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RESUMO

MARTINS FERREIRA, Silvana. Estudo comparativo da evolu¢ao dos modelos epidemio-
logicos: SI, SIS, SIR, SIRS e com o advento da vacinacio, SIRV. Silvana Martins Ferreira
2024 . 2025. 115f. Dissertacdo (Mestrado em Modelagem Matemadtica e Computacional).
Instituto de Ciéncias Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ,
2025.

O objetivo deste trabalho € realizar um levantamento bibliografico, sobre os modelos epidemi-
olégicos basicos, diante do contexto gerado pelas epidemias causadas por agentes infecciosos,
além de propor um estudo sobre o método de Runge kutta de primeira ou segunda ordens, apli-
cado a estes modelos e suas evolugdes temporais. O foco estard nas possibilidades de uso da
modelagem, por sistemas de equacdes diferenciais ordindrias. Computacionalmente sera uti-
lizado o software Octave para os grificos, o Geogebra para a construcao dos planos de fase
e o Scratch para a demonstragc@o das iteragdes. Foi realizada uma selecado dos modelos, para
a devida implementagdo computacional, o que permitird transitar entre abordagens tedricas e
praticas. A partir das simulacdes numéricas, faremos algumas andlises, sobre as evolucdes tem-
porais dos modelos. Partiremos do modelo mais simples SI, até a conclusdo dos estudos com
o modelo SIRV. A nossa proposta € que o leitor refaga alguns dos cdlculos presentes neste tra-
balho e também realize complementacdes. Alguns dos sistemas foram adimensionalizados, e
priorizamos utilizar a lineariza¢ao, quando isto foi possivel.

Palavras-chave: Modelagens Matematicas Epidemioldgicas, Modelagens Epidemioldgicas, Mo-
delagens Matematicas de Doencas Infecciosas,....



ABSTRACT

MARTINS FERREIRA, Silvana. Comparative study of the evolution of models epidemio-
logical factors: SI, SIS, SIR, SIRS and with the advent of vaccination, SIRV.

. 2025. 115p. Dissertation (Master in Mathematical and Computational Modeling). Instituto de
Ciéncias Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2025.

The objective of this work is to carry out a bibliographic survey on the epidemiological models
of the in view of the context generated by epidemics caused by infectious agents, in addition
to proposing a study on the Runge kutta method, applied to these models and their temporal
evolutions. The focus will be on the possibilities of using modeling, by systems of ordinary
differential equations. Computationally, the Octave software will be used to the graphics, Ge-
ogebra for the construction of the phase plans and Scratch for the demonstration of iterations.
A selection of the models was carried out for the proper computational implementation of the
which will allow the transition between theoretical and practical approaches. From the simula-
tions We will make some analyses on the temporal evolutions of the models. Leave from the
simplest SI model, to the conclusion of studies with the SIRV model. Our proposal It is for
the reader to redo some of the calculations present in this work and also to make complements.
Some of the systems were dimensionalized, and we prioritized using linearization, when this
was possible.

Keywords: Epidemiological Mathematical Modeling, Epidemiological Modeling, Mathemati-
cal Modeling of Infectious Diseases,....
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Introducao

A modelagem matemética em Epidemiologia, de acordo com [1], é desenvolvida através
do estudo de equagdes que descrevem a interagc@o entre a populacao de uma regido e o ambiente
em que ela vive, resultando numa anélise detalhada a respeito da doenga. A importancia desse
estudo se dé ao fato de que quanto mais se conhece a respeito da doenga e 0 modo como ela se
propaga, mais eficazes serdo os métodos para impedir sua transmissdo, e até mesmo o estudo
de a¢des preventivas, como por exemplo, campanhas de vacinagao.

Diversos pesquisadores estao usando modelos matematicos para analisar a forma de evo-
lucao de algumas doencas e o comportamento dos seus agentes transmissores. Uma ferramenta
que auxilia esse estudo € a modelagem matematica. A modelagem € uma etapa fundamental
nesse processo de investigacdo, pois permite uma melhor compreensdo e andlise da situagdo
gerada pela disseminacdo de uma doenga infecciosa.

Através da modelagem, transformamos uma situagdo cadtica, como o caso das doengas
infecciosas, em algo que pode vir a ter solugdo ou ter seus efeitos atenuados. Em vista disso, a
modelagem epidémica intenta conter a propagacdo de uma doenca, quando possivel, pois, a par-
tir de modelos matematicos pode-se analisar a disseminacao e controle de doengas infecciosas
[21[3].

E necessdrio analisar com muito cuidado os dados obtidos através da modelagem, pois
estamos considerando a possibilidade de se diminuir ou evitar os casos de mortes em uma deter-
minada populacdo. A modelagem permite apds a identificacao do problema, véarias simulacdes
e tomada de decisdes mais conscientes e fundamentadas.

A dinamica entre os compartimentos € estudada pelos pesquisadores, que possuem uma
missdo importante para a Epidemiologia, que consiste em fazer previsdes, acerca da evolugao
dessa e de outras doencas, a partir dos graficos e dos dados numéricos. A transferéncia con-
tinua entre esses grupos de individuos organizados em compartimentos, pode representar algo
extremamente benéfico ou muito prejudicial a saude.

Sao estudados e criados pela modelagem matematica através de etapas como escolha
de tema, coleta de dados, andlise de dados, formulagdo do modelo e a validagdo. A modela-
gem formaliza um contexto através do modelo e, assim, trabalha este modelo de forma intelec-
tual, desenvolvendo e absorvendo as habilidades matemdticas adquiridas para sua resolugdo [4].
Com isso, a populacdo passa a ser organizada em grupos, como o de suscetiveis ou infectados.
Em seguida, evolui para outras categorias, como SIS, SIR, SIRS ou SIRV.

