais se afastarem do ponto crítico, temos uma fonte espiral ou espiral instável
e, se eles se aproximarem do ponto crítico, temos um sorvedouro espiral ou espiral estável.

Nesse exemplo em que os autovalores são iguais a r1 = 5+2i e r2 = 5−2i , temos a=5,
portanto a espiral é instável. A trajetória no plano associada ao autovalor com b=2, tem sentido
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horário e a que está associada a b=-2 possui sentido anti-horário. Observe a figura 3.7 do plano
de fase desta situação.

Figura 3.7 – Espiral Instável.
Fonte:Autora

Se fôssemos resolver o sistema em 3.48, obtido por algumas alterações nos sinais do
sistema anterior 3.42, teríamos como autovalores r1 =−5+2i e r2 =−5−2i . Nesse caso, aparece
como plano de fase, uma espiral assintoticamente estável e sentidos horário e anti-horário de
acordo com b ser positivo ou negativo. Veja o plano de fase da figura 3.8.

d x1

d t
=−6.x1 −x2

d x2

d t
= 5x1 −4.x2.

(3.48)

Figura 3.8 – Espiral Assintoticamente Estável.
Fonte:Autora
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3.2.2 Segundo caso: z =±b.i .

Considere o sistema: 
d x1

d t
= 2.x1 +8x2

d x2

d t
=−1x1 −2.x2.

(3.49)

Podemos reescrever 3.49 da seguinte forma:

x‘(t ) =
(

2 8
−1 −2

)(
x1

x2

)
. (3.50)

Para calcular os autovalores da matriz A =
(

2 8
−1 −2

)
, temos que obter o determinante

da matriz (A-r.I) que deverá ser igual a zero.

det

(
2− r 8
−1 −2− r

)
= 0. (3.51)

Obtemos a expressão (2-r).(-2-r)+8 =0, que resulta em r 2+4 = 0. Resolvendo a equação
quadrática incompleta:

r 2 +4 = 0

r 2 =−4

r =p−4

r =p
4.
p−1

r =±2.i .

O sistema associado a r1 = 2i é (
2−2i 8
−1 −2−2i

)(
v (

1
1)

v (
2

1)

)
= 0. (3.52)

O autovetor associado é (−2−2i ,1).
O sistema associado a r2 =−2i é(

2+2i 8
−1 −2+2i

)(
v (

1
2)

v (
2

2)

)
= 0. (3.53)

O autovetor associado é (−2+2i ,1).
A solução geral possui o formato:

x(t ) =C1.(−2−2i ,1)T .e(2i )t +C2.(−2+2i ,1)T .e(−2i )t . (3.54)

Nessa situação, temos que as trajetórias são círculos centrados na origem, e a trajetória
percorrida será no sentido horário se b > 0 e no sentido anti-horário se b < 0. Denominamos o
ponto crítico como centro. Observe o plano da figura 3.9.
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Figura 3.9 – Centro.
Fonte:Autora

Considerando os casos citados anteriormente, torna-se perceptível que o conjunto das
trajetórias adequa-se à alguma das três situações, descritas em [22][14].

i. Estabilidade Assintótica: as trajetórias aproximam-se do ponto crítico x = 0, conforme
t →∞. Esse é o contexto em que os autovalores são reais negativos ou complexos com parte
real negativa. A origem é um nó atrator ou um sorvedouro espiral.

ii. Estabilidade: as trajetórias permanecem limitadas, mas não aproximam-se do ponto
crítico x = 0, conforme t →∞ . Esse é o contexto em que os autovalores são imaginários puros.
A origem é um centro.

iii. Instabilidade: as trajetórias tendem ao infinito, com exceção de x = 0, conforme
t →∞. Esse é o contexto em que os autovalores são reais positivos, ao menos um autovalor
é real e positivo ou os autovalores são complexos com parte real positiva. A origem é um nó
fonte, uma fonte espiral, ou um ponto de sela.

A partir do que estudamos neste capítulo, podemos concluir que quando os autovalores
são reais negativos teremos uma situação assintoticamente estável, o nó atrator. Se os autovalo-
res forem reais positivos teremos o nó instável. Caso haja um autovalor real positivo e um ne-
gativo ocorre a instabilidade com o ponto de sela. No caso de os autovalores reais serem iguais
teremos nó impróprio, que pode ser instável ou assintoticamente estável, dependendo do sinal
dos autovalores. Na possibilidade de aparecerem autovalores complexos da forma z = a ±bi
com a ̸= 0, teremos ponto espiral, que pode ser assintoticamente estável ou instável. Se a > 0
será instável e com a < 0 será assintoticamente estável. O único exemplo que será estável e não
assintoticamente estável acontecerá se a = 0, onde teremos infinitas circunferências centradas
na origem, representando um tipo de ponto crítico denominado como centro.
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4
Modelos Compartimentais:Sistemas de Equações

Diferenciais Ordinárias Não Lineares

Em decorrência das inúmeras mortes causadas por epidemias, iniciaram-se estudos em
torno das doenças epidemiológicas, utilizando a modelagem matemática para tal. Um destes
estudos foi referente à varíola, desenvolvido por Daniel Bernoulli, em 1790 [5].

Posteriormente, muitos outros estudos foram desenvolvidos a fim de construir mode-
los que buscassem retratar o comportamento de doenças infecciosas [5]. Alguns destes estu-
dos são apresentados por [2] [23]. Contudo, alguns dos principais trabalhos sobre epidemias
foram desenvolvidos por [24], em especial, um modelo que inspirou o desenvolvimento de
outros modelos importantes conhecidos atualmente, denominado SIR (Suscetível-Infectado-
Recuperado)[25].

Os modelos compartimentais são ferramentas matemáticas poderosas para entender a
dinâmica de sistemas complexos e suas interações. Eles têm aplicações significativas em diver-
sas áreas científicas e são fundamentais para a tomada de decisões em saúde pública e pesquisa
biomédica [26]. Iniciaremos o nosso estudo a partir destes modelos, que serão transformados
em sistemas de equações diferenciais autônomas.

Dentro da modelagem matemática, os sistemas de equações diferenciais se mostram bas-
tante frequentes para expressar situações do cotidiano. A fim de auxiliar no desenvolvimento de
modelos, podemos utilizar o método dos compartimentos [4]. Assim, um sistema de comparti-
mentos é, basicamente, formado por uma quantidade finita de subsistemas correlatos, os quais
relacionam-se entre si e com o meio onde estão inseridos, por meio de troca de elementos entre
compartimentos. Os compartimentos são categorizados diante de suas propriedades físicas. A
população que será considerada é dividida em categorias distintas (compartimentos), conforme
a particularidade de cada membro [5], da seguinte forma, segundo [27] [28][25][29].

• Suscetíveis (S): composta por indivíduos que podem adquirir a doença, caso sejam
expostos a mesma;

• Infectivos ou Infecciosos (I): composta por indivíduos infectados que podem transmitir
a doença para algum indivíduo suscetível, caso haja contato;

• Removidos (R): composta por indivíduos que não são mais infecciosos por terem ad-
quirido imunidade ou devido à isolamento.

Segundo [30], nesses modelos que estudaremos, o comportamento humano não é afe-
tado pelo curso da epidemia. Por exemplo, em todos os modelos iniciais, a constante β, que
representa a taxa de contatos efetivos por indivíduo contagioso, não muda à medida que a epi-
demia avança. Entretanto, sabemos que isso é falso. Conforme o número de contagiosos na po-
pulação aumenta, muitos suscetíveis reagirão mudando seu comportamento, ficando em casa,



praticando a melhoria da higiene, o distanciamento social e usando máscaras. O resultado é
uma diminuição em β. Mais tarde, se o número de contagiosos na população cair, os suscetí-
veis podem relaxar essas práticas, aumentando novamente β.

Alguns modelos matemáticos são desenvolvidos com sistemas autônomos não lineares.
Dessa forma, é importante estudar maneiras de aproximar estes sistemas não lineares, através
de sistemas lineares, pelo menos em torno dos pontos de equilíbrio [5]. Sistemas não lineares
possuem equações que contenham alguma expressão do tipo x2

1 , x2
2 , x1.x2, sen(x), etc.

O sistema vai ser quase linear em uma vizinhança de um ponto crítico, sempre que as
funções F e G possuírem pelo menos até a segunda derivada contínua. Um sistema de equações
diferenciais não lineares de primeira ordem pode ser escrito como:

d x

d t
= F (x, y)

d y

d t
=G(x, y).

(4.1)

Através da expansão em série de Taylor em torno do ponto crítico, podemos reescrever
F(x, y) e G(x, y) na forma:


F (x, y) = F (x0, y0)+Fx(x0, y0)(x −x0)+Fy (x0, y0)(y − y0)+N1(x, y)

G(x, y) =G(x0, y0)+Gx(x0, y0)(x −x0)+Gy (x0, y0)(y − y0)+N2(x, y).
(4.2)

Considerando um ponto (x,y) que se aproxima do ponto crítico (x0, y0) em 4.2:
No ponto crítico, as derivadas dx/dt e dy/dt se anulam, portanto F (x0, y0) =G(x0, y0) = 0.
A distância entre os dois pontos é igual a

√
(x −x0)2 + (y − y0)2.

Como essa distância tende a zero, então N1 e N2 tendem a zero.

Além disso,
d x

d t
= d(x −x0)

d t
e

d y

d t
= d(y − y0)

d t
.

Reescrevendo o sistema:

d

d t

(
x −x0

y − y0

)
=

(
Fx(x0, y0) Fy (x0, y0)
Gx(x0, y0) Gy (x0, y0)

)(
x −x0

y − y0

)
+

(
N1(x, y)
N2(x, y)

)
. (4.3)

Podemos analisar através da equação que se as funções F e G forem passíveis de uma
segunda derivada, então o sistema será quase linear e pode ser aproximado localmente no ponto
crítico por um sistema linear, da forma:

d

d t

(
u1

u2

)
=

(
Fx(x0, y0) Fy (x0, y0)
Gx(x0, y0) Gy (x0, y0)

)(
u1

u2

)
. (4.4)

onde u1 = x −x0 e u2 = y − y0

Através da equação 4.4, podemos determinar um sistema linear correlato a um sistema
quase linear numa vizinhança de um ponto crítico. A matriz em 4.5 é denominada de matriz
Jacobiana das funções F e G em relação a x e y.

J(x ,y ) =
(

Fx Fy

Gx Gy

)
. (4.5)
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Antes de começarmos a estudar os modelos compartimentais, vejamos um exemplo [14]
de sistema que é localmente linear: 

d x1

d t
= 1−x2

d x2

d t
= x2

1 −x2
2 .

(4.6)

Tem-se em 4.6 que F (x, y)=1− x2 e G (x, y) = x2
1 − x2

2 de classe C1, já que são funções
polinomiais. Logo, o sistema é localmente linear, e assim é possível determinar os sistemas
lineares que aproximam esse sistema não linear na vizinhança de cada ponto crítico. Para
determinarmos os pontos críticos, devemos calcular em quais pontos P1 e P2, as equações deste
sistema se anulam: 1−x2 = 0, portanto x2 = 1 e x2

1 −x2
2 = 0, portanto x1 =±1.Os pontos críticos

são P1=(1,1) e P2=(-1,1).

J =
(

Fx1 Fx2

Gx1 Gx2

)
=

(
0 −1

2.x1 −2.x2

)
. (4.7)

Agora,vamos calcular a matriz jacobiana em 4.7, calculada nesses pontos críticos:
Para o ponto P1 = (1,1),substituimos x1 = 1 e x2 = 1 na matriz jacobiana, resultando em

um sistema linear dado em 4.8.

d

d t

(
u1

u2

)
=

(
0 −1
2 −2

)(
u1

u2

)
. (4.8)

Calculando os autovalores r1 e r2, a partir do cálculo do determinante da matriz(J-r.I),
sendo I a matriz identidade, temos:

det(J − r.I) =
(−r −1

2 −2− r

)
= 0. (4.9)

A equação resultante do determinante da matriz 4.9 é r 2 +2.r +2 = 0, que possui como
autovalores r =−1± i . Portanto, o ponto crítico P1 é um ponto espiral assintoticamente estável
desse sistema linear. Observe o plano de fase na figura 4.1 do sistema linear referente ao ponto
P1.

Figura 4.1 – Espiral Assintoticamente Estável.
Fonte:Autora
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Para o ponto P2 = (-1,1), temos como sistema linear correspondente:

d

d t

(
u1

u2

)
=

(
0 −1
−2 −2

)(
u1

u2

)
. (4.10)

Calculando os autovalores r1 e r2, a partir do cálculo do determinante da matriz(J-r.I),
sendo I a matriz identidade, temos:

det(J − r.I) =
(−r −1
−2 −2− r

)
= 0. (4.11)

A equação resultante do determinante de 4.11 é r 2 +2.r −2 = 0, que possui como auto-
valores r = −1±p

3. Portanto, o ponto crítico P2 é um ponto de sela (instável) desse sistema
linear. Observe o plano de fase na figura 4.2 do sistema linear referente ao ponto P2:

Figura 4.2 – Ponto de Sela(Instável).
Fonte:Autora

4.1 Modelo SI sem dinâmica vital

Esse é o modelo epidêmico mais simplificado, pois desconsideramos as quantidades
de aumentos ou decrescimentos em uma população, causados por alguns fatores. Assim,uma
população com N habitantes é formada apenas de indivíduos suscetíveis S(t) e infecciosos I(t)
onde S(t)+I(t)=N, no instante t considerado. Desta forma, um indivíduo infectado com uma
doença contagiosa é introduzido em uma população de suscetíveis e, um suscetível, uma vez
infectado, torna-se infeccioso.

Neste modelo, não há recuperado e todos na população ou são suscetíveis para a doença
ou infectados.Um indivíduo infeccioso, uma vez infectado, nunca se recupera da doença[1],
muito menos volta a ser suscetível. Além disso, o modelo é chamado SI sem dinâmica vital,
quando não ocorrem nem nascimento, nem mortes, nem qualquer tipo de migração na popula-
ção, em um determinado período.

Podemos observar que os suscetíveis S(t) diminuem a uma taxa β proporcional ao nú-
mero de encontros com os infecciosos, que por sua vez, aumentam a uma taxa beta proporcional
ao número de encontros com os suscetíveis. Podemos descrever o sistema de equações diferen-
ciais do modelo SI, a partir dos dois compartimentos S(t) e I(t), como pode ser visto na figura
4.3.
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Figura 4.3 – Diagrama compartimental que representa o modelo SI simples.
Fonte: Autora

Considere beta como um número positivo. Observe o sistema:
dS

d t
=−β.S.I

d I

d t
=β.S.I .

(4.12)

Este sistema 4.12 pode ser reescrito usando, para isso, equações de diferenças, como pode ser
visto em 4.13:

St+1 −St =−β.S.I .∆t (4.13a)
It+1 − It =β.S.I .∆t (4.13b)

Como S(t)+I(t) é igual a N, sendo a derivada primeira da constante N igual a zero, ou
considerando que -β.S.I +β.S.I = 0, temos:

dS

d t
+ d I

d t
= 0. (4.14)

Teremos que utilizar apenas uma equação, já que as duas juntas se anulam, por isso,
escolhemos a segunda equação em 4.12 e substituimos S por N-I:

d I

d t
=β.S.I =β.(N − I ).I . (4.15)

Resultando em uma Equação logística para I, com capacidade de suporte para N.

d I

d t
=β.I .(N − I ). (4.16)

Para determinar os pontos de equilíbrio, temos que igualar a equação 4.16 a zero.
Se o resultado dessa multiplicação é igual a zero, então I=0 ou N-I=0, portanto N=I.

Lembre-se que β é positivo e diferente de zero.
Se I=0 , como I+S = N, então S=N o que gera o primeiro ponto: P1 = (N,0), que

representa o momento inicial em que nenhum suscetível foi infectado.
Se N=I , como I+S = N, então S=0 o que gera o segundo ponto: P2 = (0,N), que repre-

senta o momento final em que todos os suscetíveis foram infectados.
Voltando ao sistema 4.12, podemos observar que a matriz jacobiana associada ao sistema

é dada por:

J(S ,I ) =
(

FS FI

GS G I

)
=

(−β.I −β.S
β.I β.S

)
. (4.17)

Agora,vamos obter a matriz jacobiana calculada nesses pontos críticos:
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Para o ponto P1 = (N,0), com S=N e I=0, temos como sistema linear correspondente:

d

d t

(
u1

u2

)
=

(
0 −β.N
0 β.N

)(
u1

u2

)
. (4.18)

Calculando os autovalores r1 e r2, a partir do cálculo do determinante da matriz(J-r.I),
sendo I a matriz identidade, temos:

det(J − r.I) =
(−r −β.N

0 β.N − r

)
= 0. (4.19)

A equação resultante do determinante em 4.19 é igual a: −r.(β.N − r ) = 0, que já é
suficiente para encontrar os valores de r1 e r2. Porém, observe que essa equação representa a
equação quadrática incompleta: r 2 −β.N .r = 0.

Temos que r1 = 0 e β.N − r2 = 0. Obtemos r1 = 0 e r2 =β.N .
Dessa forma, o ponto de equilíbrio P1 é instável, pois β e N são números maiores que

zero, então β.N também é positivo.

Suponha que N = 20 e β= 0.3, então a matriz:
(
0 −β.N
0 β.N

)
é igual a

(
0 −6
0 6

)
.

Os autovalores são: r1 = 0 e r2 = 6. Os autovetores obtidos com a multiplicação(−r −6
0 6− r

)
.v , são: v (1) = (−6,0)T e v (2) = (6,−6)T . Observe que v (1) = (−6,0)T , está asso-

ciado ao autovalor r1 = 0. Então, o autovetor que utilizaremos é v (2) = (6,−6), associado ao
autovalor r2 = 6.

A solução x1(t ) = C1.v (1).er 1.t = C 1.(−6,0)T .e0t =C 1.(−6,0)T , já que e0 = 1, representa
vetores no eixo x, se deslocando para direita ou esquerda, dependendo da constante C1. A
solução x2(t ) = C2.v (2).er 2.t = C 2.(6,−6)T .e6t , representa várias retas, já que temos um vetor
(6,- 6), multiplicado por uma constante quaisquer C2.e6t . Observe o plano de fase deste exemplo
na figura 4.4.

Figura 4.4 – Exemplo Instável.
Fonte:Autora

Agora, vamos fazer o mesmo procedimento com relação ao ponto P2. Para o ponto P2
= (0,N), com S=0 e I=N, temos como sistema linear correspondente:

d

d t

(
u1

u2

)
=

(−β.N 0
β.N 0

)(
u1

u2

)
. (4.20)
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Calculando os autovalores r1 e r2, a partir do cálculo do determinante da matriz (J - r.I),
sendo I a matriz identidade:

det(J − r.I) =
(−β.N − r 0

β.N −r

)
= 0. (4.21)

A equação resultante do determinante em 4.21 é igual a: r.(β.N+r ) = 0. Porém, observe
que essa equação representa a equação quadrática incompleta: r 2 +β.N .r = 0.

Temos que r1 = 0 e β.N + r2 = 0. Obtemos r1 = 0 e r2 =−β.N .
Dessa forma, o ponto de equilíbrio P2 é estável, pois -β.N será negativo.

Suponha que N = 20 e β= 0.3, então a matriz:
(−β.N 0
β.N 0

)
é igual a

(−6 0
6 0

)
.

Os autovalores são: r1 = 0 e r2 = −6. Os autovetores obtidos com a multiplicação(−6− r 0
6 −r

)
.v , são: v (1) = (0,0)T e v (2) = (−6,6)T . Observe que v (1) = (0,0)T , associado

ao autovalor r1 = 0, é um ponto do plano na origem. Então, o autovetor que utilizaremos é
v (2) = (−6,6), associado ao autovalor r2 =−6.

A solução x1(t ) =C1.v (1).er 1.t =C 1.(0,0)T .e0t =C 1.(0,0)T , já que e0 = 1, representa pon-
tos sobre a origem. A solução x2(t ) =C2.v (2).er 2.t =C 2.(−6,6)T .e−6t , representa várias retas, já
que temos um vetor (-6, 6), multiplicado por uma constante quaisquer C2.e−6t . Observe o plano
de fase deste exemplo na figura 4.5.

Figura 4.5 – Exemplo Estável.
Fonte:Autora

Destaca-se que o modelo SI é aplicável à doenças com grandes possibilidades de in-
fecção como, por exemplo, o vírus influenza, no qual grande parte dos indivíduos é infectado
[5].Ainda, outras doenças podem ser aproximadas por este modelo, as quais podemos citar: a
AIDS e a Herpes [27][1][28]

4.1.1 Análise Gráfica

Segundo [1], uma simulação numérica possibilita observar a dinâmica de variação tem-
poral de um modelo em uma população hipotética. O estudo da dinâmica de uma doença trans-
missível consiste essencialmente em esclarecer como a quantidade de indivíduos pertencentes
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a cada um dos compartimentos, no caso o de suscetíveis e infectados variam à medida que o
tempo passa. Para isso, é muito importante saber como calcular esses dados iniciais referentes
a essa evolução. Tendo este conhecimento, podemos implementar algoritmos para determinar
os demais resultados. Mesmo conhecendo a solução analítica deste sistema, resolvemos nu-
mericamente para validar o código, que poderá ser usado em sistemas cuja a solução analítica
não é conhecida. A possibilidade de atribuir significado para um problema matemático é o que
permite com que o estudante compreenda a real intenção deste estudo.

Para interpretar biologicamente este modelo SI, pode-se utilizar um algoritmo a fim de
simular e gerar os gráficos que representam o comportamento das soluções, obtidas numeri-
camente. Nestas simulações que consideramos, considera-se uma população de 50 indivíduos
suscetíveis e apenas 1 infectado, porém com taxas de contato distintas, a saber, β = 0,01, β =
0,02, β = 0,1 e β = 0,3, o que não impede que sejam utilizados pelo leitor, durante o estudo,
valores de β diferentes dos que foram escolhidos neste trabalho. Como β é a taxa de contato
entre suscetíveis e infecciosos, precisamos escolher valores no intervalo 0<β< 1.

Nesse caso, um indivíduo portador da doença é introduzido em uma população sus-
cetível, composta por 50 pessoas, tendo contato com todos os outros, na mesma intensidade,
que os demais, também têm contato entre si. Assim, os suscetíveis tornam-se infectados,como
resultado da interação com indivíduos que já foram contaminados.

Com base nas informações anteriores, sobre os valores de β e utilizando tempos finais
diferentes,medidos em dias, foi utilizado um algoritmo no Octave. Vamos propor algumas al-
terações nos dados para ampliarmos nosso estudo. Para a implementação é necessário fazer
alterações na quantidade de suscetíveis, infectados, no valor de β e no tempo final a ser con-
siderado. A taxa de contato β influencia na velocidade da disseminação de uma determinada
doença, como poderemos observar nos gráficos.

Vamos então, analisar a partir dos dados já citados, o comportamento da evolução da
doença.

Ao analisar o gráfico da Figura 4.6, podemos perceber que quando β=0,01 há uma dis-
seminação da doença em todos os indivíduos suscetíveis, após um período de 20 dias, fazendo
com que a população de suscetíveis não contaminados desapareça.

Figura 4.6 – Evolução temporal do número de suscetíveis e infectados do modelo SI(β=0,01).
Fonte:Autora
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Retornando aos dados iniciais da evolução temporal 4.6, onde: S0 = 50, I0 = 1,β =
0.01,△t = 0.1 e t = 20 dias, podemos perceber que tínhamos um total de 200 iterações, para

que todos os suscetíveis estivessem infectados. Ao calcular
t

△t
= 20

0.1
= 200, temos o total

de iterações. É importante para o leitor saber como acontece cada iteração, por este motivo
apresentaremos as iterações iniciais e aquela que representa a transferência total entre os dois
compartimentos.

Temos as seguintes iterações iniciais para o grupo dos suscetíveis, 4.7 e 4.8, a fim de de-
monstrar os cálculos. Sendo uma escolha por parte do estudante, continuar a resolver as demais
iterações ou não. Uma forma de estudar é fazer mais algumas, porém, como já mencionamos, a
decisão é do leitor. O mais interessante é que transformamos um sistema de equações diferen-
ciais em um sistema mais simples, formado por equações de diferenças, como foi apresentado
no sistema 4.13. Apenas as operações básicas de Matemática são necessárias para o cálculo das
iterações, permitindo que estudantes do Ensino Fundamental ao Superior, tenham condições
de compreender o processo. Vejamos como podemos representar as iterações dos suscetíveis,
utilizando a equação 4.13a.

Figura 4.7 – Primeira iteração dos suscetíveis (β= 0.01)- modelo SI
Fonte: Autora

Observe que nas iterações, a quantidade de suscetíveis e infectados do período posterior,
St+1 e It+1, dependerá sempre da quantidade atual St e It . A taxa β= 0,01 é mantida constante
e o passo △t é considerado como 0,1. Precisamos salientar que qualquer erro na obtenção dos
resultados das iterações ou na atribuição de valores para as variáveis, poderá comprometer todas
as iterações posteriores.

Enquanto a população dos suscetíveis diminui, a dos infectados aumenta, como con-
sequência de uma transferência desses indivíduos entre as categorias.

Figura 4.8 – Segunda iteração dos suscetíveis(β= 0.01) - modelo SI
Fonte: Autora

Podemos observar que na ducentésima iteração que será apresentada, todos os susce-
tíveis, já estarão contaminados, pois It

∼= 51, que representa toda a população. Se fizéssemos
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uma simulação com β maior, teríamos um tempo menor para que isso ocorresse, portanto com
menos iterações.

Figura 4.9 – Ducentésima iteração dos suscetíveis(β= 0.01) - modelo SI
Fonte: Autora

De forma análoga, a quantidade de pessoas infectadas em um intervalo de tempo pos-
terior, será obtida a partir de uma quantidade atual de suscetíveis e infecciosos, como pode ser
visto em 4.10 e em 4.11. Para resolver esses cálculos de uma forma organizada, aconselhamos
em cada iteração, obter os resultados para suscetíveis e infectados concomitantemente. Cons-
truímos um esquema, para que o leitor possa compreender quais valores assumimos para as va-
riáveis, a medida que as iterações acontecem. Colocamos apenas duas iterações em sequência,
com isso, já é possível observar como proceder com as substituições. Vejamos como podemos
representar as iterações dos infectados, utilizando a equação 4.13b.

Figura 4.10 – Primeira iteração dos infectados(β= 0.01) - modelo SI
Fonte: Autora

Na segunda iteração 4.11, podemos observar que a quantidade de infectados começa a
aumentar e continua, até que toda a população esteja infectada.

Figura 4.11 – Segunda iteração dos infectados(β= 0.01) - modelo SI
Fonte: Autora
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Figura 4.12 – Ducentésima iteração dos infectados(β= 0.01) - modelo SI
Fonte: Autora

Nas figuras 4.9 e 4.12 temos 200 iterações, para que a categoria dos infectados represente
toda a população, o que faz com que não exista mais nenhum indivíduo suscetível. Portanto,a
população dos suscetíveis, torna-se inexistente e a dos infectados é a única que prevalece.

Na septuagésima nona iteração na figura 4.13, obtida através da equação 4.13a, ou seja,
em oito dias, as quantidades de suscetíveis St e infectados It se igualam, porém os infectados
ultrapassam os suscetíveis na próxima iteração.

Figura 4.13 – Septuagésima nona iteração dos suscetíveis(β= 0.01) - modelo SI
Fonte: Autora

No caso em que β=0,02, na figura 4.14 , temos um aumento na taxa de contato β, por
isso, o período em que a disseminação total ocorre é menor, em 10 dias todos os suscetíveis
ficam contaminados. O leitor pode usar esta simulação como um exercício.
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Figura 4.14 – Evolução temporal do número de suscetíveis e infectados do modelo SI(β=0,02).
Fonte:Autora

Imagine agora, se a taxa de contato β aumentar para 0,1, na figura 4.15, esta mesma
população torna-se infectada após 2 dias de contatos com infectados. Teremos 20 iterações.

Figura 4.15 – Evolução temporal do número de suscetíveis e infectados do modelo SI(β=0,1).
Fonte:Autora

Vejamos como ficariam as iterações iniciais obtidas com a equação 4.13a, para o grupo
dos suscetíveis em 4.16 e em 4.17. Perceba que enquanto a quantidade de suscetíveis diminui
com as iterações, a quantidade de infectados aumenta, como já mencionamos. Após 2 dias,
teremos a iteração 4.18.
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Figura 4.16 – Primeira iteração dos suscetíveis(β= 0.1)-modelo SI
Fonte:Autora

Figura 4.17 – Segunda iteração dos suscetíveis(β= 0.1)-modelo SI
Fonte:Autora

Figura 4.18 – Vigésima iteração dos suscetíveis(β= 0.1)-modelo SI
Fonte:Autora

Observe como ficariam as iterações iniciais obtidas a partir da equação 4.13b, para o
grupo dos infectados em 4.19 e em 4.20. Após 2 dias, teremos a iteração 4.21.

Figura 4.19 – Primeira iteração dos infectados(β= 0.1)-modelo SI
Fonte:Autora
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Figura 4.20 – Segunda iteração dos infectados(β= 0.1)-modelo SI
Fonte:Autora

Figura 4.21 – Vigésima iteração dos infectados(β= 0.1)-modelo SI
Fonte:Autora

Se aumentarmos mais, β assumindo o valor de 0,3, então, em menos de 1 dia, todos já
estarão contaminados, de acordo com a figura 4.22 .

Figura 4.22 – Evolução temporal do número de suscetíveis e infectados do modelo SI(β=0,3).
Fonte:Autora

Observando o comportamento das soluções, é perceptível que quanto maior a taxa de
contato β, mais rapidamente, ou seja, em uma quantidade de dias menor, todos os indivíduos
passam para a classe dos infectados. Ademais, ressalta-se que, neste modelo, todos os 50
indivíduos suscetíveis em contato com infectados serão infectados, independente dos valores de
β. Em uma simulação, usando determinada quantidade de suscetíveis e infectados, temos que
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quanto maior o valor de β, menor o número de dias envolvido, para que todos os suscetíveis
sejam infectados.

4.2 Modelo SIS sem dinâmica vital

Se um indivíduo vulnerável à determinada doença , entrar em contato com uma pessoa
infectada, torna-se infectado. Assim, passa a causar infecções em outros indivíduos suscetí-
veis. Em contrapartida, após um período de tempo, os indivíduos infectados se recuperam e
tornam-se saudáveis, voltando ao grupo de suscetíveis, o que não acontece no modelo estudado
anteriormente. Quando há a possibilidade de recuperação, temos o modelo denominado SIS.
Segundo [14], os indivíduos infectados, ao se recuperarem, não adquirem imunidade e retornam
à classe de suscetíveis.

O Diagrama compartimental da figura 4.23, representa o modelo SIS simples, em que β
positivo representa a taxa de contato e γ positivo representa a taxa de remoção.

Figura 4.23 – Diagrama compartimental que representa o modelo SIS.
Fonte: Autora

Neste caso, o sistema de equações diferenciais 4.24 descreve a dinâmica.
dS

d t
=−β.S.I +γ.I

d I

d t
=β.S.I −γ.I .

(4.22)

Reescrevendo o sistema não adimensionalizado, por meio de equações de diferenças temos um
sistema simplificado em 4.23.

St+1 −St = (−β.S.I +γ.I ).△t (4.23a)
It+1 − It = (β.S.I −γ.I ).△t . (4.23b)

Os suscetíveis decrescem a uma taxa proporcional a quantidade de encontros com as
pessoas infecciosas, do mesmo modo que há um acréscimo de infectados que já se recupera-
ram. Os infectados aumentam da mesma forma que os suscetíveis diminuem, retirando-se a
quantidade dos que são curados. Assim como no modelo SI temos a equação 4.14.

Primeiramente, vamos encontrar os pontos críticos do sistema, sem a utilização do pro-
cedimento de adimensionalização.

Considere a equação 4.24 obtida a partir do sistema 4.22:
F (S, I ) =−β.S.I +γ.I

G(S, I ) =β.S.I −γ.I .
(4.24)
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Ao igualarmos F(S,I) e G(S,I) a zero, ocorrem duas possibilidades.
Primeira Situação: Se I = 0, já que N = S + I , então N = S;
Segunda Situação: Se S = γ

β
, então I = N − γ

β
.

Com isso, determinamos os pontos P1=(N,0) e P2=
(
γ

β
, N − γ

β

)
.

Em seguida, calculamos a matriz jacobiana:

J(S ,I ) =
(

FS FI

GS G I

)
=

(−β.I −β.S +γ
β.I β.S −γ

)
. (4.25)

Ao substituirmos o ponto P1=(N,0) na matriz jacobiana em 4.25, obtemos A =
(
0 −β.N +γ
0 β.N −γ

)
.

Já que não conseguimos calcular os autovalores, faremos uma análise a partir do traço e do de-
terminante da matriz. Como tr(A)= β.N −γ >0 e det(A)=0, podemos concluir que P1=(N,0) é

instável. Agora, vamos substituir o ponto P2=
(
γ

β
, N − γ

β

)
na matriz jacobiana obtida em 4.25,

sendo representado o procedimento na equação 4.26:

B =


−β.

(
N − γ

β

)
−β.

(
γ

β

)
+γ

β.

(
N − γ

β

)
β.

(
γ

β

)
−γ

=
(−β.N +γ 0
β.N −γ 0

)
. (4.26)

Como tr (B) =−β.N +γ< 0 e det(B)=0, então nada se pode afirmar em relação ao ponto

P2. Segundo [14],após fazer um estudo sobre
d I

d t
, o ponto P2 é assintoticamente estável.

Para a análise do modelo, uma outra possibilidade é utilizar o processo de adimensiona-
lização das variáveis a serem investigadas e que, embora hajam diversas formas de se realizar
esse procedimento, muitas vezes é interessante relacionar as variáveis com algum parâmetro
relevante ao estudo. Esse processo de adimensionalização consiste em reduzir o número de pa-
râmetros agrupando-os de forma significativa, pois, geralmente, esses agrupamentos fornecem
medidas com relações diretas aos efeitos dos parâmetros dimensionais [31].

Assim, definem-se as variáveis adimensionais:

σ= S

N
,ν= I

N
,τ= γ.t . (4.27)

Faremos a multiplicação das duas equações do sistema 4.22 por
1

γ.N
. Vamos inici-

almente, considerar a multiplicação da fração
dS

d t
por

1

γ.N
. Ao substituirmos dS = dσ.N e

d t = dτ

γ
temos:

dσ.N
dτ.γ.N

γ

= dσ

dτ
. (4.28)

O segundo termo da primeira equação do sistema também deverá ser multiplicado por
1

γ.N
da seguinte forma:

−β.S.I +γ.I =−β.S.I .N

γ.N .N
+ γ.I

γ.N
. (4.29)
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Observe que introduzimos também uma fração
N

N
,que sendo igual a 1, não altera o

resultado. Faremos R0 = β.N

γ
. Observe que ao substituirmos σ = S

N
e ν = I

N
obtemos a

expressão: -R0.σ.ν+ν. Agora faremos a multiplicação da fração
d I

d t
por

1

γ.N
. Teremos que

fazer substituições também, d I = dν.N e d t = dτ

γ
temos:

dν.N
dτ.γ.N

γ

= dν

dτ
. (4.30)

O segundo termo da segunda equação do sistema também deverá ser multiplicado por
1

γ.N
da seguinte forma:

β.S.I −γ.I = β.S.I .N

γ.N .N
− γ.I

γ.N
. (4.31)

Observe que introduzimos também uma fração
N

N
, que sendo igual a 1, não altera o

resultado. Faremos R0 = β.N

γ
. Observe que ao substituirmos σ = S

N
e ν = I

N
, obtemos a

expressão: R0.σ.ν−ν.
Conseguimos então adimensionalizar o sistema inicial 4.22, simplificando-o em 4.32:

dσ

dτ
=−(R0σ−1)ν

dν

dτ
= (R0σ−1)ν.

(4.32)

Tome R0, como a taxa reprodutiva básica, β.N é a taxa de infecção provocada pela

inserção de um indivíduo infectado numa população total e
1

γ
é o tempo médio que um infec-

tado permanece na classe dos infectados. Podemos considerar, R0 como o número médio de
infecções secundárias causadas pela introdução de um único infectado numa população de sus-
cetíveis. As soluções encontram-se na região R formada pelos pontos (σ,ν) onde 0 ≤ σ ≤ 1 e
0 ≤ ν≤ 1,além de σ+ν= 1. [27] [25] [2] [31] [32].

Para determinar os pontos de equilíbrio, fazemos:
dσ

dτ
= 0,ν= 0 ou σ= 1

R0

dν

dτ
= 0,ν= 0 ou σ= 1

R0
.

(4.33)

Considerando 4.33 temos que σ+ν= 1, se ν= 0 então σ= 1, temos o ponto P1 = (1,0)

é o ponto de equilíbrio livre da doença. Por outro lado, se σ= 1

R0
então P2= (

1

R0
,1− 1

R0
).

O ponto P2 é ponto de equilíbrio que representa a presença da doença. Dessa forma, os

pontos de equilíbrio são P1 = (1,0) e P2 =(
1

R0
,1− 1

R0
) .
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A matriz jacobiana é dada por:

J(x ,y ) =
(

Fσ Fν
Gσ Gν

)
=

(−R0.ν −R0σ+1
R0.ν R0σ−1

)
. (4.34)

Para o ponto P1 = (1,0), temos como sistema linear correspondente em 4.35, após reali-
zar as substituições na matriz jacobiana 4.34 :

d

dτ

(
u1

u2

)
=

(
0 −R0 +1
0 R0 −1

)(
u1

u2

)
. (4.35)

A matriz que deveremos calcular o determinante é:(−r −R0 +1
0 R0 −1− r

)
. (4.36)

Obtemos a expressão a partir do determinante da matriz 4.36: -r.(R0 −1− r ) = 0, onde
r = 0 ou R0 −1− r = 0. Em que os autovalores são r1 = 0 e r2 = R0 −1. Nesse caso, também
temos uma equação quadrática incompleta, r 2 + (−R0 +1).r = 0.

Dessa forma, temos que o ponto crítico P1 é um ponto estável do sistema linear quando
R0 < 1, pois r2 será negativo. Agora, se R0 > 1, temos r2 positivo, portanto P1 será um ponto
instável.

Fazendo a substituição de P2 =(
1

R0
,1− 1

R0
) na matriz jacobiana 4.34 temos:


−R0.

(
1− 1

R0

)
−R0.

(
1

R0

)
+1

R0.

(
1− 1

R0

)
R0.