Dessa forma, podemos utilizar a modelagem matematica como um método de pesquisa
cientifica, a fim de representar diversas situacoes reais através de modelos e analisar suas pro-
vaveis solugdes.



Por exemplo, a Aids é representada por um modelo denominado SI, onde sé existem
individuos suscetiveis ou infectados, portanto hd apenas dois compartimentos S e I. A evolugao
temporal deste modelo, ird nos mostrar que depois de um periodo, todos os suscetiveis, ou
seja, todos os individuos que tiveram algum contato com o sangue de individuos infectados,
se tornam contaminados. Quando estivermos considerando uma evolugdo para este modelo,
estaremos idealizando algo que ndo € real, pelo menos neste momento.

Ja no caso do modelo que serd proposto para a Tuberculose, temos um caso de Pro-
gressdo Direta (modelo SI) e indireta (modelo SLI). O que significa que o individuo podera
passar por um periodo de laténcia, ou seja, periodo superior a um ano, sem o desenvolvimento
da doenca. Apesar de existir possibilidade de cura, o individuo ndo € imunizado, retornando a
situacdo de laténcia. Como o modelo foi simplificado, a nossa proposta € que seja incorporada
uma vacina¢do, complementando-o.

Tais dinamicas de transferéncias de individuos sao de grande importancia para a Epide-
miologia, assim como todos os agentes envolvidos em seu desenvolvimento. Para isso, preci-
samos entender, segundo [5] que as concepgdes sobre doengas infecciosas e sua disseminacao,
nem sempre foram as mesmas, e suas causas pouco conhecidas. As concepcdes atuais sobre a
disseminacdo de doencas infecciosas, sdo resultado de muitos anos de pesquisa, isso se deve ao
fato de que inimeras doencas infecciosas ja atingiram paises por todo o mundo e, consequen-
temente, provocaram consequéncias graves, como um numero significativo de mortes. A todo
momento surgem novas doengas, além disso, os seres causadores dessas infec¢des, conhecidos
pela medicina, podem sofrer mutacdes, se tornando mais resistentes aos medicamentos € aos
efeitos da vacinagdo, o que torna esta tarefa de conter a propagacao, ainda mais complexa.

Dependendo da doenca, podemos ter ou ndo, acesso a uma vacinag¢do, que contenha
esse crescimento. A compreensdo dessas doengas evoluiu ao longo do tempo, a medida que
0s avancos na ciéncia e na medicina nos permitiram identificar e combater esses patdgenos de
maneira mais eficaz.

O Aedes aegypti, por exemplo, transmite algumas doencas, chamadas de arboviroses
como a dengue, zika, chikungunya e febre-amarela. Segundo [6] o controle da populacao de
mosquitos Aedes Aegypti, torna-se necessdria, principalmente porque nao existem vacinas com-
pletamente seguras e eficazes. O mosquito estd presente principalmente nas regides tropicais
e subtropicais do planeta, onde a temperatura e a pluviosidade oferecem condi¢des favoraveis
para a proliferacdo deste. A variabilidade climatica € um dos principais condicionantes que
pode favorecer o processo de reproducdo, desenvolvimento e sobrevivéncia da populacido de
Aedes aegypti [7].

Devido ao crescimento da quantidade de infectados e hospitalizados, além do faleci-
mento de individuos, é fundamental a busca por estratégias que reduzam a propagacgdo dessas
doencas. Por isso, faz se necessdrio tracar estratégias para tentar reduzir a disseminacao e o
surgimento de novas epidemias.

No caso, as estratégias tradicionais usadas para o controle da populacdo sdo o controle
mecanico, quimico e bioldgico [8], porém o que podemos perceber € que a populacdo de Aedes
aegypti tem se tornado resistente [9]. Isso faz com que os mosquitos se reproduzam em grande
quantidade e se espalhem, picando novas pessoas, € estas transmitindo a doenga, de forma
grandiosa. Este ciclo provoca uma disseminag¢do muito rapida, onde toda a populacdo em pouco
tempo, torna-se infectada. Por isso, os trés tipos de controle possuem extrema importancia, pois
deverdo agir em conjunto em prol de extinguir ou substituir a popula¢do de mosquitos por outra
que ndo transmita a doenca.

Segundo [5] antes de buscar vacinas e novos tratamentos para as doengas transmitidas
pelo Aedes aegypti, é preciso entender de que forma as pessoas sdo afetadas, como a transmis-
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sdo ocorre entre 0s mosquitos € entre as pessoas, como erradicar o virus, ou até mesmo como
tratar. SO que esta tarefa € bem complicada e drdua, pois envolve muitos fatores, além de ser
necessario observar caracteristicas do mosquito como as do hospedeiro que ird desenvolver a
doenca.

A dengue tornou-se endémica no Brasil, contando com ciclos epidémicos todo ano [10].
Se por algum motivo ndo houver dgua suficiente para os ovos eclodirem, como por causa das
variagdes climdticas sazonais, eles podem permanecer adormecidos por 492 dias na seca e eclo-
dem assim que houver a quantidade de dgua suficiente [11]. O que nos permite perceber a
facilidade que tem esse mosquito de se reproduzir, mesmo em situagdes extremas. Outra infor-
macao interessante € que apenas a fémea do mosquito é capaz de contaminar uma pessoa, pois
sO ela se alimenta de sangue. Quando a fémea pica uma pessoa infectada, o virus se aloja nas
glandulas salivares e ali se multiplica. Com isso, 0 mosquito permanece infectado, transmitindo
a doenca até a sua morte, ou seja, por cerca de um mes.

A fémea consegue fazer ingestdes multiplas de sangue, durante um unico ciclo gonado-
trofico, o que amplia a sua capacidade de se infectar e de transmitir os virus [12]. A dengue
causa febre alta subita, dor de cabeca, dor no corpo e articulagdes, prostracdo, fraqueza, dor
atrds dos olhos, erup¢do, nduseas e vomitos, dores abdominais, também pode haver manchas
vermelhas no corpo e coceira. Esses sdo alguns dos sintomas que resultam do individuo infec-
tado, que teve o seu organismo afetado, ocasionando dificuldades na execucdo de suas tarefas
cotidianas bésicas.