(
1

R0

)
−1

=
(−R0 +1 0

R0 −1 0

)
. (4.37)

Para o ponto P2 =(
1

R0
,1− 1

R0
) temos então como sistema linear correspondente:

d

dτ

(
u1

u2

)
=

(−R0 +1 0
R0 −1 0

)(
u1

u2

)
. (4.38)

A matriz que deveremos calcular o determinante é obtida a partir de 4.38:(−R0 +1− r 0
R0 −1 −r

)
. (4.39)

Obtemos a expressão -r.(−R0 + 1− r ) = 0, onde r = 0 ou -R0 + 1− r = 0. Em que os
autovalores são r1 = −R0 + 1 e r2 = 0. Nesse caso, também temos uma equação quadrática
incompleta, r 2 + (R0 −1).r = 0.

Dessa forma, temos que o ponto crítico P2 é um ponto estável do sistema linear, ou seja,
quando R0 > 1, e instável quando R0 < 1. Os planos de fase são muito parecidos com os do
modelo SI, por isso, não serão inseridos nesta etapa.
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4.2.1 Análise Gráfica

Para realizar a interpretação biológica do modelo SIS realizou-se algumas simulações
e esboçou-se o gráfico que representa o comportamento das soluções, obtidas numericamente.
Para o modelo SIS, diferentemente do modelo SI, realizou-se o processo de adimensionali-
zação, por isso as variáveis que utilizaremos serão as variáveis adimensionais, representadas
no novo sistema obtido. Utilizaremos as condições iniciais σ(0) = 0,7 e ν(0) = 0,3, em todas
as simulações, respectivamente, as quais representam a população de suscetíveis e infectados
(observando que σ+ν= 1).

Foram escolhidos distintos valores para R0, o qual representa o número médio de in-
fecções secundárias causadas pela inserção de um infectado na população, descritos a seguir:
R0 = 0,6, R0 = 1,5, R0 = 2,5, R0 = 3,5 e R0 = 5.

Foi utilizado um algoritmo no Octave, para implementação dos gráficos de evolução.
Nesse caso como já definimos os valores iniciais de σ e ν, só precisamos alterar o tempo final
τ e o valor de R0.

Consideraremos, inicialmente, R0 = 0,6, onde R0 < 1. Já que com R0 < 1, temos como
ponto de equilíbrio P1, que representa um ponto estável, livre da doença. Nesse caso, a quanti-
dade de infectados iguala-se a zero, após um período adimensional.

Logo, percebe-se que os suscetíveis e os infectados vão tender ao ponto de equilíbrio,
isto é,com o passar do tempo o número de infectados tende a 0, até se anular e o número de
suscetíveis se aproxima de 1, até se igualar, e a população livra-se da doença, como mostra a
figura 4.24.

Figura 4.24 – Evolução temporal do modelo SIS (R0 = 0,6).
Fonte:Autora

Retornando ao sistema 4.23, podemos substituir os dados β = 0,3 e γ = 0,5, pois com
essas taxas o valor de R0 é igual a 0,6 , além disso, devemos utilizar as condições iniciais
S(0)=0.7 e I(0)=0.3. 

St+1 −St = (−0,3.S.I +0,5.I ).△t

It+1 − It = (0,3.S.I −0,5.I ).△t .
(4.40)
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Partimos então para a observação das iterações iniciais dos suscetíveis obtidas através da equa-
ção 4.23a. Vejamos como ficam as iterações nas figuras 4.25 e em 4.26:

Figura 4.25 – Primeira iteração dos suscetíveis(β= 0.3)-modelo SIS não vital.
Fonte:Autora

Figura 4.26 – Segunda iteração dos suscetíveis(β= 0.3)-modelo SIS não vital.
Fonte:Autora

A quantidade dos suscetíveis St+1, aumenta à medida que prosseguimos com o cálculo
das iterações, se aproximando cada vez mais do valor 1, mas não o ultrapassando, como pode
ser visto em 4.27.

Figura 4.27 – Ducentésima sexagésima quarta iteração dos suscetíveis(β = 0.3)-modelo SIS
não vital.

Fonte:Autora

Agora, vamos observar as iterações iniciais dos infectados a partir da equação 4.23b,
representadas em 4.28 e em 4.29, onde as quantidades de contaminados, ficam diminuindo até
inexistir como na iteração da figura 4.30.

Figura 4.28 – Primeira iteração dos infectados(β= 0.3)-modelo SIS não vital.
Fonte:Autora

41



Figura 4.29 – Segunda iteração dos infectados(β= 0.3)-modelo SIS não vital.
Fonte:Autora

Figura 4.30 – Ducentésima sexagésima quarta iteração dos infectados(β= 0.3)-modelo SIS não
vital.

Fonte:Autora

Quando R0 > 1, sendo R0=1,5, partimos de um ponto P1 instável, onde há um cresci-
mento ínfimo da quantidade de infectados, assim como, um decrescimento proporcional muito
baixo do número de suscetíveis, para um ponto P2 estável.

Com isso, os suscetíveis, mantém-se maior que a população de infectados e, após algum
tempo, a população tende ao ponto de equilíbrio P2, aí permanecendo, devido a sua estabilidade,
de acordo com o gráfico 4.31.

Nesse caso, um pouco mais de 30% da população está infectada e um pouco menos de
70%, encontra-se vulnerável. Portanto não há um crescimento expressivo dos infectados, porém
ainda existe uma parcela da população que está doente.

Figura 4.31 – Evolução temporal do modelo SIS (R0 = 1,5).
Fonte:Autora
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Para R0 = 2,5, observa-se que os suscetíveis e os infectados tendem a um ponto P2 mais
rapidamente, se comparado ao caso considerado anteriormente, pois cada indivíduo consegue
infectar 2,5 indivíduos, ao invés de 1,5. Nesse caso, em menos de 1 unidades de tempo adimen-
sional, o número de infectados ultrapassa o número de suscetíveis, como podemos observar no
gráfico 4.32.

Figura 4.32 – Evolução temporal do modelo SIS (R0 = 2,5).
Fonte:Autora

Agora, vamos utilizar β = 1,25 e γ = 0,5, pois com essas taxas o valor de R0 é igual a
2,5 , além disso, devemos utilizar as condições iniciais S(0)=0.7 e I(0)=0.3.

Vamos observar as iterações iniciais dos suscetíveis através da equação 4.23a, nas figuras
4.33 e em 4.34.

Figura 4.33 – Primeira iteração dos suscetíveis(β= 1.25)-modelo SIS não vital.
Fonte:Autora

Figura 4.34 – Segunda iteração dos suscetíveis(β= 1.25)-modelo SIS não vital.
Fonte:Autora
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Se continuarmos a calcular as próximas iterações, veremos que a quantidade de suscetí-
veis, diminuem se aproximando e se estabilizando em 0,4, ou seja, os suscetíveis jamais ficam
inferiores a 0.4. Os suscetíveis tendem a atingir 40% da população, mantendo-se estável ao
assumir esta parcela. Isso poderá ser confirmado pelo leitor. Podemos observar isso em 4.35.

Figura 4.35 – Centésima iteração dos suscetíveis(β= 1.25)-modelo SIS não vital.
Fonte:Autora

Para o grupo dos infectados foi obtido as iterações iniciais a partir da equação 4.23b,
representadas em 4.36 e em 4.37.

Figura 4.36 – Primeira iteração dos infectados(β= 1.25)-modelo SIS não vital.
Fonte:Autora

Figura 4.37 – Segunda iteração dos infectados(β= 1.25)-modelo SIS não vital.
Fonte:Autora

Podemos perceber que prosseguindo com a execução das iterações, temos que a quan-
tidade de infectados cresce se aproximando de 0,6, ou seja, os infectados não assumem jamais
valor superior a 0,6, como pode ser observado em 4.38. Com isso, os infectados não atingem
mais de 60% da população.

Figura 4.38 – Centésima iteração dos infectados(β= 1.25)-modelo SIS não vital.
Fonte:Autora
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Quando R0 = 3,5, o tempo para a infecção é ainda menor para que o número de infecta-
dos, supere o número de indivíduos suscetíveis, menos de 0,5 unidades de tempo. adimensional,
como podemos observar no gráfico 4.39. Supondo, que 1 u.t. adimensional representasse vinte
e quatro horas, em menos de doze horas a população de indivíduos infectados superaria a po-
pulação de suscetíveis e tenderia ao ponto P2. O que representaria um pouco mais de 70% da
população infectada e um pouco menos de 30% vulnerável.

Figura 4.39 – Evolução temporal do modelo SIS (R0 = 3,5).
Fonte:Autora

No caso de R0 = 5, mais rapidamente a doença se espalha e tende ao ponto de equilí-
brio P2. Neste caso, cada infectado poderá contaminar 5 suscetíveis, demonstrando assim que
quanto maior for R0, mais rapidamente a doença se disseminará entre a população de suscetí-
veis. Além disso, maior será o número de indivíduos infectados. Podemos observar o gráfico
4.40. Nesta situação, temos 80% da população infectada e isso acontece rapidamente, e os 20%
restantes, encontram-se suscetíveis.
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Figura 4.40 – Evolução temporal do modelo SIS (R0 = 5).
Fonte:Autora

Ademais, conclui-se que, para o modelo SIS sem dinâmica vital, a população de susce-
tíveis, assim como a população de infectados, atinge o ponto de equilíbrio e estabiliza-se. Por
outro lado, se R0 < 1, a população tende ao equilíbrio estável (S,I)= (1,0), situação na qual a
população está livre da doença. Logo, quando ocorre uma epidemia, tenta-se estabelecer medi-
das como a vacinação, por exemplo, para que a taxa R0 reduza-se a um valor menor que um e,
consequentemente, a doença acabe [5].

Assim sendo, os gráficos estudados, neste modelo, mostram o que ocorre com a popu-
lação de acordo com o valor de R0. Com isso, podemos observar se a doença irá acabar ou se
disseminar entre a população. Partimos de um modelo SI, onde não existia o coeficiente R0, e
tínhamos uma taxa β, que indicava o quão rápido, toda a população estaria infectada, para um
modelo SIS ainda sem dinâmica vital, com um coeficiente R0, que relaciona as taxas de contá-
gio e recuperação, fazendo com que uma parcela da população, apesar de ter sido contaminada,
volte a ser suscetível, não extinguindo esta categoria, como no modelo SI. Porém, ambos os
modelos, adquirem uma estabilidade, com relação a quantidade de suscetíveis e infectados . No
modelo SI, não há como ter um resultado, que não represente uma tragédia. Já no modelo SIS
há a possibilidade de se tentar diminuir o valor do R0, para que este seja menor que 1, e não
haja infectados, depois de certo período.

4.3 Modelo SIS com dinâmica vital

Neste caso há dinâmica vital, isto é, na população considerada há nascimentos e mortes,
contudo, como a população total N é constante, considera-se que o número de nascimentos é
igual ao número de mortes, e ainda, que os nascimentos são de indivíduos sadios [14]. As
taxas de natalidade e mortalidade são iguais a γ . O modelo SIS com dinâmica vital, pode ser
representado através do diagrama 4.41 a seguir:
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Figura 4.41 – Diagrama compartimental que representa o modelo SIS com dinâmica vital.
Fonte: Autora

A saída de suscetíveis, ocorre por morte ou por aquisição da doença. A entrada de
suscetíveis, ocorre com os nascimentos (que são proporcionais à população total), assim como
os que se recuperaram, não adquirindo imunidade. O sistema de equações diferenciais que
descreve esse modelo é dado por:

dS

d t
=−β.S.I +α.I +γ.N −γ.S

d I

d t
=β.S.I −α.I −γ.I .

(4.41)

Este sistema pode ser reescrito, usando as equações de diferenças como em 4.42:

St+1 −St = (−β.S.I +α.I +γ.N −γ.S).△t (4.42a)
It+1 − It = (β.S.I −α.I −γ.I ).△t . (4.42b)

Observe que N-S=I, então:
F (S, I ) =−β.S.I +α.I +γ.I

G(S, I ) =β.S.I −α.I −γ.I .
(4.43)

Igualando a zero F(S,I) e G(S,I) em 4.43, podemos obter os pontos de equilíbrio:

P1 = (N ,0)

P2 = (
α+γ
β

, N − α+γ
β

).

A estabilidade desses pontos será analisada através do cálculo do traço e do determinante da
matriz. A matriz jacobiana é dada por:

J(S ,I ) =
(

FS FI

GS G I

)
=

(−β.I −β.S +α+γ
β.I β.S −α−γ

)
. (4.44)

Substituindo P1=(N,0) na matriz jacobiana 4.44, temos:

A =
(
0 −β.N +α+γ
0 β.N −α−γ

)
. (4.45)
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Então calculando tr (A) =β.N −α−γ> 0 e det(A)=0, portanto o ponto P1 é instável.
Agora, vamos substituir P2 na matriz jacobiana 4.44:

B =


−β.

(
N −

(
α+γ
β

))
−β.

(
α+γ
β

)
+α+γ

β.

(
N −

(
α+γ
β

))
β.

(
α+γ
β

)
−α−γ

=
(−β.N +α+γ 0
β.N −α−γ 0

)
. (4.46)

Logo, tr (B) = −β.N +α+γ e det(B)=0, com isso, nada se pode afirmar sobre o ponto

P2.Segundo [14],após fazer um estudo sobre
d I

d t
, o ponto P2 é assintoticamente estável. Pode-

se observar que ao considerar dinâmica vital no modelo SIS, quando a população é constante, a
magnitude de cada coordenada do ponto de equilíbrio P2 é alterada, mas o tipo de estabilidade
permanece o mesmo para os dois pontos de equilíbrio existentes [14].

4.3.1 Análise Gráfica

Vamos realizar algumas simulações, tomando como condições iniciais os valores esco-
lhidos: N = 1,S0 = 0,9 e I0 = 0,1. É interessante que as quantidades referentes aos suscetíveis
representem a maior parte da população, enquanto os valores para os infectados estejam re-
lacionados a uma minoria. Assim conseguimos simular a evolução partindo de um momento
inicial.

Começaremos com as seguintes taxas β= 0,5,α= 0,2 e γ= 0,01. Lembre-se que esta-

mos considerando a taxa γ de natalidade igual a taxa de mortalidade. Como R0 = β

γ+α então

R0 = 0,5

0,01+0,2
∼= 2,4. Observe a figura 4.42, podemos perceber que o panorama desta simu-

lação é negativo, pois em 12 dias, aproximadamente, o número de infectados ultrapassa o de
suscetíveis. Além disso, após 20 dias, quase 60% da população, apesar de estar numa situação
estável, encontra-se infectada e um pouco mais de 40% torna-se suscetível.

Figura 4.42 – Evolução temporal do modelo SIS com dinâmica vital(R0
∼= 2,4).

Fonte: Autora
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Vejamos como ficam as primeiras iterações, calculadas a partir da equação 4.42a do
grupo dos suscetíveis e da equação 4.42b para os infectados em 4.43 e em 4.44.

Figura 4.43 – Primeira iteração dos suscetíveis(β= 0.5,α= 0.2,γ= 0.01)-modelo SIS vital
Fonte: Autora

Figura 4.44 – Primeira iteração dos infectados(β= 0.5,α= 0.2,γ= 0.01)-modelo SIS vital
Fonte: Autora

Agora, observe as segundas iterações para os grupos de suscetíveis e infectados em 4.45
e em 4.46.

Figura 4.45 – Segunda iteração dos suscetíveis(β= 0.5,α= 0.2,γ= 0.01)-modelo SIS vital
Fonte: Autora

Figura 4.46 – Segunda iteração dos infectados(β= 0.5,α= 0.2,γ= 0.01)-modelo SIS vital
Fonte: Autora
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A próxima iteração, representa o momento em que a quantidade de suscetíveis St+1,
torna-se aproximadamente, igual a de infectados It+1 , como pode ser visto em 4.47 e em 4.48.

Figura 4.47 – Centésima décima oitava iteração dos suscetíveis(β = 0.5,α = 0.2,γ = 0.01)-
modelo SIS vital

Fonte: Autora

Figura 4.48 – Centésima décima oitava iteração dos infectados(β = 0.5,α = 0.2,γ = 0.01)-
modelo SIS vital

Fonte: Autora

A partir da ducentésima iteração ou seja após 20 dias, a quantidade de suscetíveis e
infectados, mantém-se estabilizada, onde os suscetíveis tem reduções mínimas, aproximando-
se do valor 0.4, enquanto os infectados tem acréscimos bem pequenos, aproximando-se de 0.6.

Agora, considere as taxas β = 0,3,α = 0,2. e γ = 0,01. Então R0
∼= 1,4, um valor bem

próximo de 1, veja a figura 4.49. Aqui, estamos propondo uma redução na taxa de infecção
β, o que alterou a situação, agora temos 70% de suscetíveis e 30% de infectados após 40 dias.
Portanto, se continuarmos a reduzir a taxa de contágio, a situação tende a melhorar, pois R0

tende a ser menor que 1.
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Figura 4.49 – Evolução temporal do modelo SIS com dinâmica vital(R0
∼= 1,4).

Fonte: Autora

Vejamos o que acontece usando as taxas β = 0,5,α = 0,25, e γ = 0,01. Então R0
∼= 2

na figura 4.50. Nesta simulação, mantemos o mesmo valor de β inicial e aumentamos a taxa α
referente as pessoas infectadas, que voltam a ser suscetíveis. Esse aumento se deve a algum tipo
de procedimento, que faça com que os infectados se reestabeleçam, apesar de não adquirirem
imunidade, voltando a ser suscetíveis. Com isso, os suscetíveis assumem a porcentagem de
52% , e os infectados, 48%, aproximadamente.

Figura 4.50 – Evolução temporal do modelo SIS com dinâmica vital(R0
∼= 2).

Fonte: Autora

Usando as taxas β= 0,3,α= 0,3. e γ= 0,01. Então R0
∼= 1, veja a figura 4.51 e observe

que igualamos as taxas de contágio e recuperação, fazendo com que todos os infectados voltem
a ser suscetíveis.
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Figura 4.51 – Evolução temporal do modelo SIS com dinâmica vital(R0
∼= 1).

Fonte: Autora

Agora, usaremos as taxas β = 0,5,α = 0,3 e γ = 0,01 e Então R0
∼= 1,6., veja a figura

4.52. Apesar de termos uma taxa de contágio de 50%, um aumento na taxa α, pode provocar
uma grande melhora na situação. Temos 60% de suscetíveis e 40% de infectados, aproxima-
damente. Apesar de termos mais suscetíveis do que infectados, essa situação, teria que ser
modificada, a fim de recuperar esses indivíduos contaminados.

Figura 4.52 – Evolução temporal do modelo SIS com dinâmica vital(R0
∼= 1,6).

Fonte: Autora

Propomos várias alterações nas taxas, e observamos que alterações na taxa de contágio
β, e na taxa de recuperação α são importantes. As alterações em γ, por acréscimo, indicam um
aumento na quantidade de suscetíveis pelos nascimentos, mas também a morte de alguns sus-
cetíveis, além disso, indicam que aumentaram as mortes no grupo dos infectados. Dependendo

52



desse aumento, o gráfico apresenta uma quantidade de suscetíveis superior aos infectados, po-
rém, isto significa que houveram mortes, o que nós não desejamos.O ideal é que a taxa γ não
aumente.

Observe que os gráficos apresentados neste trabalho, mostram de forma clara, a situação
dos suscetíveis e infectados em determinada quantidade de dias, e só recorremos ao cálculo
das iterações no Scratch, para o esclarecimento de como o programa Octave, pode realizar tais
cálculos para a construção dessas evoluções temporais. Além disso, fica mais fácil compreender,
a dinâmica que existe entre os compartimentos, transformando um aprendizado algébrico em
exercícios de Aritmética, envolvendo problemas reais da humanidade.

4.4 Modelo SIR sem dinâmica vital

Neste modelo, a população é formada por pessoas suscetíveis que contraem a doença in-
fecciosa, tornando-se infectados. Após um período, os mesmos adquirem imunidade. Com isso,
passam a pertencer à classe dos recuperados. Este modelo é diferente dos modelos estudados
anteriormente, pois existe a possibilidade de recuperação, ocorrendo a imunização.