Adaptacdes permitiram que se tornassem abundantes nas cidades e fossem facilmente
levados para outras dreas pelos meios de transporte, o0 que aumentou sua competéncia vetorial,
ou seja, a sua habilidade em tornar-se infectado por um virus, replicd-lo e transmiti-lo [13].
Essa transmissdo inicia-se com uma pessoa ou um conjunto pequeno de pessoas que atuam
como agentes do virus, espalhando a doenca e nao tomando as devidas precaucdes para evitar
novas infeccdes. O crescimento da populagdo infectada torna-se tdo grande que acaba por
atingir uma parcela ou toda a populagdo de suscetiveis. Dependendo do modelo matematico
que estudaremos, havera ou ndo, uma possibilidade de recuperacgao.

Durante o século XIV, doencas como variola e gripe atingiram muitos paises, demorando
muito tempo para suas formas de contaminacdo e prevencdo serem descobertas. No entanto,
doencas infecciosas continuam sendo motivo de grandes preocupacdes e mortes [2]. Apesar de
jé termos evoluido bastante nas pesquisas relacionadas as doengas, ainda somos surpreendidos
com novos ou antigos agentes infecciosos que tornaram-se mais resistentes ao longo do tempo.

Segundo [14], podemos verificar através de relatos, que o virus HINI, estava presente
em 1918, com o aparecimento da gripe espanhola, sendo esta erradicada em 1919. O virus
HIN1 também foi responsdvel pela gripe suina de 1931. Entretanto, o virus ndo chegou ao seu
fim, sofrendo mutacdes no decorrer dos anos e, assim, originando o H2N2 (gripe asidtica) de
1957. Em 1968, foi constatada uma nova mutacdo do virus, o H3N2, o qual foi responsavel
pela gripe de Hong Kong.

Observe que ambos os virus, HIN1 e H3N2, agem até este momento. O HINI1 € o
responsdvel pela gripe comum, que possui uma propagacdo muito poderosa. Essa capacidade
de se modificar representa um desafio para os pesquisadores, que para construirem um modelo,
precisam conhecer tais agentes. A cada mutacdo sofrida, esses seres causadores de doencgas
recebem uma nova nomenclatura, ja que possuem alteracdes em algumas de suas caracteristicas
e nos sintomas que sao capazes de produzir em seus hospedeiros.

De acordo com [15], em 2009, tivemos uma variacao do virus HIN1, a Influenza A
HINI, popularmente denominada gripe suina, pelo fato de sua transmissdo ser rapida dentro
dos rebanhos suinos. A influenza A HIN1 originou-se no México em 2009 e rapidamente
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espalhou-se por mais de 80 paises, indicando o inicio de uma pandemia global. Esses sdo
apenas alguns exemplos de doencas que prejudicam a saide de muitos individuos da populacdo
mundial.

Ademais, diante do que foi exposto, a sociedade mundial, segundo [5], esforca-se para
combater e inibir os efeitos econdmicos, sociais, educacionais, entre outros. Salientando prin-
cipalmente a crise em que os sistemas de saide vém tendo que lidar, hd um grande destaque
para as diversas contribui¢des proporcionadas pelos modelos mateméticos e as andlises acerca
da modelagem, no que tange a busca de uma compreensao e de projecdes do comportamento
da COVID-19.

O coronavirus € uma familia de virus que provocam infec¢des respiratorias. Desde a sua
descoberta e consequente divulgagdo, o grande avanco da COVID-19 preocupa especialistas do
mundo inteiro, fato esse que fez com que a Organizacdo Mundial da Saide (OMS) decretasse
estado de pandemia em margo de 2020 [16].Assim, a COVID-19 é uma doenca causada pelo
coronavirus SARS-CoV-2, e que apresenta um quadro clinico que varia de infeccdes assinto-
maticas a quadros respiratorios graves [17].

Diante dos desafios de controle dessas doengas, torna-se imprescindivel a adocdo de
estratégias especificas, com maiores investimentos em métodos adequados, que fornecam sus-
tentabilidade as acdes estabelecidas pelas redes de vigilancia, além de ensejarem a andlise de
sua efetividade. Devido a existéncia dessas doengas, estudos comecaram a ser realizados com o
objetivo de caracterizar cada tipo de epidemia, determinar os fatores causadores e buscar formas
de controle das mesmas.



Metodologia

Em face do atual cendrio, este estudo torna-se relevante, pois propde modelos iniciais
mais simplificados, avangando para um modelo mais complexo, resultante da possibilidade de
vacinacdo. Nossa estratégia foi tentar compreender alguns desses modelos, para entdo termos
condicdes de aprofundar nossos estudos. Por isso, propomos uma revisitagdo ao passado, to-
mando por base conhecimentos mateméticos ja adquiridos por estudiosos.

Modelos simples como SIS, SIR e SIRS sao uteis para compreender os mecanismos ba-
sicos de transmissdo de doengas, enquanto modelos mais complexos incorporam varidveis como
mobilidade populacional, heterogeneidade de contato e intervengdes sanitdrias, permitindo si-
mulacdes mais realistas [14]. Modelos simples sdo ideais para introduzir o tema e andlises
tedricas, enquanto os modelos complexos sdo fundamentais para contextualizar a realidade,
como pandemias, onde multiplos fatores influenciam a dindmica da doenga.

Com base nisso, a modelagem matemadtica através de seus pesquisadores, busca por
solugcdes para os problemas da atualidade, mas para isso, hd que se fazer um resgate, daquilo
que ja foi implementado por outros, para assim, podermos prosseguir. O estudante precisa
compreender modelos mais bdésicos, para ser capaz de assimilar e utilizar como ferramenta
modelos mais complexos.

Iniciaremos nossos estudos no capitulo 3, que apresenta os Sistemas de Equacdes Dife-
renciais Ordindrias Lineares, ditas homogéneas, representadas por equagdes autdnomas, com
uma andlise quanto as suas caracteristicas fundamentais. Faremos uma revisdo, quanto ao
calculo dos autovalores e autovetores de uma matriz, assim como, a constru¢do do conjunto
solucdo, como apresentado em [18].

Podemos perceber que dependendo do conjunto numérico a que pertencem, reais ou
complexos e do sinal destes autovalores, situacdes semelhantes ocorrem nos seus planos de
fase, como pode ser observado em [5]. Estes planos foram obtidos no Geogebra. Eles irdo
representar curvas dos conjuntos solucdes, com sentidos a serem determinados pelos sinais. Em
alguns casos, o sentido das curvas tende a zero, e em outras, ao infinito. Isso as caracteriza como
estdveis ou instdveis. Quando a solu¢do apenas se aproxima de zero, ela € dita assintoticamente
estavel, e no caso de assumir a origem como uma das solucgdes, ela serd estadvel. Com isso, ao
calcularmos os autovalores de uma matriz, j4 somos capazes de prever como serd o formato
de seu plano de fase. Estes possuem propriedades de acordo com o tipo de ponto critico e sua
estabilidade. Por este motivo, iniciamos nossos estudos com a teoria sobre estes sistemas.

O objetivo principal desta dissertacdo serd a andlise quantitativa e qualitativa de alguns
modelos matemadticos epidemioldgicos, apresentados no capitulo 4, descritos através de Siste-
mas de Equacdes Diferenciais Ordinérias nao Lineares. Fizemos, quando possivel, os mesmos



procedimentos do capitulo 3, de determinag@o dos autovalores da matriz jacobiana, quando apli-
cada nos pontos criticos, s6 que algebricamente. Com isso, classificamos a estabilidade desses
pontos. A partir de simulacdes, interpretamos biologicamente os modelos, com a utilizagao
do Octave. Este foi utilizado para a constru¢ao dos graficos. Para uma melhor compreensdo
por parte do leitor, propomos simulacdes, contendo uma sequéncia de iteracdes para o grupo
dos suscetiveis e outras para o grupo dos infectados, ou ainda, para os recuperados. Assim,
em alguns modelos, o leitor podera participar dos cdlculos para a obtencao dos resultados das
iteragdes e nao somente analisar as evolucdes temporais. As iteragdes para a determinacao dos
suscetiveis e infectados, ou ainda recuperados, sdo muito extensas € numerosas, por isso, foram
apresentadas de forma resumida. Estas iteragdes foram construidas no Scratch. Alguns modelos
apresentam somente os graficos das evolugdes temporais, onde constam a quantidade de dias
no eixo x e os resultados finais aproximados das iteracdes, que podem ser observados no eixo y.

A metodologia utilizada almeja ser elucidativa, buscando a compreensdo e posterior
resolucido de questdes numéricas. Este trabalho caracteriza-se como uma pesquisa explora-
téria, que busca contribuir para a proximidade em torno de um problema causado pelo cres-
cimento desordenado de doencas, tornando-o mais compreensivel e auxiliando na elaboragdo
de conjecturas e/ou hipdteses. Em uma pesquisa exploratéria, geralmente, seu planejamento
estd na forma de pesquisa bibliografica ou estudo de caso, sendo que, a pesquisa bibliografica
fundamenta-se em trabalhos ja desenvolvidos por diversos pesquisadores e o estudo de caso
limita-se a conhecer de forma detalhada um ou poucos objetos de estudo [19].

Temos a inten¢do de propor um estudo sobre os Sistemas de Equagdes Diferenciais
Ordindrias Lineares, apresentando a maior parte das etapas de cdlculos envolvidas, mesmo que
sejam conteddos do Ensino Fundamental ou Médio, assim estaremos agindo na tentativa de
desbloquear possiveis acessos aos contetidos do Ensino Superior. Essa etapa de estudo referente
aos sistemas lineares € muito importante para que o estudante observe os calculos envolvendo a
Aritmética e seja capaz de utilizar seus conhecimentos algébricos para encontrar os autovalores
dos sistemas ndo lineares quando linearizados. Nem todos os modelos foram linearizados, para
i$s0, nos baseamos principalmente na andlise feita em [20].

Iremos estudar os sistemas nao lineares ou quase lineares, representados pelos modelos
compartimentais, principalmente, através do procedimento de linearizacdo, através da Série de
Taylor e utilizacdo da matriz jacobiana, fazendo com que as solu¢des do novo sistema linear,
estejam mais proximas das solucdes dos sistemas nao lineares. Serdo estudados os modelos SI,
SIS, SIR, SIRS e SIRV. Em alguns dos modelos foi feita a adimensionalizacdo e todos os pro-
cedimentos envolvidos apresentados. Além disso, podemos observar que alguns dos modelos
incluem a dinmica vital, ou seja, esses modelos consideram a porcentagem de nascimentos e
mortes em uma populagdo. Nos modelos em que ndo foi possivel calcular os autovalores, ja que
o determinante se anulava, foi obtido o traco da matriz, de uma forma resumida. Nao temos a
intencdo de aprofundar este conceito, pelo menos por enquanto.