O processo epidemiológico pode ser representado por meio do diagrama compartimental
na figura 4.53, que representa o modelo SIR simples, em que β> 0 representa a taxa de contato
e γ> 0 a taxa de remoção.

Figura 4.53 – Diagrama compartimental que representa o modelo SIR.
Fonte: Autora

O sistema de equações diferenciais que representa este modelo, sem dinâmica vital, é
dado por: 

dS

d t
=−β.S.I

d I

d t
=β.S.I −γ.I

dR

d t
= γ.I .

(4.47)

Podemos reescrevê-lo usando as equações de diferenças em 4.48:

St+1 −St =−β.S.I .△t (4.48a)
It+1 − It = (β.S.I −γ.I ).△t (4.48b)

Rt+1 −Rt = γ.I .△t . (4.48c)

53



O sistema de equações, com dinâmica vital, é representado da seguinte forma em 4.49:

dS

d t
=π.N −β.S.I −µ.S

d I

d t
=β.S.I −µ.I −α.I −γ.I

dR

d t
= γ.I −µ.R.

(4.49)

Porém estudaremos nesta seção, o modelo SIR, sem dinâmica vital. Neste caso, pode-
mos considerar que as taxas de natalidade π e de morte α e µ são iguais a zero. Atribuímos a
β> 0 a taxa de contato, γ> 0 a taxa de remoção.

Podemos observar que os suscetíveis S(t) decrescem a uma taxa proporcional ao nú-
mero de contatos com pessoas infectadas, já os infectados crescem do mesmo modo como os
suscetíveis diminuem e excluindo-se os que são curados ou mortos. A variação dos retirados ou
removidos é proporcional à quantidade dos infectados que são recuperados.

Assim como nos outros modelos, a população total N é constante, sendo S + I +R = N ,
com isso, o somatório das derivadas se anula. Portanto:

dS

d t
+ d I

d t
+ dR

d t
= 0. (4.50)

As condições iniciais são: S(0) = S0 = N − I0, I (0) = I0, R(0) = 0.

Observe que
dS

d t
+ d I

d t
em 4.47, dependem apenas de S e I. Devemos proceder à adimen-

sionalização. Para isto, definimos as variáveis adimensionais como:

σ= S

N
,ν= I

N
,ω= R

N
,τ= γ.t . (4.51)

O processo será muito semelhante ao do modelo anterior. O segundo termo da primeira

equação do sistema 4.47, também deverá ser multiplicado por
1

γ.N
da seguinte forma:

−β.S.I =−β.S.I .N

γ.N .N
. (4.52)

Observe que introduzimos em 4.52 uma fração
N

N
, que sendo igual a 1, não altera o

resultado da multiplicação. Faremos R0 = β.N

γ
. Observe que ao substituirmos σ= S

N
e ν= I

N
na mesma equação, obtemos a expressão:

−β.S.I =−R0.σ.ν. (4.53)

O segundo termo da segunda equação do sistema 4.47 também deverá ser multiplicado

por
1

γ.N
, da seguinte forma:

β.S.I −γ.I = β.S.I .N

γ.N .N
− γ.I

γ.N
. (4.54)
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Observe que introduzimos em 4.54 também uma fração
N

N
, que sendo igual a 1, não

altera o resultado. Faremos R0 = β.N

γ
. Ao substituirmos σ= S

N
e ν= I

N
obtemos a expressão:

β.S.I −γ.I = R0.σ.ν−ν. (4.55)

Vamos considerar a multiplicação da fração
dR

d t
em 4.47 por

1

γ.N
. Ao substituirmos

dR = dω.N e d t = dτ

γ
temos:

dω.N
dτ.γ.N

γ

= dω

dτ
. (4.56)

Agora, o segundo termo da terceira equação γ.I ao ser multiplicado por
1

γ.N
resulta na

fração
I

N
= ν.

Portanto,o sistema 4.47 na forma adimensional é:

dσ

dτ
=−R0σν

dν

dτ
= (R0σ−1)ν

dω

dτ
= ν.

(4.57)

sendo R0 = β.N

γ
a taxa reprodutiva básica, βN é a taxa de infecção provocada pela in-

trodução de um indivíduo infetado numa população total,
1

γ
é o tempo médio que um infectado

permanece no grupo dos infectados. Logo, R0 é o número médio de infecções secundárias cau-
sadas pela introdução de um único infectado numa população. As soluções encontram-se na
região R2 formada pelos pontos (σ,ν,ω) onde 0 ≤ σ ≤ 1 e 0 ≤ ν ≤ 1 e 0 ≤ ω ≤ 1, além disso
σ+ν+ω= 1 [27] [25] [2] [31].

Observe que,
dσ

dτ
e

dν

dτ
não dependem de ω e considerando σ(0) =σ0 > 0, ν(0) = ν0 > 0,

ω0 = 0, segue que σ+ν= 1.
Para determinar os pontos de equilíbrio, devemos considerar as duas primeiras equações

do sistema 4.57, onde as derivadas se anulam de acordo com o sistema 4.58:
dσ

dτ
= 0,σ= 0 ou ν= 0

dν

dτ
= 0,σ= 1

R0
ou ν= 0.

(4.58)

Como σ+ν = 1, se ν = 0 segue que σ = 1 e assim, P1 = (1,0) é o ponto de equilíbrio
livre da doença.

A matriz jacobiana do sistema 4.57 é dada por:

J(σ,ν ) =
(

Fσ Fν
Gσ Gν

)
=

(−R0.ν −R0σ

R0.ν R0σ−1

)
. (4.59)
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Para o ponto P1 = (1,0), temos como sistema linear correspondente, obtido a partir da
matriz jacobiana em 4.59:

d

dτ

(
u1

u2

)
=

(
0 −R0

0 R0 −1

)(
u1

u2

)
. (4.60)

Agora devemos calcular os autovalores através da matriz:(−r −R0

0 R0 −1− r

)
. (4.61)

Obtemos a expressão −r.(R0 − 1− r ) = 0, portanto os autovalores correspondentes são
r1 = 0 e r2 = R0 −1. Dessa forma, temos que o ponto de equilíbrio P1 é estável, sempre que
R0 < 1, mas não é assintoticamente estável.

Suponha R0 = 0.5 e observe o plano de fase na figura 4.54. Os autovalores são: r1 = 0 e
r2 =−0.5 e os autovetores (0.5,0)T e (−0.5,−0,5)T .

Figura 4.54 – Exemplo Estável.
Fonte:Autora

Caso, R0 = 1.5, observe o plano de fase na figura 4.55. Os autovalores são: r1 = 0 e
r2 = 0.5 e os autovetores (−0.5,0)T e (1.5,−0,5)T .
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Figura 4.55 – Exemplo Instável.
Fonte:Autora

Agora, vamos determinar as coordenadas do ponto P2. Se σ = 1

R0
, como σ+ν = 1,

temos que ν= 1− 1

R0
e o ponto P2 =(

1

R0
,1− 1

R0
).

Esse é o ponto onde a doença está presente, para o qual temos como sistema linear
correspondente:

d

dτ

(
u1

u2

)
=

(−R0 +1 −1
R0 −1 0

)(
u1

u2

)
. (4.62)

Calculando o determinante da matriz em 4.62, a ser representada isoladamente em 4.63:(−R0 +1− r −1
R0 −1 −r

)
. (4.63)

Obtemos a expressão (−R0 +1− r ).(−r )+R0 −1 = 0, que resulta em uma equação qua-
drática completa, r 2 + (R0 − 1).r +R0 − 1 = 0. Utilizando a fórmula de resolução da equação

x = −b ∓
p

b2 −4.a.c

2.a
, conseguimos obter as raízes que representam os autovalores dessa ma-

triz.

Os autovalores r1 e r2 possuem o formato: r1,2= −R0 +1∓
√

(R0 −1)2 −4.1.(R0 −1)

2
=

−R0 +1∓
√

R2
0 −2.R0 +1−4.R0 +4

2
=

−R0 +1∓
√

R2
0 −6.R0 +5

2
Observando

√
R2

0 −6.R0 +5, podemos perceber que △= R2
0 −6.R0 +5, uma função qua-

drática completa, possui as raízes R0 = 1 e R0 = 5, representando os pontos em que △= 0.

Se R0 = 1, a matriz a ser considerada é:
(
0 −1
0 0

)
. Temos r = 0 e ν = (1,0)T , observe a

figura 4.56.
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Figura 4.56 – Exemplo Instável (R0 = 1).
Fonte:Autora

No caso de R0 = 5, temos um exemplo estável. Verifique na figura 4.57.

Figura 4.57 – Exemplo Estável (R0 = 5).
Fonte:Autora

Além disso, △ > 0 se R0 < 1 ou R0 > 5. Suponha de acordo com a figura 4.58, que

R0 = 0.5, a matriz referência é:
(

0.5 −1
−0.5 0

)
, então temos r1 =−0.5 e r2 = 1, v (1) = (−0.5,−0.5)T

e v (2) = (1,−0.5)T .
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Figura 4.58 – Exemplo Instável (R0 = 0.5).
Fonte:Autora

Agora, vamos supor que R0 = 5.5, a matriz resultante é
(−4.5 −1

4.5 0

)
, então temos r1 =−3

e r2 =−1.5, v (1) = (−3,4.5)T e v (2) = (1.5,−4.5)T .Observe a figura 4.59.

Figura 4.59 – Exemplo Estável (R0 = 5.5).
Fonte:Autora

No caso de (1 < R0 < 5), △ será negativo e ambos os autovalores serão negativos ou
terão parte real negativa. Logo, temos que o ponto crítico P2 é um ponto estável do sistema

linear sempre que R0 > 1. No caso de R0 = 1.5, a matriz fica igual a
(−0.5 −1

0.5 0

)
, então temos

r1 =−3 e r2 =−1.5, v (1) = (−3,4.5)T e v (2) = (1.5,−4.5)T , veja na figura 4.60.
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Figura 4.60 – Exemplo Estável (R0 = 1.5).
Fonte:Autora

4.4.1 Análise Gráfica

Para estudarmos a dinâmica da epidemia no contexto do modelo SIR, foram realizadas
algumas simulações, através do algoritmo no Octave.

A partir disso, obtemos os gráficos que representam o comportamento das soluções,
obtidas numericamente. Para o modelo SIR, realizou-se o processo de adimensionalização,
assim como, para o modelo SIS, tais procedimentos estão descritos neste trabalho.

Iremos considerar uma população inicial σ0 = 0,8, que representa a população de susce-
tíveis e ν0 = 0,2, que representa os indivíduos infectados. Atribuiremos distintos valores para
R0, como: 0,9; 1,5; 2,5; 3,5 e 5, o qual representa o número médio de infecções secundárias
causadas pela inserção de um infectado na população.

Tomando,R0 = 0,9, isto é, R0 < 1, temos um ponto estável. A curva dos suscetíveis, não
decresce de forma intensa, ou seja, poucos indivíduos passam a ser infectados. No decorrer
do tempo, o número de infectados tende à 0 e, em paralelo, o número de removidos cresce até
atingir o equilíbrio, momento em que a população livra-se da doença, como mostra a figura
4.61.
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Figura 4.61 – Evolução temporal do modelo SIR (R0 = 0,9).
Fonte: Autora

Para analisar o processo iterativo desta situação, vamos assumir que S(0) = 0,8, I (0) =
0,2 e R(0) = 0, as taxas β= 0,27 e γ= 0,3. Vejamos as iterações iniciais dos suscetíveis obtidas
pela equação 4.48a, nas figuras 4.62 e em 4.63. Os valores para os suscetíveis diminuem,
estabilizando-se em aproximadamente 0,52.

Figura 4.62 – Primeira iteração dos suscetíveis(β= 0.27,γ= 0.3)-modelo SIR
Fonte: Autora

Figura 4.63 – Segunda iteração dos suscetíveis(β= 0.27,γ= 0.3)-modelo SIR
Fonte: Autora

Agora,vejamos as iterações iniciais dos infectados através da equação 4.48b, represen-
tadas em 4.64 e em 4.65. As quantidades diminuem, até que não existam mais infectados.
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Figura 4.64 – Primeira iteração dos infectados(β= 0.27,γ= 0.3)-modelo SIR
Fonte: Autora

Figura 4.65 – Segunda iteração dos infectados(β= 0.27,γ= 0.3)-modelo SIR
Fonte: Autora

Agora,vejamos as iterações iniciais dos recuperados obtidas com a equação 4.48c, apre-
sentadas em 4.66 e em 4.67. Este grupo aumenta, até se estabilizar em aproximadamente 0,48.

Figura 4.66 – Primeira iteração dos recuperados(β= 0.27,γ= 0.3)-modelo SIR
Fonte: Autora

Figura 4.67 – Segunda iteração dos recuperados(β= 0.27,γ= 0.3)-modelo SIR
Fonte: Autora

Agora, quando R0 > 1, a doença se propaga de forma preocupante entre a população.
Na situação em que R0 = 1,5, algumas pessoas serão infectadas e outras não, e em

decorrência, o pico da doença não atinge um valor muito alto, como mostra a curva vermelha.
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Observe a aparência da curva que representa os infectados, ela possui um formato “acha-
tado”, como podemos observar no gráfico 4.68.

Figura 4.68 – Evolução temporal do modelo SIR (R0 = 1,5).
Fonte: Autora

Por outro lado, quando R0 = 2,5, observa-se que o crescimento da curva em vermelho
ocorre mais rapidamente, assim como o seu valor máximo é maior. Isso significa que mais
pessoas terão se infectado ao final do período adimensional. Quanto maior for o R0, menor será
o tempo envolvido, para se atingir o máximo de infectados. Além disso, o número de removidos
é maior, porque mais pessoas tornaram-se infectadas.Vejamos o gráfico em 4.69.

Figura 4.69 – Evolução temporal do modelo SIR (R0 = 2,5).
Fonte: Autora

Quando R0 = 3,5, os suscetíveis decrescem até 4 u.t. adimensionais e a curva dos in-
fectados, cresce rapidamente até atingir o ponto mais alto da doença, que ocorre em menos de
2 u.t. adimensionais. Observe a figura 4.70. Temos um contexto bem grave nessa situação,
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pois um pouco mais de 40% da população de indivíduos será infectada, já que um indivíduo
infectado poderá contaminar 3,5 suscetíveis e, por consequência, após a diminuição do número
de infectados, têm-se um crescimento considerável do número de indivíduos removidos.

Figura 4.70 – Evolução temporal do modelo SIR (R0 = 3,5).
Fonte: Autora

Vamos iniciar o processo iterativo, assumindo que S(0) = 0,8, I (0) = 0,2 e R(0) = 0, as
taxas β= 0,7 e γ= 0,2. Vejamos as iterações iniciais dos suscetíveis a partir da equação 4.48a,
que estão expostas em 4.71 e em 4.72. Ao passo que as iterações acontecem, as quantidades
vão diminuindo, se estabilizando em aproximadamente 0,03.

Figura 4.71 – Primeira iteração dos suscetíveis(β= 0.7,γ= 0.2)-modelo SIR
Fonte: Autora

Figura 4.72 – Segunda iteração dos suscetíveis(β= 0.7,γ= 0.2)-modelo SIR
Fonte: Autora
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Com relação ao grupo dos infectados, utilizamos a equação 4.48b. Observando as itera-
ções iniciais em 4.73 e em 4.74 e se continuarmos com o processo, veremos que este grupo vai
aumentando, até assumir um maior valor de 0,42, ou seja, atinge no máximo 42% da população,
depois passa a diminuir, tendendo a inexistir.

Figura 4.73 – Primeira iteração dos infectados(β= 0.7,γ= 0.2)-modelo SIR
Fonte: Autora

Figura 4.74 – Segunda iteração dos infectados(β= 0.7,γ= 0.2)-modelo SIR
Fonte: Autora

Já a categoria dos recuperados, com base na equação 4.48c, tem as seguintes iterações
iniciais em 4.75 e em 4.76. Os removidos crescem se estabilizando em 0,97, ou seja, aproxima-
damente 97% será recuperada.

Figura 4.75 – Primeira iteração dos recuperados(β= 0.7,γ= 0.2)-modelo SIR
Fonte: Autora
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Figura 4.76 – Segunda iteração dos recuperados(β= 0.7,γ= 0.2)-modelo SIR
Fonte: Autora

Na situação em que R0 = 5, a velocidade de contaminação aumenta muito mais. Além
disso, o pico da doença atinge metade da população em menos de 2 u.t. adimensionais, isto
é maior se comparado com as situações já estudadas. Neste caso, têm-se que cada indivíduo
infectado poderá infectar 5 suscetíveis, e, em decorrência, o pico da doença é atingido rapida-
mente e, ao mesmo tempo, a curva de removidos tem um crescimento quase que exponencial
até atingir toda a população, como pode ser observado na figura 4.77.

Figura 4.77 – Evolução temporal do modelo SIR (R0 = 5).
Fonte: Autora

Podemos afirmar que quanto maior o R0, mais rapidamente os suscetíveis se tornam
infectados, e com o passar do tempo, o número de infectados diminui, aumentando o número
de removidos. Considerando a situação hipotética na qual R0 = 5, pode-se obervar que a curva
dos removidos, com o passar do tempo, tende à população total indicando que toda a população
foi infectada . É importante destacar que à medida que a curva dos infectados decresce, ocorre
o crescimento do número de indivíduos removidos. Logo, quando ocorre uma epidemia, tenta-
se estabelecer medidas como a vacinação, isolamento social, por exemplo, para que a taxa R0

reduza-se a um valor menor que um e, consequentemente, a doença acabe [5]. Esta análise pode
ser usada para determinar se a doença irá se extinguir ou se espalhar entre a população.

Esse modelo é considerado simples para descrever as epidemias atuais, pois o mesmo
não considera mutações de vírus e as consequências decorrentes destas, como o período de
incubação de uma determinada doença. Só que apesar disso, este modelo traz a inclusão de uma
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categoria dos recuperados, o que significa a possibilidade de se reestabelecer de uma doença,
que pode ter efeitos graves na vida de um paciente. Isso significa que estamos evoluindo, pois
partimos do SI, onde não havia nenhuma forma de escape para a população, passamos pelo SIS,
onde torcíamos para que o coeficiente R0 fosse menor que 1, e agora temos uma chance, mesmo
com o coeficiente R0 maior que 1, podemos nos recuperar. Só que essa evolução, ainda não
atingiu a todas as doenças.

4.5 Modelo SIRS sem dinâmica vital

Neste modelo há indivíduos suscetíves que adquirem a doença, tornando-se infectados
e, após a recuperação, não adquirem imunidade, tornando-se suscetíveis novamente [14]. Se-
gundo [20], a grande diferença entre SIRS e SIR é que, para SIRS, um indivíduo pode perder
sua imunidade após a cura da doença, como no caso de tuberculose e malária. Essa nova ca-
racterística de reinfecção pode ocorrer de dois modos: ou o indivíduo infectado, ao curar-se,
vai direto ao grupo dos suscetíveis, ou o indivíduo infectado, ao curar-se, vai para o grupo dos
recuperados, sendo que uma parte deste grupo volta a ser suscetível (modelo SIRS).

Neste modelo a natalidade e a mortalidade natural não serão consideradas, exceto as
mortes causadas pela doença,cujas pessoas devem ser adicionadas ao grupo dos recuperados.