No capitulo 5, apresentamos uma proposta de evolucao para a Aids, onde aproveitamos
dados de uma situagao real, para trilharmos um caminho evolutivo do modelo SI até o modelo
SIRV, com isso, faremos algumas simulagdes acerca dessa evolucdo, gerando o conceito de
uma Aids Idealizada, para enfim tirarmos algumas conclusdes. Além disso, apresentamos a
evolugdo da Covid-19, que partindo do modelo SI, conseguiu alcangar um modelo SIRV, com o
advento da vacinacdo. Utilizamos os cdlculos obtidos através do Runge-Kutta 1 ou 2 (RK1 ou
RK?2). Ja no capitulo 6, estudaremos um modelo da tuberculose, que pode ser desmembrado em
duas etapas: progressao direta(SI) e indireta (SLI). A partir da andlise deste modelo e de seus
parametros, faremos consideragdes importantes acerca da evolucao da doenca.

Temos o objetivo de auxiliar a formagdo académica e incentivar estudos futuros em
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Programas de P6s-Graduacao acerca de modelos aplicados a Biologia, com a utilizacdo de mo-
delagens matematicas. Buscamos assim contribuir no ambito da pesquisa e em discussdes nessa
area, através do estudo e da andlise de modelos matematicos aplicados a epidemias. Esta disser-
tacdo € direcionada para qualquer estudante ou profissional, por isso, a inten¢do de resolugdo de
uma forma simplificada, o que poderad facilitar a compreensao, quanto aos procedimentos para
a andlise dos problemas.



Sistemas de Equacoes Diferenciais Ordinarias
Lineares

As equagdes diferenciais ordindrias sdo ferramentas fundamentais para compreender a
dindmica da transmissdo de doencas infecciosas, permitindo simular cendrios e avaliar estraté-
gias de controle [21]. Se uma equagdo diferencial contém somente derivadas ordindrias de uma
ou mais varidveis dependentes (xp, x,...X,;) com relacdo a apenas uma varidvel independente
(1) ela é chamada de equagdo diferencial ordindria, ou EDO.

Com elas € possivel descrever e formular diversos tipos de sistemas fisicos numa lin-
guagem matemadtica, o que possibilita uma imensa gama de aplicagdes em modelos concretos.

Agora, considere um sistema de equagdes diferenciais linear, formado por um conjunto
de n equagdes diferenciais lineares de primeira ordem simultaneas com n varidveis, assumindo
a seguinte forma:

dx
d—; = a11x1(0) + a12%2 (D) + oo + A1 X0 (1) + g1(D)
AX2 00 (8) + A xp () + ot )+ g2(0)
I D = a1 x1 azr Xy .t dopXon 82 (3.1)
.
ar =an1X1(8) + apaX2(t) + ...+ Appxp(t) + gn(1).

Se gn(t) =0, o sistema € dito homogéneo e, caso contrério, ¢ ndo-homogéneo. No caso
de o sistema ser nao homogéneo, ele pode ser reescrito como:

% =x'() = A.x(0) + g(1). (3.2)

As matrizes sdo determinadas da seguinte forma:
A=(aij)nxn,

x(8) = (xX1(8), X2(8), X3(8), ee0 X (£) ] 11



g(1) = (g1(1), §2(1), 83(1), .., 8n (1)}

Um sistema de equagdes diferenciais ordindrias € dito autbnomo e homogéneo quando

dx ) . .. N
P for uma func¢do s6 de x, ou seja, a derivada ndo depende explicitamente da varidvel inde-

pendente £, por isso, ela ndo aparece no membro direito das equacdes. Gerando a equagdo:

dx
— = f). (3.3)
dt
O nosso objetivo inicial serd estudar os sistemas lineares homogéneos autbnomos com
coeficientes constantes da forma:

dx
— = A.x. 3.4
P b 3.4)

sendo A uma matriz de ordem 2, e x(t) = (x; (%), x2(¢)), um vetor 2x1.
Para encontrarmos as solucdes ndo triviais de um sistema, usamos este formato:

x(t)=ve". (3.5)

considere r um autovalor e v um autovetor associado da matriz A.
Observe que se x(t) for um vetor solugdo do sistema, entdo derivando temos:

X =vre. (3.6)

Ao substituimos x’(t) obtido em 3.6 na equagdo 3.4, obtemos:
vre't=Ave . (3.7)

Considerando que I representa a matriz identidade,temos que:
(A-rD.v=0. (3.8)

Portanto, quando substituimos 3.5 e 3.6 em 3.4, obtemos 3.8. Com esta equagdo, deter-
minamos os autovetores associados a cada um dos dois autovalores da matriz.
Podemos determinar os autovalores que sdo as raizes da equagdo polinomial, calculando

det(A-rlI) =0. 3.9

Os autovalores e autovetores serdao de extrema importancia na anilise do comportamento
da trajetdria das solugdes do sistema no plano cartesiano.
A combinagao linear das solucdes do sistema 3.10, também serd solugdo para o sistema.

x1(8) = Cr.vW . et
{ X2 (t) = Cp. 0¥ 721, (3.10)
Entdo, a solucdo geral para o sistema € representado pela equagdo 3.11.
x(6) = Cr.vW.e '+ Cp.v@ "2, (3.11)

Para a constru¢do da solucao geral dos sistemas lineares, considere os dois autovetores
como vV = (111, viV) e v = (12, pi2)).



3.1 Autovalores Reais

3.1.1 Primeiro Caso: Autovalores reais negativos r; < r, < 0. Considere o sistema:

D43
— =-2.x1+3.x
T 1 2
(3.12)
ax, X1—4.x
q; _aTAx
Podemos reescrevé-lo da seguinte forma:
. _ -2 3 X1
x(t)—( ) _4) (xz). (3.13)

. -2 3 .
Para calcular os autovalores da matriz A = ( 1 - 4) temos que obter o determinante da

matriz (A-r.I) que devera ser igual a zero:

—2-r 3
det( 1 4 r) =0. (3.14)

Obtemos a expressdo (-2-r).(-4-r)-3=0, em 3.14, que resulta em r?+6.r +5=0. Utili-
zando o método da soma e do produto das raizes de uma equagdo x> — S.x + P = 0, encontramos
ry = —5e ry = —1, que sdo os autovalores, pois a soma deles € -6 e o produto 5. Para calcularmos
os autovetores devemos substituir cada um dos autovalores na matriz (A-r.I) e depois resolver o
sistema (A—r.I).v =0, encontrando os autovetores.