A população total N será constante, não havendo presença de dinâmica vital. Assim,
segue o modelo compartimental na figura 4.78:

Figura 4.78 – Diagrama compartimental que representa o modelo SIRS.
Fonte: Autora

Neste caso, o sistema de equações diferenciais que descreve a dinâmica é:

dS

d t
=−β.S.I +µ.R

d I

d t
=β.S.I −γ.I

dR

d t
= γ.I −µ.R.

(4.64)

Reescrevendo em forma de sistema de equações de diferenças em 4.65:

St+1 −St = (−β.S.I +µ.R).△t (4.65a)
It+1 − It = (β.S.I −γ.I ).△t (4.65b)
Rt+1 −Rt = (γ.I −µ.R).△t . (4.65c)

Observe que as taxas β, γ e µ são números positivos. As condições iniciais são: S(0) =
S0 = N − I0, I (0) = I0, R(0) = 0. Não faremos o procedimento de adimensionalização neste
modelo.
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Vamos analisar o sistema bidimensional obtido a partir de 4.64, substituindo primeira-
mente a expressão R = N −S − I :

dS

d t
=−β.S.I +µ.(N −S − I )

d I

d t
=β.S.I −γ.I .

(4.66)

Para determinar os pontos de equilíbrio do sistema, devemos considerar as taxas de

variação
dS

d t
e

d I

d t
em 4.66, iguais a zero:


dS

d t
=−β.S.I +µ.(N −S − I ) = 0

d I

d t
=β.S.I −γ.I = 0.

(4.67)

A partir da segunda equação do sistema 4.67, encontramos S = γ

β
da seguinte forma:

β.S.I −γ.I = 0

I .(β.S −γ) = 0

Como I ̸= 0 então β.S−γ= 0, portanto β.S = γ, resultando em S = γ

β
. Substituindo S na primeira

equação em 4.67 temos:

−β.S.I +µ.(N −S − I ) = 0

−β.

(
γ

β

)
.I +µ.

(
N −

(
γ

β

)
− I

)
= 0

(−γ−µ).I +µ.

(
N − γ

β

)
= 0

(γ+µ).I =µ.

(
N − γ

β

)

I =
µ.

(
N − γ

β

)
γ+µ

Com isso, se N = γ

β
, o sistema terá um único ponto de equilíbrio, P1=(N,0), que representa

a população livre da doença, pois I se anularia. Se N > γ

β
, o sistema possuirá dois pontos

de equilíbrio, P1=(N ,0) e P2=

γβ ,

µ.

(
N − γ

β

)
γ+µ

. Agora N < γ

β
teríamos I < 0, o que seria um

absurdo, já que I representa a quantidade de infectados.
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O próximo passo será analisar a estabilidade dos pontos críticos, começando pelo ponto
P1 = (N ,0). Retornando ao sistema 4.67, devemos observar que a matriz jacobiana, assumirá o
seguinte formato, representado em 4.68:

J(S ,y I ) =
(

FS FI

GS G I

)
=

(−µ−β.I −µ−β.S
β.I β.S −γ

)
. (4.68)

O sistema linear que aproxima o sistema bidimensional na vizinhança do ponto P1 = (N,
0), onde S = N e I = 0, é o seguinte:

d

d t

(
u
v

)
=

(−µ −µ−β.N
0 β.N −γ

)(
u
v

)
. (4.69)

Os autovalores r da matriz jacobiana obtida a partir de 4.69, são as raízes do polinômio

característico, como já fizemos anteriormente. Calculando o determinante da matriz
(−µ− r −µ−β.N

0 β.N −γ− r

)
e igualando a zero, temos: (−µ− r ).(β.N −γ− r ) = 0.

Os autovalores são r1 = −µ e r2 = β.N −γ. Como r1 < 0 < r2, o ponto P1 = (N ,0) é
ponto de sela, portanto representa um ponto de instabilidade.

Em seguida, devemos analisar o segundo ponto crítico P2=

γβ ,

µ.

(
N − γ

β

)
γ+µ

, para isso,

retornamos a matriz 4.68 e fazendo as substituições das coordenadas do ponto temos:

−µ−β.


µ.

(
N − γ

β

)
γ+µ

 −µ−β.

(
γ

β

)

β.


µ.

(
N − γ

β

)
γ+µ

 β.

(
γ

β

)
−γ


=



−µ−


β.µ.N +β.µ.

(
γ

β

)
γ+µ

 −µ−γ


β.µ.N −β.µ.

(
γ

β

)
γ+µ

 0


Simplificando: 

−µ2 −β.µ.N

γ+µ −µ−γ

β.µ.N −µ.γ

γ+µ 0

 . (4.70)

Calculando o determinante em 4.70 encontramos:

−(−µ−γ).
β.µ.N −µ.γ

γ+µ =β.µ.N −µ.γ=µ.(β.N −γ) > 0. (4.71)

Já que não conseguimos calcular os autovalores para realizar a análise de estabilidade,
utilizaremos o traço da matriz, que é a soma dos elementos da diagonal principal.

−µ.(µ+β.N )

γ+µ +0 < 0. (4.72)
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Como sabemos µ > 0 e β.N −γ > 0, o que implica em N > γ

β
, então o determinante é

positivo, como representado na equação 4.71. Isso associado ao fato de que o traço da matriz
em 4.72 é negativo, o que nos permite concluir que o ponto P2 é assintoticamente estável. A
partir dos resultados obtidos por meio do traço e do determinante da matriz, verificamos que
o ponto P2 é um ponto estável e atrator, ou seja, as trajetórias tendem a P2. Podemos fazer
a classificação de sistemas lineares hiperbólicos no plano cujas coordenadas são traço (eixo
horizontal) e determinante (eixo vertical) de acordo com a figura 4.79:

Figura 4.79 – Plano traço-determinante.
Fonte: [33]

Através dos resultados das análises de estabilidade dos pontos críticos do sistema, ob-
servamos que se I0 > 0 a doença nunca irá se extinguir, tornando-se endêmica.

Como as trajetórias tendem ao ponto P2, cabe uma indagação: será que podemos in-
terferir nos parâmetros, a fim de que P2 tenha uma coordenada y menor, o que significaria um
menor número de doentes nesse momento de equilíbrio?

Segundo [20],dependendo da doença que está sendo modelada por SIRS, a resposta é
sim. Por exemplo, no caso da gripe comum, em que não há imunidade vitalícia, posto que o
vírus sofre mutação de ano para ano, ao incentivar ações voltadas para a educação da população,
tais como, higienização das mãos, evitar ambientes sem ventilação, cobrir a boca ao tossir e ao
espirrar, o valor de β (taxa com que os suscetíveis tornam-se infectados) tende a diminuir.
Portanto, ao diminuir beta (mantendo γ e µ), o ponto de equilíbrio P2 desloca-se para a direita

e para baixo, o que significa que a coordenada
dS

d t
aumenta enquanto

d I

d t
diminui. Assim, o

ponto de equilíbrio ocorrerá com um menor número de indivíduos infectados.

4.5.1 Análise Gráfica

Vamos realizar algumas simulações, para analisar o comportamento das curvas que re-
presentam S, R e I, durante um intervalo de tempo t. Faremos algumas propostas para as taxas
β,γ e µ, a fim de verificar o que acréscimos e diminuições, acarretam para o panorama das
doenças modeladas por SIRS. As condições iniciais serão S0 = 0,99, I0 = 0,01 e R0 = 0, o que
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significa que nessa simulação há 99% de suscetíveis e 1% de infectados.
Considerando as taxas β= 0,5 = 50%,γ= 0,1 = 10% e µ= 0,05 = 5%, podemos observar

que 50% dos suscetíveis ficam infectados, 10% dos infectados se recuperam e 5% dos que se
recuperam voltam a ser vulneráveis.

No gráfico 4.80, P1 representa o ponto inicial, livre da doença e o ponto P2, ponto de
estabilidade, como já estudamos. Podemos observar que, em menos de 20 dias, a quantidade de
infectados ultrapassa a quantidade de suscetíveis, assumindo o seu maior valor, correspondente
a metade dos suscetíveis. Após isso, há um decrescimento na quantidade de infectados, refe-
rente aos 10% que vão integrar a classe dos recuperados, porém 90% dos infectados continuam
nesta categoria, por isso atinge a estabilidade, porém com um grande número de infectados. Os
suscetíveis com o passar do tempo, atingem uma estabilidade, porém com a menor quantidade
das categorias. Já os recuperados superam os suscetíveis e os infecciosos após 20 dias.

Figura 4.80 – Evolução temporal do modelo SIRS (β= 0,5,γ= 0,1 e µ= 0,05).
Fonte: Autora

Observe as iterações iniciais para os suscetíveis obtidas a partir da equação 4.65a, repre-
sentadas em 4.81 e em 4.82.

Figura 4.81 – Primeira iteração dos suscetíveis(β= 0.5,γ= 0.1,µ= 0.05)-modelo SIRS
Fonte: Autora
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Figura 4.82 – Segunda iteração dos suscetíveis(β= 0.5,γ= 0.1,µ= 0.05)-modelo SIRS
Fonte: Autora

Agora, vejamos as iterações iniciais para os infectados calculadas com a equação 4.65b
e apresentadas em 4.83 e em 4.84.

Figura 4.83 – Primeira iteração dos infectados(β= 0.5,γ= 0.1,µ= 0.05)-modelo SIRS
Fonte: Autora

Figura 4.84 – Segunda iteração dos infectados(β= 0.5,γ= 0.1,µ= 0.05)-modelo SIRS
Fonte: Autora

As iterações iniciais do grupo dos recuperados com base na equação 4.65c, podem ser
construídas como em 4.85 e em 4.86.

Figura 4.85 – Primeira iteração dos recuperados(β= 0.5,γ= 0.1,µ= 0.05)-modelo SIRS
Fonte: Autora
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Figura 4.86 – Segunda iteração dos recuperados(β= 0.5,γ= 0.1,µ= 0.05)-modelo SIRS
Fonte: Autora

Temos que na centésima sexagésima primeira iteração, a quantidade de infectados, as-
sume o seu maior valor de aproximadamente 0.51. Deixamos como exercício para o leitor, a
determinação da quantidade de iterações, para que o número de suscetíveis se torne igual aos
infectados, os removidos igual aos suscetíveis e os removidos igual aos infectados.

Agora, vamos reduzir o valor de β para 0,25 e manter as outras taxas com os mesmos
valores, como pode ser visto na figura 4.87. O gráfico passa a ter a curva dos infecciosos mais
achatada e os 25% irão representar a maior quantidade de infectados, obtida em menos de 40
dias. A quantidade de suscetíveis se mantém superior a quantidade de infectados durante todo
o período. Os recuperados ultrapassam os infecciosos em menos de 40 dias e os suscetíveis
em 40 dias. Após 80 dias, as quantidades de suscetíveis e de recuperados se aproximam. Com
isso, propomos uma diminuição no valor de β capaz de resultar num efeito satisfatório, que é a
diminuição no total de infectados.

Figura 4.87 – Evolução temporal do modelo SIRS (β= 0,25,γ= 0,1 e µ= 0,05).
Fonte: Autora

No próximo caso, com o gráfico em 4.88, utilizamos β = 0,5,γ = 0,25 e µ = 0,05, que
representa uma situação favorável, onde em 20 dias, os infectados assumem o maior valor,
sofrendo redução após este período. Entre 20 e 40 dias, aproximadamente, podemos perceber
que há mais recuperados do que suscetíveis. Com mais de 40 dias, a quantidade de suscetíveis
ultrapassa a quantidade de recuperados, podendo no futuro, tornarem-se ou não infecciosos.
Isso deve-se ao fato de que apenas uma parcela dos recuperados µ.R, voltam a ser suscetíveis,
o que os tornam vulneráveis à doença. Os demais presentes no grupo dos recuperados, não
voltam a desenvolver a doença.
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Com base no que estudamos, podemos considerar que o modelo SIRS é importante para
analisar a forma com que uma doença se espalha e eventualmente declina em uma população,
sendo uma ferramenta valiosa, para se prever os surtos e orientar políticas de saúde pública.

Figura 4.88 – Evolução temporal do modelo SIRS (β= 0,5,γ= 0,25 e µ= 0,05).
Fonte: Autora

4.6 Modelo SIRV com dinâmica vital

A introdução de medidas de controle tal como a vacinação, é uma maneira para controlar
a transmissão de doenças, mas, ao diminuir o número de suscetíveis, imunizando-os, teremos
por consequência a diminuição da incidência da doença? Quantas pessoas devem ser vacinadas
de modo que não se estabeleça uma epidemia? [20]. Essas são perguntas importantes, pois
espera-se que a imunização, obtida através da vacina, venha impedir o estabelecimento ou o
retorno de uma epidemia.

O diagrama 4.89 apresenta o fluxo do modelo SIR com vacinação, sendo ν a taxa de
vacinação, e as demais taxas, lembrando que todas são maiores do que zero. Neste modelo
estamos considerando a dinâmica vital.

Figura 4.89 – Diagrama compartimental que representa o modelo SIRV.
Fonte: Autora

O grupo dos suscetíveis é beneficiado com os nascimentos, π.N , e prejudicado com a
saída de indivíduos que se tornaram infectados, β.S.I e pelos indivíduos que tiveram morte
natural, µ.S, e pela transferência de indivíduos imunizados com a vacinação, ν.S. Já o grupo
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dos infectados recebe novos infectados, β.S.I , e perde os seus infectados mortos por causa
natural, µ.I , além de perder os infectados mortos em decorrência da doença, α.I , e também
perde os indivíduos que adquiriram imunidade após a cura da doença, γ.I . O último grupo é o
dos removidos que se beneficiam com a entrada dos indivíduos que adquiriram imunidade após
a cura da doença, γ.I , e com os indivíduos imunizados por vacinação, ν.S, além de sofrer as
perdas com a morte de removidos por causa natural, µ.R. O sistema de equações sem dinâmica
vital, pode ser representado como: 

dS

d t
=−β.S.I −ν.S

d I

d t
=β.S.I −γ.I

dR

d t
= γ.I +ν.S.

(4.73)

Podemos reescrevê-lo com equações de diferenças através do sistema 4.74:

St+1 −St = (−β.S.I −ν.S).△t (4.74a)
It+1 − It = (β.S.I −γ.I ).△t (4.74b)
Rt+1 −Rt = (γ.I +ν.S).△t . (4.74c)

O sistema de equações com dinâmica vital, é representado da seguinte forma:

dS

d t
=π.N −β.S.I −µ.S −ν.S

d I

d t
=β.S.I −µ.I −α.I −γ.I

dR

d t
= γ.I +ν.S −µ.R.

(4.75)

Podemos reescrevê-lo com equações de diferenças:

St+1 −St = (π.N −β.S.I −µ.S −ν.S).△t

It+1 − It = (β.S.I −µ.I −α.I −γ.I ).△t

Rt+1 −Rt = (γ.I +ν.S −µ.R).△t .

(4.76)

As condições iniciais são S(0) = S0, I (0) = I0 e R(0) = 0. Como temos
dR

d t
=−dS

d t
− d I

d t
,

iremos considerar o sistema bidimensional:
dS

d t
=π.N −β.S.I −µ.S −ν.S

d I

d t
=β.S.I −µ.I −α.I −γ.I .

(4.77)

Para justificar a necessidade de uma vacinação, devemos considerar R0 > 1, pois quando R0 < 1,
o sistema converge para para uma situação satisfatória, onde a população encontra-se livre da
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doença, portanto não há epidemia. Por este motivo, devemos considerar que a taxa de reprodu-
tibilidade basal seja maior que 1. Como há uma variação crescente de infectados ao longo do

tempo,
d I

d t
> 0 em 4.77 e a quantidade de infectados inicial é positiva, temos que:

(β.S0 −γ−µ−α).I0 > 0

(β.S0 −γ−µ−α) > 0

β.S0 > (γ+µ+α).1

β.S0

γ+µ+α > 1

Portanto:
(β.S0 −γ−µ−α).I0 > 0 ⇐⇒ β.S0

γ+µ+α > 1. (4.78)

Seja R0 = β.S0

γ+µ+α , a reprodutibilidade basal que representa o número médio de infecções

ocasionadas pela disseminação de um único indivíduo. Com isso, teremos uma epidemia se
R0 > 1:

R0 > 1 ⇐⇒ β.S0

γ+µ+α > 1 ⇐⇒ S0 > γ+µ+α
β

. (4.79)

Podemos observar que existe um número crítico de suscetíveis S0 > γ+µ+α
β

, onde a doença

se espalha na população. Se I0 for igual a zero, a população estará livre da doença, nesse caso,
temos que S0 = S(t ) = N (t ), para qualquer intervalo de tempo t , porém se I0 > 0, poderemos ter
duas situações:

1a) S0 ≤ γ+µ+α
β

: a quantidade de pessoas infectadas decrescerá até chegar a inexistir.

2a) S0 ≥ γ+µ+α
β

e I0 > 0: a doença se dissemina entre a população, com os infecta-

dos atingindo valores crescentes até que se atinja o valor crítico de suscetíveis S0 obtido em
4.79,para algum intervalo de tempo t , até quando I(t) começar a decrescer até se anular.

Segundo [20],quando propomos uma vacinação da população, estamos propondo uma
intervenção no processo natural da doença, por meio da inclusão de um programa de vacinação
que terá como objetivo diminuir o número de suscetíveis, imunizando-o, consequentemente
diminuindo o número de reprodutibilidade basal R0.Ao vacinar uma população, teremos um
percentual ν.S(t ) de indivíduos imunizados no intervalo de tempo t , enquanto que (1−ν).S(t )
permanecem suscetíveis à doença.

A vacinação tem por objetivo diminuir a quantidade de suscetíveis (1−ν).S(t ) até alcan-
çar o valor de S(t ) = γ+µ+α

β
, em algum período.

Com isso, podemos perceber que quando o porcentual de suscetíveis for menor ou igual
ao ponto crítico, a incidência da doença irá decrescer até desaparecer, de acordo com 4.80 :

(1−ν).S ≤ γ+µ+α
β

⇐⇒ (1−ν) ≤ γ+µ+α
β.S

⇐⇒ ν≥ 1− γ+µ+α
β.S

. (4.80)
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4.6.1 Análise Gráfica

Vamos considerar para as nossas simulações, os seguintes valores: S0 = 0,9, I0 = 0,1 e
R0 = 0. Além disso, tomemos a taxa de infecção β= 0,3, a taxa de recuperação γ= 0,1, a taxa
de morte natural µ= 0,01, a taxa de vacinação ν= 0,02, a taxa de morte pela infecção α= 0,05
e a taxa de nascimentos π= 0,02. Observe o gráfico em 4.90.

Figura 4.90 – Evolução temporal do modelo SIRV (β = 0,3,γ = 0,1,µ = 0,01,ν = 0,02,α =
0,05,π= 0,02).

Fonte: Autora

Observe as iterações iniciais dos suscetíveis obtidas pela equação 4.74a e expostas em
4.91 e em 4.92. Os suscetíveis começam a decrescer, até atingir um valor mínimo entre 0,2
e 0,4, voltando a crescer novamente, até se estabilizar entre 0,4 e 0,6. Isso ocorre devido a
parcela dos suscetíveis que não foram vacinados, portanto continuam vulneráveis, podendo ser
infectados a qualquer momento.

Figura 4.91 – Primeira iteração dos suscetíveis(β= 0.3,γ= 0.1,µ= 0.01,ν= 0.02,α= 0.05,π=
0.02)-modelo SIRV

Fonte: Autora
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Figura 4.92 – Segunda iteração dos suscetíveis(β= 0.3,γ= 0.1,µ= 0.01,ν= 0.02,α= 0.05,π=
0.02)-modelo SIRV

Fonte: Autora

As iterações dos infectados resultantes da aplicação da equação 4.74b, são apresentadas
em 4.93 e em 4.94.