O sistema associado a r; = —5 é:

—2+5 3 \(v{V 3 3)(v\V
1 |=0— 1| =
( 1 —4+5)(y§1))_0 (1 1)(1;;”) 0- (3.15)
O autovetor (-1,1) € a solucao do sistema 3.15.
O sistema associado a 1, = —1 é:

—2+1 3 \[v¥ -1 3)\(v!?
1 |l=0— 1| =
( 1 —4+1)(u;2>) =0 (1 —3)(1;;2)) 0 (3.16)
O autovetor (3,1) € a solucao do sistema 3.16.
Portanto, a combinacdo linear das solucdes xi (¢) e x2(¢) também € solucao:

xB=C.(-1,DT.e ¥+ C.3, DT et (3.17)

Para observarmos o comportamento da solu¢do x(#) no plano cartesiano, construimos
um plano de fase. As retas em vermelho na figura 3.1, sdo geradas pelos autovetores, que
representam situagdes em que C; = 0 ou C, = 0. Quando C; = 0, temos como solu¢@o apenas
X2 () e quando C, = 0,temos como solucao apenas x; (), ambas tendem a zero, ja que ¢t — oco.

A solugdo x(#), quaisquer que sejam as constantes C; e C,, diferentes de zero, represen-
tadas nas curvas azuis em 3.1, possuem x(f) — 0 quando ¢ — oco. Para compreendermos isso,
devemos lembrar que os expoentes r;.t e r».f ficam negativos, o que faz com que as fracdes do
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. 1 . .
tipo — para r; e 1z, assumam valores muito pequenos, quando t tende a valores muito gran-

des. As solugdes ficam mais préximas do ponto critico na origem, que € denominado nd, ou n6
atrator, ou também sorvedouro e, portanto, dizemos que a solugdo € assintoticamente estavel.
Podemos reescrever a equacao de uma forma diferente, sem alterar o resutado de x(7):

x(t) = e [Cr.vW ey ¢y P, (3.18)

Temos que r; —ro = =5—(—1) = =5+ 1 = —4, portanto r; — r» < 0. Fazendo as substitui-
coes de acordo com o exemplo dado:

x(t) = e M[C1.(-1,D).e "+ Cy.(3,1)]. (3.19)

Assim, se C, # 0, o termo Cj.(—1,1).e”*¢, torna-se desprezivel se comparado com

C».(3,1), ja que quando t — oo, a solugdo Cij.(—1, 1).e %, se aproxima de zero de uma forma
mais rapida do que C;.(3,1), por causa da fracdo —-.

O que implica que x(f) — oo em direcdo a C,.(3,1).

Também, as solucdes sdo tangentes a v'?) em x(0) ,a menos que comecem exatamente
na direcdo de vV,

A figura 3.1 demonstra o plano de fase, quando os autovalores sdo negativos.

Ak =

Figura 3.1 — N6 Atrator.

Fonte:Autora

3.1.2 Segundo Caso: r, > r, > 0. Considere o sistema:

@ =-x1+4.x
qr . atdx
(3.20)
D2 _ 545
— =-2.x1 +5.%0.
dr 1 2
Podemos reescrevé-lo da seguinte forma:
e 1 4) (1
co=[74)) o

11



. -1 4 )
Para calcular os autovalores da matriz A = (_ 9 5), temos que obter o determinante da

matriz (A - r.I) que devera ser igual a zero.

=0. (3.22)

det(_l_r 4 )

-2 5—r
Obtemos a partir da equagdo 3.22, a expressao (—1—r).(5—r)+8 =0, que resulta em
r2 —4.r +3 = 0. Utilizando o método da soma e do produto das raizes, encontramos r; = 3
e r, = 1 que sdo os autovalores. Para calcularmos os autovetores devemos substituir cada um
dos autovalores na matriz (A-r.I) e depois resolver o sistema (A —r.I).v = 0, encontrando os
autovetores.
O sistema associado a r; =3 é:

—4 4\ (v{V)
(_2 2)(1);1) =0. (3.23)

O autovetor (1,1) € a solucao do sistema 3.23.
O sistema associadoa rp, =1 é:

—2 4\ (v!?
(_2 4) (Viz)) =0. (3.24)
O autovetor (2,1) é a solucao do sistema 3.24.
Portanto, podemos construir o conjunto solugao:

x0)=C.(, DTS+ Cr.2, )T e (3.25)

A figura 3.2 representa o plano de fase, quando os autovalores s@o positivos.

Figura 3.2 — N6 Instével.

Fonte:Autora

As trajetérias se comportam da mesma forma que foi abordado na situag@o anterior,
se t — 0o, as solucdes x(t) — oo, jd que quando t assume valores muito grandes, as poténcias
tendem a valores muito grandes. Nesse caso, o sentido do movimento, na origem, € de afastar-se
do ponto critico ao invés de aproximar-se. O ponto critico € denominado né instavel ou fonte.
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3.1.3 Terceiro Caso: r; <0er,>0.