Nesse caso, o ponto crítico seria igual a
0,1+0,001+0,05

0,3
∼= 0,53 e de acordo com 4.79,

como 0,9 > 0,53, então, há uma disseminação da doença. Além disso, R0 = 1,7 aproximada-
mente, o que significou um crescimento máximo em torno de 20% da quantidade de infectados
entre 10 e 15 dias, decrescendo após este período. O decrescimento da curva dos infectados

ocorre exatamente na iteração onde S(t ) ≤ 0,53

0,98
, ou seja, os contaminados começam a diminuir,

quando S(t ) ≤ 0,54. Após 500 iterações, ou seja, 50 dias, tendem a inexistir.

Figura 4.93 – Primeira iteração dos infectados(β= 0.3,γ= 0.1,µ= 0.01,ν= 0.02,α= 0.05,π=
0.02)-modelo SIRV

Fonte: Autora

Figura 4.94 – Segunda iteração dos infectados(β= 0.3,γ= 0.1,µ= 0.01,ν= 0.02,α= 0.05,π=
0.02)-modelo SIRV

Fonte: Autora

Agora, vejamos os recuperados obtidos através da equação 4.74c, e apresentados em
4.95 e em 4.96. Há um crescimento muito grande nesta categoria, já que uma parcela dos
infectados se recupera e outra dos suscetíveis, torna-se vacinada, deixando de estar vulnerável
a doença.
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Figura 4.95 – Primeira iteração dos recuperados(β= 0.3,γ= 0.1,µ= 0.01,ν= 0.02,α= 0.05,π=
0.02)-modelo SIRV

Fonte: Autora

Figura 4.96 – Segunda iteração dos recuperados(β= 0.3,γ= 0.1,µ= 0.01,ν= 0.02,α= 0.05,π=
0.02)-modelo SIRV

Fonte: Autora

Fica evidente que se aumentamos a taxa de contágio para β = 0,4, continua havendo
um crescimento da quantidade de infectados, já que R0 = 2,25, porém este aumento é superior,
como mostra o gráfico 4.97. Podemos observar que o crescimento máximo de infectados supera
os 20% anterior. A população ultrapassa essa margem após 5 dias.

Figura 4.97 – Evolução temporal do modelo SIRV (β = 0,4,γ = 0,1,µ = 0,01,ν = 0,02,α =
0,05,π= 0,02).

Fonte: Autora

Agora, vamos diminuir o valor da taxa de contágio β para 0,2. Observe que apesar do
ponto crítico ser igual a 0,8, menor que S0, há uma melhora na situação de acordo com 4.98,
pois não há crescimento perceptível de infectados, já que R0 = 1,125.
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Figura 4.98 – Evolução temporal do modelo SIRV (β = 0,2,γ = 0,1,µ = 0,01,ν = 0,02,α =
0,05,π= 0,02).

Fonte: Autora

Se diminuirmos ainda mais o contágio, colocando β = 0,1, o ponto crítico passa a ser
1,6 e R0 = 0,56 aproximadamente. Com isso, a curva dos infectados decresce, até não haver
mais nenhum infectado. Observe isso em 4.99.

Figura 4.99 – Evolução temporal do modelo SIRV (β = 0,1,γ = 0,1,µ = 0,01,ν = 0,02,α =
0,05,π= 0,02).

Fonte: Autora

Perceba que ainda não realizamos alterações na taxa de vacinação, onde apenas 2% da
população estava vacinada. Agora, vamos propor algumas mudanças para ν. Para isso, retorna-
remos ao caso de β= 0,4, proposto no gráfico 4.97. O nosso objetivo será diminuir a quantidade
de infectados, através do processo da vacinação. Portanto, utilizaremos primeiramente ν= 0,06,
ou seja 6% da população será vacinada. Com isso, podemos ver a mudança no gráfico 4.100.
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Isso fez com que a situação melhorasse, mas ainda temos um máximo de aproximadamente
20% de infectados em 10 dias.

Figura 4.100 – Evolução temporal do modelo SIRV (β = 0,4,γ = 0,1,µ = 0,01,ν = 0,06,α =
0,05,π= 0,02).

Fonte: Autora

O próximo passo, será aumentar ainda mais a quantidade de vacinados, fazendo ν= 0,3,
ou seja, haverá 30% de pessoas vacinadas na figura 4.101.

Figura 4.101 – Evolução temporal do modelo SIRV (β = 0,4,γ = 0,1,µ = 0,01,ν = 0,3,α =
0,05,π= 0,02).

Fonte: Autora

Podemos perceber que quanto mais aumentarmos a taxa de vacinação, a situação tende
a melhorar. Neste modelo, estamos propondo uma possibilidade de vacinação, para que os sus-
cetíveis, não sejam transferidos para a categoria dos infectados e sejam inseridos no grupo dos
recuperados. Quanto mais aumentarmos a taxa de vacinação, menos pessoas estarão vulneráveis
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a serem infectadas, aumentando o grupo dos recuperados.Com isso, a quantidade de infectados
diminui, já que há uma parcela menor de suscetíveis não vacinados, para se infectarem. Diante
de uma situação grave onde a taxa de contágio, está muito superior ao esperado, para não se ter
uma epidemia, deve-se buscar aumentar a taxa de vacinação. Por este motivo, que as campanhas
de vacinação são tão importantes e a preventiva conscientização da população.

Completamos a evolução proposta neste trabalho, iniciamos com o modelo SI e alcan-
çamos o modelo SIRV com uma proposta de vacinação.
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5
Evolução dos modelos epidemiológicos para a Aids

e Covid-19.

Segundo [34], independente da ordem do método de Runge-Kutta escolhido, os erros de
truncamento surgem em cada passo, devido ao fato que não se considera todos os termos da série
de Taylor, se comportando, como por exemplo, com erro de truncamento local de ordem três,
para o caso de Runge-Kutta de 4ª ordem, assim quanto maior a ordem, maior é a aproximação
com a solução exata.

Além da facilidade de implementação do método Runge-Kutta, este aproveita a qua-
lidade dos métodos da série de Taylor e ao mesmo tempo elimina seu maior defeito que é o
cálculo das derivadas da função. Dessa forma, o uso de coeficientes possibilita obter soluções
com precisão temporal, atingindo características apropriadas de amortecimento de erro [35].

Os métodos de Runge-Kutta são técnicas numéricas usadas para resolver equações di-
ferenciais ordinárias não lineares. Em análise numérica, esses métodos formam uma família
importante de metódos iterativos implícitos e explícitos para a resolução numérica (aproxima-
ção), podendo ser utilizados para o estudo dos modelos epidemiológicos.

O método de Runge-Kutta de ordem 1 é denominado como método de Euler, que é a
forma mais simples desses métodos. O procedimento é o mesmo que já utilizamos a partir
dos sistemas de equações de diferenças estudados, por isso encontramos os mesmos resultados.
Usando a fórmula para esse método de Runge-Kutta temos:

yn+1 = yn + f (tn , yn).△t . (5.1)

Substituindo as funções referentes aos suscetíveis e infectados do modelo compartimen-
tal SI em 5.1, obtemos as equações em 5.2:

Sn+1 = Sn − (β.S.I ).△t (5.2a)
In+1 = In + (β.S.I ).△t . (5.2b)

Portanto, quando calculamos as iterações a partir dos sistemas de equações de diferen-
ças, estamos calculando as iterações, utilizando o Runge-Kutta de primeira ordem (RK1).

5.1 Runge-Kutta de Primeira ou Segunda Ordem

Vamos resolver essas equações usando o método de Runge-Kutta de segunda ordem
(RK2) para o modelo SI e SIS. Esse método é uma maneira de aproximar a solução de equações



diferenciais. O primeiro passo será calcular os valores intermediários K1 e K2 para cada variável
(S e I).

Existem alguns benefícios na utilização deste método, tal como a precisão, pois ele
fornece uma aproximação mais precisa do que métodos simples como o de Euler (RK1), além
da sua flexibilidade, pois ele permite ajustar o tamanho do passo, para melhorar a precisão ou
reduzir o tempo de cálculo.

Se estivermos considerando o modelo SI, para Sn(t ) temos:

Ks 1 =−β.Sn .In .

Ks 2 =−β.(Sn +△t .Ks 1).(In +△t .Ki 1).

Sn+1 = Sn +△t

2
.(Ks 1 +ks 2).. (5.3)

Para In(t ) temos:
Ki 1 =β.Sn .In .

Ki 2 =β.(Sn +△t .Ks 1).(In +△t .Ki 1).

In+1 = In +△t

2
.(Ki 1 +ki 2). (5.4)

Se estivermos considerando o modelo SIS, para Sn(t ) temos:

Ks 1 =−β.Sn .In +γ.In .

Ks 2 =−β.(Sn +△t .Ks 1).(In +△t .Ki 1)+γ.(In +△t .Ki 1).

Sn+1 = Sn +△t

2
.(Ks 1 +ks 2). (5.5)

Para In(t ) temos:
Ki 1 =β.Sn .In −γ.In .

Ki 2 =β.(Sn +△t .Ks 1).(In +△t .Ki 1)−γ.(In +△t .Ki 1).

In+1 = In +△t

2
.(Ki 1 +ki 2). (5.6)

Se estivermos considerando o modelo SIR, para Sn(t ) temos:

Ks 1 =−β.Sn .In .

Ks 2 =−β.(Sn +△t .Ks 1).(In +△t .Ki 1).

Sn+1 = Sn +△t

2
.(Ks 1 +ks 2). (5.7)

Para In(t ) temos:
Ki 1 =β.Sn .In −γ.In .

Ki 2 =β.(Sn +△t .Ks 1).(In +△t .Ki 1)−γ.(In +△t .Ki 1).

In+1 = In +△t

2
.(Ki 1 +ki 2). (5.8)

Para Rn(t ) temos:
Kr 1 = γ.In .

Kr 2 = γ.(In +△t .Ki 1).
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Rn+1 = Rn +△t

2
.(Kr 1 +kr 2). (5.9)

Fica como exercício a construção dos modelos SIRS e SIRV relacionados ao (RK2). Os
mesmos procedimentos realizados com o SI, SIS e SIR deverão ser executados.

De maneira geral, o método de Runge-Kutta pode ser definido para ordens maiores,
como o de 4ª, 5ª e 6ª ordens, e assim sucessivamente. O método de Runge-Kutta de 4ª ordem
é o mais usado, por ser uma combinação de simplicidade, alta precisão e economia, sendo
provavelmente, um dos processos numéricos mais populares [36].

No contexto que estudamos, a técnica de se saber calcular o Runge-Kutta, é muito im-
portante. Apesar da utilização de programas de computador, para o cálculo é preciso uma
quantidade muito grande de iterações, por isso precisamos compreender como isso funciona.

Com base nisso, vamos exemplificar os cálculos do Runge-Kutta de primeira e segunda
ordens em situações de epidemia. Os gráficos das evoluções temporais, neste capítulo, não estão
adimensionalizados, portanto, o tempo é dado em dias.

5.1.1 Aids em Manaus

Segundo [37], a situação da aids em Manaus entre os anos de 2009 a 2014, foi motivo
de grande preocupação principalmente nos âmbitos estruturais e de saúde, pois a região norte é
uma das que mais sofrem com a falta de serviços públicos de saúde, assim, um estudo epidemi-
ológico nesta região é de suma importância devido a carência da população, que teve suas altas
variações em relação aos casos de aids, como pode ser observado na tabela 5.1.

Tabela 5.1 – Números de infectados e suscetíveis da Aids em Manaus em 2009 a 2014.
Ano Infectados Suscetíveis

2009 229 1.738.412
2010 551 1.802.463
2011 599 1.831.825
2012 674 1.861.164
2013 957 1.981.222
2014 988 2.019.313

Faremos uma análise sobre a provável situação inicial da Aids neste estado. Para isso,
as quantidades iniciais de suscetíveis e infectados necessárias para este estudo, foram obtidas
pela média aritmética simples no grupo dos suscetíveis e em seguida, no grupo dos infectados.
Assim, a partir da tabela 5.1, durante os anos de 2009 a 2014 foram registrados 3.998 infectados
e 11.234.399 suscetíveis. Dividindo o somatório de cada grupo por seis, já que foram analisa-
dos num período de seis anos, temos os resultados das médias: I0 = 666,3 e S0 = 1.872.399,8.

O valor de N é igual a 1873066,1, a fração
I0

N
∼= 0,00036 e a fração

S0

N
∼= 0,99964. O que sig-

nifica que aproximadamente, 0,036% da população estava infectada, enquanto 99,964% estava
suscetível, no início da epidemia. De acordo com [37], obtemos a taxa de contágio β= 0,1454.

Para a análise numérica das iterações, criamos uma calculadora de evolução na figura
5.1. Para inicializá-la, basta clicar na bandeira verde. Selecionamos o botão preto SI e ao
clicarmos no botão amarelo, obtemos os valores das próximas iterações. Caso os botões azul S
e vermelho I forem clicados, a calculadora exibe como executou os cálculos das iterações. Foi
utilizado o método de (RK1). A calculadora no Scratch foi desenvolvida com base em lógica
de programação visual e está disponível online [38].
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Figura 5.1 – Calculadora do modelo SI (β= 0,1454,γ= 0 e ν= 0)
Fonte: Autora

Podemos observar a evolução temporal, que irá mostrar o comportamento da doença na
figura 5.2.

Figura 5.2 – Evolução temporal da Aids em Manaus- modelo SI (β= 0,1454)
Fonte: Autora

A ideia principal para as iterações é usar uma média ponderada de inclinações (deriva-
das) para estimar o próximo valor da solução. Primeiro, calcula-se uma inclinação inicial k1,
com base no ponto atual. Em seguida, calcula-se uma segunda inclinação K2, usando um ponto
intermediário, que é ajustado com base em k1. A solução no próximo passo é então obtida
usando uma combinação dessas inclinações.

Então, para calcularmos as iterações dos suscetíveis e infectados, o primeiro passo será
calcular K1 e K2, para em seguida, calcular as quantidades de cada categoria, para um próximo
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intervalo de tempo. Essas iterações possuem resultados aproximados. Agora, observe as tabelas
5.2, referente ao (RK1) e 5.3, referente ao (RK2), ambas possuem os resultados com mais casas
decimais, relacionados às cinco primeiras iterações. Podemos observar o comportamento do
modelo SI, enquanto a quantidade de suscetíveis diminui, a de infectados aumenta.

Tabela 5.2 – Resultados iniciais da Aids em Manaus-SI (RK1).
Iteração Suscetíveis Infectados

1 0.999634767484384 0.00036523251561600004
2 0.9996294589431671 0.00037054105683280333
3 0.9996240732725525 0.0003759267274473407
4 0.9996186093527414 0.0003813906472584749
5 0.9996130660477016 0.00038693395229828575

Tabela 5.3 – Resultados iniciais da Aids em Manaus-SI (RK2).
Iteração Suscetíveis Infectados

1 0.9996347674980786 0.0003652705284164017
2 0.9996294203921628 0.00037061819084865943
3 0.9996239950325571 0.00037604411510509426
4 0.9996184902749058 0.0003815494456612303
5 0.999612904958143 0.00038713534370341543

Após 80 dias, ou seja, depois da octingentésima iteração, a população de suscetíveis
diminui progressivamente, até passar a inexistir, como pode ser observado nas tabelas 5.4 e 5.5,
com isso, a população de Manaus considerada, torna-se infectada.

Tabela 5.4 – Resultados finais da Aids em Manaus-SI (RK1).
Iteração Suscetíveis Infectados

996 0.0014382612184428059 0.9985617387815582
997 0.0014173789777027818 0.9985826210222982
998 0.0013967994976914232 0.9986032005023096
999 0.0013765184012450762 0.9986234815987559
1000 0.0013565313741252692 0.9986434686258757

Tabela 5.5 – Resultados finais da Aids em Manaus-SI (RK2).
Iteração Suscetíveis Infectados

996 0.0014452893220423184 0.9985723287533922
997 0.0014244569361947684 0.9985931611360667
998 0.0014039244060687264 0.9986136936631103
999 0.001383687427702768 0.9986339306384818
1000 0.0013637417585663414 0.9986538763047094

Agora, imagine se no caso da Aids houvesse uma possibilidade de recuperação para
os indivíduos infectados, e estes voltassem a ser suscetíveis. Isso, por enquanto, não é ver-

87



dade, trata-se apenas de uma suposição. Teríamos, neste caso, uma representação do modelo
SIS ao invés do SI. Chamaremos essa nova doença imaginada, por Aids Idealizada, que pode
representar modelos diferentes do modelo SI.

Como ficaria a montagem das iterações para (RK1) e (RK2)? Quais resultados para os
suscetíveis e infectados obteríamos? Como já estudamos, se R0 for menor que 1, não teremos
uma evolução para a situação da doença. Porém se tomarmos γ = 0.05816 e usando a mesma
taxa de contágio β= 0.1454, obtemos R0 = 2.5, nesse caso, há um crescimento da doença.

Observe o gráfico da evolução temporal não adimensionalizada na figura 5.4. É fácil
perceber que após a milésima iteração, os infectados passam a assumir valores superiores aos
de suscetíveis. Essa mudança de modelo, significaria uma estabilização da quantidade de infec-
tados para 60% da população, onde os 40% restantes estariam suscetíveis, após o centésimo dia,
ao invés da população inteira tornar-se contaminada em 80 dias, como no modelo SI. Quanto
menor for o R0, essa porcentagem de estabilidade, tende a diminuir.

Figura 5.3 – Modelo SI (β= 0,1454)
Figura 5.4 – Modelo SIS (β= 0,1454 e γ=
0.05816)

Nas tabelas 5.6 e 5.8, podemos observar os resultados das iterações iniciais com (RK1)
e (RK2), onde há um decrescimento dos suscetíveis e um crescimento dos infectados, e se
continuarmos com as iterações, que podem ser vistas nas tabelas 5.7 e 5.9, veremos como essa
estabilização acontece.

Tabela 5.6 – Projeções Iniciais da Aids Idealizada-SIS (RK1).
Iteração Suscetíveis Infectados

1 0.999636861244384 0.00036313875561600005
2 0.9996336951392663 0.0003663048607337443
3 0.9996305014466276 0.000369498553372476
4 0.9996272799263822 0.00037272007361780656
5 0.9996240303363605 0.00037596966363956564
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Tabela 5.7 – Projeções Finais da Aids Idealizada-SIS (RK1).
Iteração Suscetíveis Infectados

1495 0.4021742557879025 0.597825744212097
1496 0.40215535631663374 0.5978446436833658
1497 0.4021366205345822 0.5978633794654173
1498 0.4021180470342804 0.5978819529657192
1499 0.4020996344201852 0.5979003655798144

Tabela 5.8 – Projeções Iniciais da Aids Idealizada-SIS (RK2).
Iteração Suscetíveis Infectados

1 0.9996368612525988 0.0003631524303668721
2 0.9996336813537204 0.00036633244899059267
3 0.9996304736265633 0.00036954029693884327
4 0.9996272378278956 0.0003727762174527951
5 0.9996239737123647 0.0003760404558943504

Tabela 5.9 – Projeções Finais da Aids Idealizada -SIS (RK2).
Iteração Suscetíveis Infectados

1495 0.40215762312340914 0.5978461824552026
1496 0.40213894881228746 0.5978648567637874
1497 0.40212043555483346 0.597883370018748
1498 0.40210208197194525 0.5979017235991856
1499 40208388669615985 0.5979199188725624

Por exemplo, se a taxa de recuperação γ passar a ser igual a 0.0727, o coeficiente R0

torna-se igual a 2, observe como as curvas dos infectados e suscetíveis atingem uma porcenta-
gem estabilizante em torno de 50% na figura 5.6.

Figura 5.5 – Modelo SIS (β = 0,1454,γ =
0.05816)

Figura 5.6 – Modelo SIS (β = 0,1454,γ =
0.0727)

Neste mesmo contexto, e se começássemos a imaginar, que existe uma recuperação,
através de algum tipo de tratamento, onde o indivíduo recuperado, não volte a ser suscetível.
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Teríamos então o modelo SIR, para uma Aids Idealizada. Considerando as mesmas taxas β =
0.1454 e γ = 0.05816 do modelo SIS, vamos verificar quais resultados, poderíamos obter na
figura 5.7.

Figura 5.7 – Simulação da Evolução temporal da Aids Idealizada- modelo SIR (β = 0,1454 e
γ= 0.05816)

Fonte: Autora

O que propomos é uma simulação de algo irreal, pelo menos, até a elaboração deste
trabalho, onde uma parcela dos infectados se recupera e deixa esta categoria, passando para o
grupo dos recuperados. Isso pode acontecer, devido a algum tratamento que cure o doente, e este
não volte a ser vulnerável. Observe a inicialização da calculadora em 5.8. Nesse caso, existe a
possibilidade de observação das iterações no botão azul dos suscetíveis, no botão vermelho dos
infectados e no botão verde dos recuperados.

Figura 5.8 – Calculadora do modelo SIR (β= 0,1454,γ= 0,05816 e ν= 0)
Fonte: Autora
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Nas iterações iniciais, temos um crescimento dos infectados, o que provoca um aumento
dos infectados que foram recuperados e uma diminuição dos suscetíveis, como pode ser obser-
vado na tabela 5.10.

Tabela 5.10 – Projeções iniciais para Aids Idealizada -SIR (RK1).
Iteração Suscetíveis Infectados Recuperados

1 0.999634767484384 0.00036313875561600005 0.0000020937600000000003
2 0.9996294893753187 0.0003663048496786129 0.000004205775002662657
3 0.9996241652761708 0.00036949851982075475 0.000006336204008393469
4 0.9996187947868679 0.00037272000573243086 0.000008485207399670979
5 0.9996133775038686 0.00037596954917839447 0.000010652946953010796

Neste caso, a porcentagem de infectados, atinge um pouco mais de 20%, em seu valor
máximo. Podemos verificar na tabela 5.11 que na iteração de número 959, temos a máxima
parcela de infectados encontrada.

Tabela 5.11 – Projeções com pico para Aids Idealizada -SIR (RK1).
Iteração Suscetíveis Infectados Recuperados

956 0.402676470405198 0.23404619135121127 0.36327733824359165
957 0.401306149642874 0.23405529946463616 0.3646385508924903
958 0.399940438979674 0.23405974450615022 0.3659998165141766
959 0.398579350205399 0.23405954180637734 0.3673611079882244
960 0.397222894702198 0.23405470701443185 0.3687223982833703

Após 200 dias, a população de infectados desaparece, pois irão integrar o grupo dos re-
cuperados. Esse grupo dos removidos cresce até atingir, aproximadamente, 89% da população.
Já uma parcela de 11%, aproximadamente, mantém-se suscetível após 150 dias. Isso poderá ser
observado em 5.12.

Tabela 5.12 – Projeções finais para Aids Idealizada -SIR (RK1).
Iteração Suscetíveis Infectados Recuperados

1995 0.10886393767899828 0.005219538115580537 0.8859165242054218
1996 0.10885567576787354 0.005197443193025057 0.885946881039102
1997 0.10884744945475579 0.005175441176532173 0.8859771093687127
1998 0.10883925858462082 0.005153531680784432 0.8860072097345953
1999 0.10883110300313331 0.005131714322016498 0.8860371826748508

Perceba que começamos num modelo SI, onde toda a população, tornava-se infectada,
migramos para um modelo SIS em que a porcentagem de infectados, apesar de poder indicar
uma situação grave, estabilizava-se, depois de alguns dias. Já no modelo SIR, a parcela máxima
de infectados, foi inferior com relação ao modelo SIS, e após alguns dias, a população infectada
foi extinta.

Passando para uma próxima modificação, consideremos que depois de inseridos na
classe dos recuperados, os indivíduos voltem a ser suscetíveis. O que estamos tratando a partir
de agora, refere-se ao modelo SIRS. Usando os dados já utilizados inicialmente, tomemos uma
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taxa µ para perda de imunidade, muito próxima ou igual a zero, com isso, teremos a evolução
temporal apresentada na figura 5.7, ou seja, teremos o modelo SIR. O que significa, que temos
que tomar valores para µ mais próximos de 1.

Vamos assumir para o modelo SIRS, uma taxa µ= 0.99, com isso, obtemos um gráfico
na figura 5.9, referente ao modelo SIS, porém contendo a curva dos recuperados com valores
muito pequenos.

Figura 5.9 – Simulação da Evolução temporal da Aids Idealizada- modelo SIRS (β = 0,1454,
γ= 0.05816 e µ= 0.99)

Fonte: Autora

Se tomarmos µ = 0.05, podemos perceber, analisando a evolução temporal, através da
figura 5.11, que os suscetíveis decrescem, atingindo um ponto mínimo de 37%, aproximada-
mente, e depois voltam a crescer, estabilizando-se em 40%. Já os infectados crescem, atingem
um ponto máximo de 32%, aproximadamente, e depois se estabilizam em 28%. Os recuperados
crescem e ultrapassam os infectados entre 113 e 120 dias, estabilizando-se em 32%, aproxima-
damente. Esses valores obtidos com as iterações, podem ser observados na tabela 5.14.

Figura 5.10 – Modelo SIR (β= 0,1454,γ=
0.05816)

Figura 5.11 – Modelo SIRS
(β= 0,1454,γ= 0.05816 e µ= 0.05)
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Tabela 5.13 – Projeções iniciais para Aids Idealizada -SIRS (RK1).
Iteração Suscetíveis Infectados Recuperados

1 0.999634767484384 0.00036313875561600005 0.0000020937600000000003
2 0.9996294998441186 0.0003663048496786129 0.0000041953062026626565
3 0.999624196721446 0.00036949851987651234 0.000006304758677380157
4 0.9996188577557666 0.00037272000595761455 0.000008422238275595052
5 0.9996134825836142 0.00037596954974679185 0.000010547866638866564

Tabela 5.14 – Projeções finais para Aids Idealizada -SIRS (RK1).
Iteração Suscetíveis Infectados Recuperados

1998 0.4012984058408369 0.2767038833664175 0.32199771079274786
1999 0.40129386076607804 0.27670910720948105 0.3219970320244432
2000 0.4012893001034148 0.27671431286473613 0.3219963870318513
2001 0.40128472419125427 0.2767195002684346 0.32199577554031333
2002 0.40128013336564045 0.2767246693581888 0.321995197276173

Analisando a transformação do modelo SIR para o modelo SIRS, podemos concluir que
houve um retrocesso. Para termos uma evolução dos modelos, precisamos retornar ao modelo
SIR e avançar para o modelo SIRV.

Portanto, para completar o processo de evolução dos modelos epidemiológicos, para a
Aids Idealizada, precisamos considerar que existe uma vacina, capaz de imunizar os suscetíveis.
Assim, uma parcela desses indivíduos, serão imunizados, fazendo com que nenhum deles, após
terem sido vacinados, desenvolvam a doença. O modelo que estamos mencionando é o SIRV,
cujo sistema, sem dinâmica vital, foi apresentado em 4.73. Se considerarmos valores muito
próximos ou iguais a zero, para a taxa de vacinação ν, retornaremos para a evolução temporal
da figura 5.7, ou seja, estaremos estudando o modelo SIR. Por exemplo, tomemos ν = 0.0001,
observe a figura 5.12, que mostra a situação.
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Figura 5.12 – Evolução temporal da Aids Idealizada- modelo SIRV (β= 0.1454,γ= 0,05816 e
ν= 0.0001)

Fonte: Autora

Na calculadora ao clicarmos no botão preto SIRV estaremos atribuindo automaticamente
a taxa de vacinação ν = 0.01. Para utilizarmos uma taxa com valor diferente temos que clicar
no botão rosa e digitar uma nova taxa. O que faremos para supor que a taxa ν seja igual a
0.001, ou seja, temos 0,1% dos suscetíveis, recebendo a vacina, isso não é uma situação ideal,
mas pode acontecer. Devido a vários fatores, suscetíveis podem evitar a vacinação. Vejamos a
inicialização da calculadora em 5.13.

Figura 5.13 – Calculadora do modelo SIRV (β= 0,1454,γ= 0,05816 e ν= 0,001)
Fonte: Autora

Observe como fica a evolução neste caso, através da figura 5.15.
Nesse caso, de acordo com a equação dada no capítulo 4, em 4.79, se S0 > γ

β
, obtemos
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0.99964 > 0.05816

0.1454
, que resulta em 0.99964 > 0.4, com isso, a doença se dissemina entre a popu-

lação. Com a intervenção da vacina, de acordo com a equação 4.80, temos (1−0,001).S(t ) < 0,4,
ou seja, 0,999.S(t ) < 0,4, o que significa S(t ) < 0,4 aproximadamente.

Figura 5.14 – Modelo SIRV
(β= 0,1454,γ= 0.05816 e ν= 0.0001)

Figura 5.15 – Modelo SIRV
(β= 0,1454,γ= 0.05816 e ν= 0.001)

Observe a tabela 5.15, com resultados aproximados, que mostra até a quinta iteração no
caso da evolução da figura 5.15.

Tabela 5.15 – Projeções iniciais para Aids Idealizada -SIRV (RK1).
Suscetíveis Infectados Recuperados Vacinados

0.9995348035 0.0003631387556160 0.0001021 0.0000999640000000
0.999429572423 0.0003663043218649 0.0002041232553511 0.000199917480348
0.99932430644 0.0003694969226346 0.0003061966385293 0.000299860437591

0.999219005153 0.000372716783634 0.0004082780632753 0.00039979286823460
0.999113668183 0.0003759641324075 0.00051036768460 0.00049971476875

A tabela 5.16 apresenta os resultados aproximados da iteração de número 995 até a
999. Quando os suscetíveis atingem a porcentagem de aproximadamente, 40%, os infectados
atingem o ponto máximo de aproximadamente, 19% e começam a decrescer, até inexistir. Os
recuperados se igualam aos suscetíveis e em seguida, ultrapassam.

Tabela 5.16 – Projeções com pico para Aids Idealizada -SIRV (RK1).
Suscetíveis Infectados Recuperados Vacinados

0.401530144707 0.1906757191686 0.407794136124 0.0830956540236
0.400376779499 0.19067996138 0.408943259121 0.0831358070380

0.3992267025496 0.190681006 0.4100922914543 0.083175844716
0.3980799231170 0.1906788620275 0.4112412148554 0.0832157673862
0.39693645022 0.190673538671 0.412390011109 0.0832555753785

A tabela 5.17, mostra as iterações de número 2496 a 2500. Os vacinados crescem e
estabilizam-se em 11%, aproximadamente, assim como os suscetíveis, que decrescem e estabilizam-
se na mesma faixa. Já os recuperados estabilizam-se em 89%, aproximadamente.
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Tabela 5.17 – Projeções finais para Aids Idealizada -SIRV (RK1).
Suscetíveis Infectados Recuperados Vacinados

0.1100385827509 0.000985624102544 0.888975793147 0.1069932225497
0.1100260019325 0.000981468672882 0.8889925293946082 0.1070042264079
0.110013429200 0.00097733058314 0.889009240217 0.1070152290081
0.110000864524 0.000973209761835 0.889025925714 0.1070262303511

0.1099883078736 0.000969106137786 0.889042585989 0.1070372304375

Podemos verificar, observando as evoluções temporais, que a medida que a taxa de va-
cinação aumenta, a máxima quantidade de infectados vai diminuindo, até não existir mais ne-
nhum infectado e a curva vermelha fixar-se sobre o eixo das abscissas. Vamos tomar uma taxa
de vacinação ν= 0.01, para poder visualizar o que acontece com as curvas, na figura 5.16.

Figura 5.16 – Evolução temporal da Aids Idealizada- modelo SIRV (β= 0.1454,γ= 0,05816 e
ν= 0.01)

Fonte: Autora

Agora, vamos imaginar que 9% dos suscetíveis e recuperados foram vacinados, isso
pode ser observado na figura 5.17. Usando a equação de intervenção 4.80, temos que a por-
centagem de não vacinados (1− 0,09), que representa 91%, deverá ser menor ou igual a 0,4,

portanto, S(t ) < 0,4

0,91
, ou seja, S(t ) < 0,44, aproximadamente. Por este motivo, a intervenção é

realizada no início e não há nenhum crescimento dos infectados. Após 50 dias, toda a população
está vacinada e não existem mais indivíduos suscetíveis.
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Figura 5.17 – Evolução temporal da Aids Idealizada- modelo SIRV (β= 0.1454,γ= 0,05816 e
ν= 0.09)

Fonte: Autora

Portanto, nesta simulação, para o modelo SIRV, a doença se dissemina entre a população,
pois S0 > γ

β
.

Porém, na iteração em que a quantidade de suscetíveis, for menor ou igual a

γ

β

(1− v)
,

os infectados começam a decrescer até desaparecer. Para isso acontecer mais rapidamente, a
parcela de não vacinados (1− v).S(t ), precisa ser a menor possível, pois terá mais chances de
ser inferior a

γ

β
.

Portanto, espera-se que a taxa de vacinação, esteja próxima ou seja igual a 1, o que sig-
nificará que a maior parte ou a totalidade da população já está vacinada, com isso a quantidade
de infectados irá decrescer.

5.1.2 Covid-19 no Brasil

No período de 25/02/2020 a 23/03/2020, os autores [39], obtiveram para a taxa de con-
tágio β = 0,370057653 e para a taxa de recuperação γ = 0,1, além de tomarem o coeficiente
R0 = 3.700576528. Fizemos uma modificação pois os autores denominaram a taxa de contágio
de α, só que a trataremos como β e a taxa de recuperação chamaram de β, só que a denomina-
mos como γ, a fim de continuar com as nomenclaturas já estabelecidas neste trabalho.

Foi considerado como número de suscetíveis inicial 211 milhões de pessoas e apenas
um infectado, sendo inserido nessa população de suscetíveis brasileira.

Consideremos, S0 = 0,9999999953 e I0 = 0.00000000474, como proporções de suscetí-
veis e infectados para a utilização do código no Octave.

Vamos supor inicialmente, que não haja uma taxa de recuperação γ e que não há ne-
nhuma parcela de vacinados ν, por algum motivo. Imagine que a única taxa que temos é
β= 0.37.

Para sabermos sobre as iterações podemos recorrer a calculadora. Ela poderá partir da
primeira iteração, ou então, partir da quingentésima. Quando a calculadora é inicializada de
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acordo com a figura 5.18, os valores para as categorias, já estão armazenados. Basta clicarmos
no botão preto SI que teremos o nosso modelo inicial. Após o selecionarmos basta clicar uma
primeira vez no botão amarelo e esperar que rapidamente o programa alcance a quingentésima
iteração. A calculadora no Scratch foi desenvolvida com base em lógica de programação visual
e está disponível online [40].

Figura 5.18 – Calculadora do modelo SI (β= 0,37,γ= 0 e ν= 0)
Fonte: Autora

Depois disso, esse botão pode ser usado para se obter os próximos resultados. A qual-
quer momento, os botões azul S ou vermelho I podem ser clicados, para a demonstração de
qualquer iteração. Se quisermos observar as iterações iniciais, reinicialize o programa, seleci-
one o botão preto SI e não clique no botão amarelo, clique em S ou I para ver internamente
os cálculos. Nesse caso, ele poderá continuar a visualizar as próximas iterações dos suscetí-
veis internamente, clicando no botão verde. Caso o acesso seja feito no grupo dos infectados,
para visualizar as próximas iterações, precisamos clicar no botão vermelho. Já no grupo dos
recuperados, devemos clicar no botão azul.

Observando o comportamento das soluções, é perceptível que quanto maior for a taxa
de contato β, mais rapidamente, todos os indivíduos passam para a classe dos infectados. Após
70 dias, toda a população suscetível, torna-se infectada.

Podemos observar os resultados obtidos das iterações 697 a 701, na tabela 5.18 e na
figura 5.19 .

Tabela 5.18 – Projeções finais para a Covid-19 Idealizada (RK1).
Iteração Suscetíveis Infectados

697 0.001852814362434498 0.9813475514984858
698 0.001785538933430114 0.9814123841661216
699 0.001720701982627988 0.9814748667408244
700 0.0016582154299112702 0.9815350841212441
701 0.0015979943549161734 0.9815931181596165
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Figura 5.19 – Evolução temporal da Covid Idealizada- modelo SI(β= 0,37,γ= 0 e ν= 0)
Fonte: Autora

Perceba que todo modelo SIR, pode ser considerado como um modelo SIRV, com taxa
de vacinação nula. Neste caso, da covid como modelo SIR, só temos as taxas β e γ. Como S0 é

maior que
0,1

0,37
, ou seja, 0,9999999953 > 0,27, a doença se espalha entre a população.

Observe a evolução na figura 5.20.

Figura 5.20 – Evolução temporal da Covid-19 no Brasil- modelo SIR (β= 0,37,γ= 0,1)
Fonte: Autora

Depois de observarmos a evolução temporal representada em 5.20, é fácil compreender
que antes de 50 dias temos toda a população suscetível, ou seja, não há infectados e recuperados.
Após 50 dias há um crescimento dos infectados, até que na iteração de número 779, começam
a decrescer. O que será que provocou essa mudança no grupo dos infectados? Sabemos que
não temos vacinados, porém temos uma taxa de não vacinados (1−ν) = 1, isso porque todos os
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suscetíveis não foram vacinados por algum motivo. Na iteração onde S(t ) < 0,27, os infectados
começam a decrescer. Isso acontece na iteração de número 761.

Na segunda etapa, devemos clicar na calculadora o botão preto SIR e o botão amarelo
para ingressar no período após 50 dias, como mostra a figura 5.21.

Figura 5.21 – Calculadora do modelo SIR (β= 0,37,γ= 0,1 e ν= 0)
Fonte: Autora

Podemos comprovar e observar os resultados através da tabela 5.19.

Tabela 5.19 – Simulações com pico para Covid-19 -SIR (RK1).
Iteração Suscetíveis Infectados Recuperados

757 0.28073077859472456 0.37759457972118066 0.34167464172409506
758 0.2768086890414684 0.37774072347722504 0.34545058752130686
759 0.272939898206326 0.3778321070775951 0.34922799475607913
760 0.2691242563030669 0.37786942791007827 0.3530063158268551
761 0.2653615846387262 0.3778534052953182 0.35678501010595587

Já a iteração de número 760, ou seja após 76 dias, temos a quantidade máxima de in-
fectados desta situação, aproximadamente 0,378. O que significa que 37,8% da população,
encontra-se infectada.

Agora, vamos considerar que existe uma vacina e que uma parcela não nula de susce-
tíveis, será vacinada. Como já vimos, se tomarmos uma taxa de vacinação ν com valor muito
próximo de zero, voltamos para o modelo SIR, cujo gráfico é semelhante a 5.20.

Vamos considerar que ν = 0.0026 e inicializar a calculadora em 5.22. Como já foi
mencionado se clicarmos no botão preto SIRV estaremos atribuindo v = 0.01, portanto temos
que clicar no botão rosa para alterar essa taxa de vacinação.
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Figura 5.22 – Calculadora do modelo SIR (β= 0,37,γ= 0,1 e ν= 0,0026)
Fonte: Autora

Nesse caso, de acordo com a figura 5.23, houve uma diminuição nos números de infec-
tados. A quantidade máxima desses contaminados, ficou em torno de 25%.