Considere o sistema:

dn _ 2.x1+3.x
q; oo
(3.26)
ax; _ 2.x1+Xx
dr T
Podemos reescrever o sistema 3.26 da seguinte forma:
. _ 2 3\ (x
x5 = (2 1) (xz). (3.27)

. 2 3 .
Para calcular os autovalores da matriz A = ( 9 1), temos que obter o determinante da

matriz (A-r.I) que devera ser igual a zero.

det(z_r 3 )

. 1o.]=0 (3.28)

Com base em 3.28, obtemos a expressio (2-1).(1-r)-6=0, que resulta em > —3.r —4 =0.
Utilizando o método da soma e do produto das raizes, encontramos r; = —1 € r» = 4 que sao
os autovalores. Para calcularmos os autovetores devemos substituir cada um dos autovalores na
matriz (A-r.I) e depois resolver o sistema (A—r.I).v = 0, encontrando os autovetores. O sistema

associadoa ry = -1 é:
3 3)(v{V)
B2 525

O autovetor (-1,1) € a solucdo do sistema 3.29.
O sistema associadoar, =4 €

-2 3)(v?)
( ; _3) (Ugm _0. (3.30)
O autovetor (1.5,1) € a solugdo do sistema 3.30.
Portanto,temos como solucao:

x()=Cr.(-1, ) . e+ Cy.(1.5, 1) .. (3.31)

Se a solug@o em 3.31 comeca em um ponto na reta que contém a origem, existem duas
possibilidades: A solucdo se afasta da origem na direcdo de v entdo C, = 0. Dessa forma,
como r; < 0, tém-se que [|x(f)|| — 0 conforme ¢ — oo . A solucdo se afasta da origem na
direcdo de v®@ entdo C; = 0. Assim, como r, > 0, ||x(#)|| — co conforme ¢ — co. Nas curvas
que representam as solucdes, para quaisquer C; e Cy,temos a mesma dire¢io de v?, ||x(8)|| —
oo conforme t — oo. Nessa situacdo, a origem € denominada ponto de sela, como podemos
observar na figura 3.3.
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Figura 3.3 — Ponto de Sela.

Fonte:Autora

3.1.4 Quarto Caso: r=r; =, <0, com dois autovetores independentes.

Como o nosso objetivo inicial € estudar os sistemas lineares com matrizes 2x2, onde
este caso ndo € possivel, ndo exemplificaremos, pelo menos, inicialmente.
No caso em que temos v, € Vo, a solucdo geral é:

x(1) = Cr.vW.e" '+ Crv'? e, (3.32)

Vamos considerar que os autovalores sdo iguais e negativos.

Se C; =0, conforme t — oo, temos que x(#) — 0 em direcdo de v,. Se Cy =0, conforme
t — oo, temos que x(f) — 0 em dire¢dio de vV,

Ja num caso mais geral, C;, C, # 0, reescrevendo, temos:

x(6) =e"L.[Cr.vV + Cr.vP). (3.33)

Assim, x(t) — 0 conforme t — oo em dire¢dio de v qualquer, pois os vetores vV e v?)
sdo arbitrarios e independentes . Nessa situagdo o ponto critico € chamado de n6 préprio ou
também ponto estrela e, assim, a solugdo € dita assintoticamente estavel. Observe o plano de
fase representado na figura 3.4.
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Figura 3.4 — Ponto Estrela.
Fonte:[5]

Consideramos os autovalores como iguais e negativos, porém, se forem positivos, o
processo € semelhante, ou seja, as trajetdrias sdo parecidas, porém, o movimento toma um
sentido contrério, se afastando da origem.

3.1.5 Quinto caso:r=r; = r, <0, com um autovetor independente.

Considere o sistema:

@ =-5.x1+x
PTER
(3.34)
dx; _ X1 —3.x;
dl‘ - 1 eAD.
Podemos reescrever 3.34 da seguinte forma:
. . -5 1 X1
co=[2 1)) .

) 1 )
Para calcular os autovalores da matriz A = ( ), temos que obter o determinante

-1 -3
da matriz (A-r.I) que deverd ser igual a zero.

=0. (3.36)

det(_S_r 1 )

-1 -3-r

Obtemos em 3.36 a expressao (-5-r).(-3-r)+1 =0, que resulta em r?+8.r +16 = 0. Uti-
lizando o método da soma e do produto das raizes, encontramos r; = —4 € r, = —4 que s3o 0s
autovalores. Para calcularmos os autovetores devemos substituir cada um dos autovalores na
matriz (A-r.I) e depois resolver o sistema (A—r.I).v = 0, encontrando os autovetores. O sistema
associado a ry = rp = —4 estd representado em 3.37:

(1)
-1 1\(v
1| =
) o
Os autovetores vV e v® sdo iguais a (1,1). Nesse caso temos um tinico vetor linear-

mente independente.Todos os outros vetores que aparecerem, serdo combinacao linear desse.
15



No caso em que temos v como o autovetor e { como o autovetor generalizado associado
ao autovalor repetido, a soluc¢do geral possui o formato:

x(0)=Cr.(L,DT.e ™ + Co.(, DT r.e™ 4 + o7, (3.38)

Observe o plano de fase na figura 3.5, nesse caso, temos um né improprio assintotica-
mente estdvel.

Figura 3.5 — N6 Impréprio Assintoticamente Estdvel.
Fonte:Autora

Desta maneira, se C; = 0, conforme t — oo , temos que x(¢) — 0 na dire¢do de v = (1, 1),
pois e"*! — 0 mais rapidamente que t.e~*’, independente do vetor {. Se C, = 0, conforme
t — oo, temos que x(f) — 0 na direcdao de v. Ja no caso em que Ci,C, # 0 temos conforme
t — 0o, que x() — 0 na dire¢iio de v, pois o termo v.te™*! torna-se mais significativo. Nessa
situacdo o ponto critico é chamado de n6 impréprio ou também degenerado e, assim, a solu¢ao
¢ dita assintoticamente estavel.

Consideramos o caso em que os autovalores sdo negativos. No entanto, se forem posi-
tivos, o processo € andlogo, contudo as trajetdrias s@o percorridas para fora e suas orientacdes
em relacdo a v e { também sdo invertidas.