Figura 5.23 – Evolução temporal da Covid-19 no Brasil- modelo SIRV (β ∼= 0,37,γ = 0,1 e
ν= 0.0026)

Fonte: Autora

Tomemos ν= 0.005, com isso a quantidade máxima de infectados reduz ainda mais, fica
em torno de 14%. Isso pode ser observado em 5.24.
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Figura 5.24 – Evolução temporal da Covid-19 no Brasil- modelo SIRV (β ∼= 0,37,γ = 0,1 e
ν= 0.005)

Fonte: Autora

Observe a situação em que ν= 0.0063 na figura 5.25.

Figura 5.25 – Evolução temporal da Covid-19 no Brasil- modelo SIRV (β ∼= 0,37,γ = 0,1 e
ν= 0.0063)

Fonte: Autora

Se aumentarmos mais ν para 0.02, temos o desaparecimento dos infectados na figura
5.26. Além disso, os suscetíveis vacinados igualam-se aos recuperados.
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Figura 5.26 – Evolução temporal da Covid-19 no Brasil- modelo SIRV (β ∼= 0,37,γ = 0,1 e
ν= 0.02)

Fonte: Autora

Quando ν = 0.03, temos o seguinte gráfico, apresentado em 5.27. Nesse caso, os vaci-
nados aproximam-se mais de 100%.

Figura 5.27 – Evolução temporal da Covid-19 no Brasil- modelo SIRV (β ∼= 0,37,γ = 0,1 e
ν= 0.03)

Fonte: Autora

Independentemente do valor da taxa de vacinação, na iteração onde S(t ) < 0.27, os in-
fectados começam a decrescer. Só que quando aumentamos o ν, esse decrescimento demora
mais pra acontecer, ou seja, ele inicia-se em iterações superiores, ou seja, em uma quantidade de
dias maior. Assim, concluímos nossa evolução, esperando que mais pessoas sejam vacinadas,
para que a taxa de vacinação aumente, e possamos extinguir os infectados, além de imunizar os
suscetíveis.
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6
Um modelo SLI para a Tuberculose

Em nossos estudos foram apresentadas as categorias dos suscetíveis, infectados, recu-
perados ou vacinados, porém nesta situação da tuberculose, será introduzida a categoria dos
latentes. Para este modelo da Tuberculose, proposto pelos autores [41][42], temos um sistema
de quatro equações diferenciais ordinárias não lineares, que irão descrever a variação ao longo
do tempo (t), para os grupos de indivíduos organizados em S, L, Ti e Tn .

Existem duas possibilidades, quando tratamos da velocidade com que os sintomas apa-
recem, ou seja, o indivíduo contaminado desenvolve a doença rapidamente ou fica com o bacilo
incubado, assim a doença poderá se desenvolver futuramente. Nesse caso, a tuberculose pode
ser pulmonar ou não.

Considera-se que o indivíduo possa ter sua doença detectada ou não, e caso tenha a
doença notificada, pode receber tratamento e concluí-lo ou abandoná-lo [43]. No caso de trata-
mento com sucesso, o indivíduo continua com o bacilo. Já aquele que abandona o tratamento
da tuberculose pulmonar continua como um agente transmissor da doença. Além disso, uma
parcela dos portadores curados, voltam a desenvolver a doença.

Dessa forma, a população total N(t) é subdividida nas seguintes categorias: indivíduos
que nunca tiveram contato com o bacilo, como por exemplo, os nascidos e os que migraram,
são denominados suscetíveis S(t); L(t) é a categoria dos indivíduos infectados, isto é, os que
possuem o bacilo mas não desenvolvem a doença (latentes); Ti (t ) a dos indivíduos que desen-
volvem a tuberculose pulmonar, responsáveis pela transmissão da doença (infectantes) e Tn(t )
os indivíduos que adquirem a tuberculose extra-pulmonar e que não são infectantes [43].

Uma parcela p dos suscetíveis desenvolve a doença rapidamente, em até um ano após
o contágio. Destes, alguns irão apresentar sintomas de uma tuberculose pulmonar, sendo re-
presentados por uma porcentagem f , enquanto o restante (1− f ), terão uma tuberculose extra-
pulmonar.

A pulmonar é a forma mais comum e contagiosa da doença. A bactéria Mycobacterium
tuberculosis se instala nos pulmões, causando tosse persistente, febre, suores noturnos e perda
de peso. A transmissão da doença acontece quando os bacilos são eliminados pelo ar, ou seja,
quando a pessoa infectada tosse ou espirra. Já a Tuberculose extrapulmonar, atinge outros
órgãos, além dos pulmões, como ossos, pleura, gânglios linfáticos e até o sistema nervoso
central. Os sintomas variam conforme o órgão afetado.

Agora, os indivíduos em estado de latência (1− p), que não desenvolveram a doença
no primeiro ano, após serem contaminados, permanecem infectados, e apenas uma parcela (v)
adquire a Tuberculose. Neste caso, uma parcela ínfima dos indivíduos em estado de latência, q
é associada a tuberculose pulmonar enquanto (1−q) relaciona-se a outros tipos de tuberculose.



No caso de uma parcela de indivíduos terem sido diagnosticados e receberem tratamento (d),
somente uma fração (ϵ) é considerada curada, sendo que a outra permanece doente. Depois
da cura obtida com o tratamento, esses indivíduos são retirados do grupo dos infectados Ti ,
retornando para o grupo dos latentes, pois ainda possuem o bacilo em seus organismos.

Vejamos o esquema deste modelo proposto na figura 6.1.

Figura 6.1 – Diagrama compartimental que representa o modelo SLI da Tuberculose.
Fonte: Autora

Observe que as expressões que originam-se na categoria dos suscetíveis, representadas
por p. f .λ+ (1−p).λ+p.(1− f ).λ= p. f .λ+λ−p.λ+p.λ−p. f .λ, resultam na taxa λ.

O sistema de equações para a Tuberculose , é representado da seguinte forma no sistema
6.1: 

dS(t )

d t
=π− (µ+λ).S(t )

dL(t )

d t
= (1−p).λ.S(t )+ϵ.d(Ti (t )+Tn(t ))− (ν+µ).L(t )

dTi (t )

d t
= p. f .λ.S(t )+q.ν.L(t )− (µ+µt +ϵ.d).Ti (t )

dTn(t )

d t
= p.(1− f ).λ.S(t )+ (1−q).ν.L(t )− (µ+µt +ϵ.d).Tn(t ).

(6.1)

Podemos considerar a taxa de risco de infecção λ=β.Ti , o coeficiente de transmissão β,
o número de indivíduos que migram ou nascem por unidade de tempo π, a taxa de mortalidade
por tuberculose µt e a taxa de mortalidade por outras causas µ. Além disso, temos uma taxa de
cura desses indivíduos infectados representada por c = ϵ.d .

Analisando a figura 6.1, podemos concluir que apenas aumentos na taxa de nascimentos,
causam acréscimos no grupo dos suscetíveis. Quando ocorrem aumentos na taxa de mortos por
causa natural ou na taxa dos indivíduos que adquirem tuberculose em até um ano, diminuimos
os valores das curvas dos suscetíveis e aumentamos a quantidade de latentes. Os acréscimos
na taxa de infecção, influenciam negativamente os grupos de latentes e dos que desenvolvem
a doença em menos de um ano. Se a taxa referente aos indivíduos que desenvolvem a tuber-
culose pulmonar sofrer acréscimos, aumentamos este grupo e diminuimos a categoria dos que
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desenvolverão a tuberculose extra-pulmonar. Já os aumentos na taxa dos latentes que desen-
volvem algum tipo de tuberculose, causam acréscimos nos dois grupos. Ao aumentarmos a
porcentagem de pessoas latentes que desenvolverão a tuberculose, aumentamos os com tuber-
culose pulmonar e diminuimos os com tuberculose extra-pulmonar. Os acréscimos nas mortes
de qualquer tipo, reduzem as categorias dos que possuem tuberculose. O sucesso no tratamento
faz com que indivíduos que adquiriram tuberculose, em algum momento, retornem ao grupo
dos latentes.

6.1 Taxa de Reprodutibilidade Efetiva

Como já foi mencionado neste trabalho, a utilização da taxa de reprodutibilidade é fun-
damental na análise qualitativa de um modelo matemático. Nesse caso, Re

0 aparece como uma
fórmula que relaciona três taxas de reprodutibilidade diferentes, caracterizadas pelas situações
que podem ocorrer com indivíduos infectados neste modelo da Tuberculose.

A taxa de reprodutibilidade é obtida a partir dos parâmetros do modelo e, tem grande
importância quando se deseja propor políticas de tratamento, pois através dessa taxa pode-se
obter a taxa de tratamento necessária para que se controle ou erradique uma doença [43].

Se a taxa de reprodutibilidade efetiva Re
0 for menor do que um, a doença é extinta; se

for igual a um, a doença se torna endêmica e caso seja maior do que um, a propagação entre os
indivíduos suscetíveis ao entrarem em contato com os infectados gera uma epidemia. Vejamos
as três taxas relacionadas:

A primeira das taxas ocorre por progressão direta Rp
0

d e relaciona-se aos suscetiveis que
ficaram doentes em até um ano após serem infectados, podemos obter seu resultado através da
equação 6.2 .

Rp
0

d = p. f

µ+µt +ϵ.d
(6.2)

Já a segunda taxa acontece por uma reativação endógena e Rr
0

e representa os indivíduos que
apesar de terem sido contaminados, não desenvolvem a tuberculose no primeiro ano após a
infecção, apresentada na equação 6.3.

Rr
0

e = q.ν.(1−p)

(ν+µ).(µ+µt +ϵ.d)−ϵ.d .ν
(6.3)

A terceira taxa Rr
0 está relacionada aos indivíduos curados que voltam a desenvolver a tubercu-

lose, ou seja, são casos de recidiva, como podemos observar na equação 6.4.

Rr
0 = q.ν.(ϵ.d .p)

[(ν+µ).(µ+µt +ϵ.d)−ϵ.d .ν].(µ+µt +ϵ.d)
(6.4)

Portanto, a taxa de reprodutibilidade efetiva Re
0 tem grande importância na análise qualitativa

deste modelo. Ela pode ser obtida através da expressão que relaciona Rp
0

d ,Rr
0

e e Rr
0 apresentada

na equação 6.5.

Re
0 = β.π.(Rp

0
d +Rr

0
e +Rr

0 )

µ
(6.5)

6.1.1 Simulações Numéricas

Para realizarmos as simulações com base em [43] tomaremos como condições iniciais:
Suscetíveis S(0) = 74999; Latentes L(0) = 0; Indivíduos com tuberculose pulmonar Ti (0) =

106



1; Indivíduos com tuberculose extrapulmonar Tn(0) = 0. Além disso, considere os mesmos
parâmetros propostos em [43]: (π = 1500); (µ = 0.04); (β = 0.00018); (p = 0.15); (ν = 0.005);
(q = 0.87); ( f = 0.66); (µt = 0.461) e (c = 0.1659). Utilizamos △t = 0.5, mesmo valor proposto.

Observe que estamos propondo, pelo menos inicialmente, que a parcela de indivíduos
que terão sucesso no tratamento será maior que a taxa de contágio. O usuário deverá digitar
todos os valores para os parâmetros. O programa já possui armazenado as condições iniciais,
porém é possível alterar internamente de acordo com o problema analisado. É possível obser-
vando o esquema refazer cálculos de iterações que julgar necessário. A calculadora no Scratch
foi desenvolvida com base em lógica de programação visual e está disponível online [44].

Neste caso obtemos as taxas na Figura 6.2 onde há uma propagação da doença pois (Re
0)

é maior do que um.

Figura 6.2 – Primeira Simulação
Fonte: Autora

Vejamos como ficaria a primeira iteração para esta mesma simulação na Figura 6.3.
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Figura 6.3 – Primeira Simulação-Iteração inicial
Fonte: Autora

Agora, assumindo (c = 0.7), vamos aumentar a quantidade de pessoas que têm sucesso
no tratamento na Figura 6.4, o que ocasiona uma diminuição em Rp

0
d e Rr

0
e , porém há um

aumento em Rr
0 . O que faz com que Re

0 também diminua. Com isso, melhoramos a situação,
porém (Re

0) continua maior que 1. Já a taxa (Rr
0), aumenta, se existirem mais indivíduos latentes,

que poderão voltar a desenvolver a doença. Isso acontece devido ao aumento da porcentagem
de pessoas curadas que retornam ao grupo dos latentes.

Se a parcela de indivíduos que terão sucesso no tratamento (c) for suficientemente maior
que a taxa de contágio, há um crescimento no grupo dos indivíduos em latência, já que uma por-
centagem deles, deixa de pertencer aos grupos de contaminados, retornando à categoria L(t).
Isso faz com que essa situação represente um momento onde a tuberculose será temporaria-
mente extinta. Ao aumentarmos a taxa de contágio β, diminuímos a quantidade de suscetíveis,
e aumentamos o valor máximo atingido pelos indivíduos em latência. Isso também poderá
ocasionar um aumento na quantidade de infecciosos e não infecciosos.

Existe uma interdependência entre os parâmetros neste modelo, que é determinante
nesse processo de evolução da doença. Para realizarmos algumas análises é necessário reinici-
lizar a calculadora, clicando na bandeira verde e digitar uma nova combinação de parâmetros.
Com isso, comprovaremos os efeitos que essas alterações provocam. É possível observar as
iterações, registrando as porcentagens de suscetíveis, latentes ou infectados obtidas para cada
iteração, fazendo a correspondência com a quantidade de dias. Para tal conversão basta cal-
cular a metade do valor dada pela variável iteração. Com isso, teremos a quantidade de dias
envolvido.

Quando aumentamos a quantidade de pessoas que desenvolvem a tuberculose em até
um ano p, diminuímos a porcentagem máxima de latentes. Caso contrário, se diminuirmos p,
aumentamos (1−p), o que favorece o crescimento do grupo em latência. O que significa que
qualquer alteração na porcentagem correspondente aos indivíduos que adquirem a tuberculose
em até um ano influencia em todas as taxas de reprodutibilidade. Se aumentarmos a taxa ν dos
latentes que desenvolvem a tuberculose e a taxa β admitida for maior que a porcentagem de
pessoas que obtém sucesso no tratamento, a doença se agrava e pode se tornar uma epidemia.
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Figura 6.4 – Segunda Simulação
Fonte: Autora

Vejamos como ficaria a primeira iteração para esta segunda simulação em 6.5.

Figura 6.5 – Segunda Simulação-Iteração inicial
Fonte: Autora

Como já foi mencionado aumentos na taxa de nascimentos causam acréscimos no grupo
dos suscetíveis. Quando ocorrem aumentos na taxa de mortos por causa natural ou na taxa dos
indivíduos (p) que adquirem tuberculose em até um ano, diminuímos os suscetíveis, já que uma
parcela (p) multiplicada pela taxa de infecção, sai dos suscetíveis para integrar os grupos de
contaminados.

Se a taxa referente aos indivíduos que desenvolvem a tuberculose pulmonar ( f ) sofrer
acréscimos, aumentamos este grupo de infecciosos e diminuímos a categoria dos que desen-
volverão a tuberculose extrapulmonar. Os acréscimos nas mortes de qualquer tipo, reduzem
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as categorias dos que possuem tuberculose. Neste modelo, estamos considerando as taxas de
mortes com valores iguais para todas as três categorias, por este motivo, utilizamos os mesmos
parâmetros.

Se passarmos (c = 0.9) na Figura 6.6 teremos diminuição em todas as taxas. A doença
tende a ser extinta ainda que temporariamente, pois Re

0 é menor que um.

Figura 6.6 – Terceira Simulação
Fonte: Autora

Neste capítulo tratamos apenas dos cálculos relacionados às taxas de reprodutibilidade
e os valores obtidos com os indivíduos em cada categoria mediante os valores iniciais e pa-
râmetros dados. Uma possibilidade para trabalhos futuros poderá ser a construção e a análise
da evolução temporal deste modelo, além de uma proposta de recuperação onde o indivíduo
infectado não volte ao estado de latência, como também uma reformulação para este modelo
contemplando uma suposta vacinação.
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7
Conclusão

A modelagem matemática desempenha um papel crucial na compreensão dos dados e
previsão da evolução, ao longo do tempo, de doenças infecciosas. Por meio da modelagem,
é possível criar uma visão clara e organizada da situação vivenciada pela população, o que
facilita a compreensão e a análise das informações. Os modelos utilizam esses sistemas de
equações, para descrever a dinâmica da propagação. Eles consideram fatores como taxas de
infecção, recuperação e algumas vezes, natalidade e mortalidade. Esses modelos ajudam a
estimar o número de casos, por período e a avaliar estratégias de controle biológico. O que
se espera com este trabalho é a construção de um levantamento bibliográfico, sobre algumas
das modelagens que estão sendo aplicadas, objetivando o controle de doenças epidemiológicas.
Para isso, estudaremos, a princípio, modelos mais simplificados da Epidemiologia.

Esses estudos tornam-se essenciais na tentativa de prever cenários, analisando a dis-
seminação de doenças infecciosas, e dando subsídios ao governo, para o desenvolvimento de
possíveis ações e medidas de controle para conter a propagação de doenças. Além disso, bus-
camos contribuir para a contextualização da Matemática a nível superior, através da utilização
de um problema real. Promoveremos assim, um estudo minucioso sobre o conteúdo matemá-
tico, contido nessas propostas. Com isso, construiremos um material importante, que além de
tratar sobre os sistemas de Equações Diferenciais Ordinárias, estará embasado em uma situ-
ação vivenciada pela população brasileira, e por vezes, pela mundial, que almeja por novas
investigações e estudos.

Tais descobertas para modelagem matemática tornam-se essenciais, pois possibilitam a
construção de uma tentativa de evolução para doenças. O que permite com que um modelo
seja substituído por um outro que seja capaz de solucionar casos graves ou até mesmo con-
trolar situações de disseminação. Por isso, desejamos que novos tratamentos e vacinas, sejam
testados e futuramente possam ser implementados. Enquanto isso, os matemáticos continuarão
aperfeiçoando os seus modelos, tornando-os cada vez mais complexos. Para isso, precisamos
criar uma coletânea de modelagens, para serem implementadas computacionalmente, a fim de
testar os resultados.

Nesta dissertação apresentamos algumas simulações numéricas, para testar resultados e
fazer análises. Esperamos construir uma dissertação que atenda às expectativas estudantis do
leitor, que almeja por novos conhecimentos, acerca do ato de fazer modelagens. Além de des-
pertar a vontade de aprender a modelar, enriquecendo o estado da arte. Essa busca por soluções
para situações reais, traz inúmeros benefícios para a sociedade, como poderá ser observado
neste trabalho. Só que esse processo de modelagem não é algo tão simples, existem várias
etapas envolvidas, até a validação de um modelo. Espera-se que esses dados possam contri-
buir para a reflexão sobre o tema, bem como para a orientação ou direcionamento das ações.



Esperamos despertar o desejo de estudar essas e outras modelagens envolvidas, assim como,
contribuir com a investigação desses processos, para a não proliferação dessas e outras doenças
infecciosas, que causam tantos prejuízos a sociedade.

Como uma proposta de trabalhos futuros, podemos incluir a análise das Evoluções Tem-
porais da Tuberculose, podendo ser representado pelos modelos SLIS, SLIR, SLIRS e SLIRV,
além do estudo de modelos mais complexos para outras doenças.
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