Se considerdssemos o sistema 3.39:

(1) = (_51 ;’) (xl), (3.39)

X2

teriamos r; = ro =4 >0 e o autovetor resultaria da multiplicagdo das seguintes matrizes:

1 1) (v
AT Ba0)

Os autovetores v'! e v® sdo iguais a (-1,1). A solugio obtida seria:
x0)=C.(-1, DT+ Co.(-1, 1) T 1. + €. (3.41)

Nessa situag@o o ponto critico é chamado de n6é impréprio ou também degenerado e,
assim, a solugdo € dita instavel. Observe que o plano de fase da figura 3.6 sofreu uma alteragao,
as solucdes irdo se afastar da origem.
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Figura 3.6 — N6 Improprio Instavel.
Fonte: Autora

3.2 Autovalores Complexos

3.2.1 Primeiro caso: z=a= b.i.

Considere o sistema:

dx 6.x1 — X
;>
(3.42)
dz, S5x;+4.x
T 2
Podemos reescrevé-lo da seguinte forma:
. _ 6 —1)\[x;
x‘(1) = (5 4 ) (xz). (3.43)

. 6 )
Para calcular os autovalores da matriz A = ( ) temos que obter o determinante da

5 4
matriz (A-r.I) que devera ser igual a zero.

6-r -1
det( - 4_r)_0. (3.44)

Obtemos em 3.44, a expressao (6 —r).(4—r)+5 =0, que resulta em r2—10.r+29 = 0.
Calculando o valor do discriminante da equacdo quadratica temos:

A =(-10)>-4.1.29

A=100-116
A =-16.
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Como o valor do A resultou em um nimero negativo, entao ja podemos concluir que as raizes
r1 e r sdo nimeros complexos. Para calcularmos as raizes, fazemos:

10+v-16 10+ 4i 5
r = = =
2 2

+2i.

Encontramos r; =5+ 2i e r, =5—2i que sdo os autovalores. Para calcularmos os autovetores
devemos substituir cada um dos autovalores na matriz (A-r.I) e depois resolver o sistema (A —
r.I).v =0, encontrando os autovetores.

O sistema associado a r; =5+ 21 €

1-2i -1 \[(v{V)
() 345

1+2i . . T .
O autovetor vV = (T, 1) é solucdo do sistema, obtido pela multiplicagio das matri-

zes em 3.45. Vamos obter um multiplo desse vetor mais simplificado, que também sera solugdo.

1+2
l,l)T por 1-2i.

Para simplificar, iremos multiplicar o vetor v} = (

1+2i 1—442

Ta-2i)=¢(

o D . T
( ,1—21):(3,1—21):(1,1—21) .

Este vetor (1,1 —2i)7 que ser4 utilizado na construgio da solugio.
O sistema associado a rp, =5—21i €

: (2)
1+2i -1 v
1| =
( 5 —1+2i)(u§2))_0' (3.46)
@ _ 1720 : o .
O autovetor v\’ = (——,1)" € solucdo do sistema, obtido pela multiplicacdo das matri-

zes em 3.46. Vamos obter um multiplo desse vetor mais simplificado, que também sera solugao.
Multiplicando por: 1+2i.

1-4i2
5

Este vetor (1,1 +2i)” que ser4 utilizado na construcio da solucio.
A solucao geral possui o formato:

1-2i

( DT.a+2i)=( 1+2i)—(§ 1+2)=(1,1+2)7
) . - ) - 5) - ) .

x()=Cp.(1,1-2)T.eC*20 L ¢, (1,1 +20)T.eB7201, (3.47)

Para analisarmos esta situagdo de uma forma simplificada, vamos analisar apenas os
sinais de a e b, correspondente aos dois autovalores complexos. Esses sinais irdo influenciar no
sentido da trajetéria e na classificacdo quanto a estabilidade.

Considerando que b > 0, a trajetéria é no sentido hordrio, e se b < 0, a trajetéria serd no
sentido anti-hordrio. Em ambos os casos, a trajetoria serd em espiral, com o sentido e a direcao
dependendo do sinal de a e b. Sendo assim, se a > 0, a solucdo € instdvel e, se a <0, a solu¢do
€ assintoticamente estdvel. Os pontos criticos sdo denominados pontos espirais. Se acontecer
de os pontos espirais se afastarem do ponto critico, temos uma fonte espiral ou espiral instdvel
e, se eles se aproximarem do ponto critico, temos um sorvedouro espiral ou espiral estdvel.

Nesse exemplo em que os autovalores sdo iguais a r; =5+ 2i e rp =5—2i, temos a=5,
portanto a espiral € instdvel. A trajetéria no plano associada ao autovalor com b=2, tem sentido
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hordrio e a que estd associada a b=-2 possui sentido anti-hordrio. Observe a figura 3.7 do plano
de fase desta situagdo.

r ARk =

Figura 3.7 — Espiral Instdvel.
Fonte: Autora

Se fossemos resolver o sistema em 3.48, obtido por algumas alteragdes nos sinais do
sistema anterior 3.42, teriamos como autovalores r; = —=5+2i e r, = =5-2i. Nesse caso, aparece
como plano de fase, uma espiral assintoticamente estdvel e sentidos hordrio e anti-horario de
acordo com b ser positivo ou negativo. Veja o plano de fase da figura 3.8.

dx =-6.x1—X
dr 172
(3.48)
dxz =5x;—4.x
ar 1 2
|
D Aniirsakae ==

Figura 3.8 — Espiral Assintoticamente Estdvel.
Fonte: Autora
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3.2.2 Segundo caso: z=+b.i.

Considere o sistema:

dx _ 2.x1 +8x
T
(3.49)
dx; _ 1x1—2.x
dt — 1 A
Podemos reescrever 3.49 da seguinte forma:
. _ 2 8 X1
x5 = (_1 _2) (xz). (3.50)

Para calcular os autovalores da matriz A = ( ), temos que obter o determinante

-1 -2
da matriz (A-r.I) que deverd ser igual a zero.

2—r 8
det( 1 _z_r)_o. (3.51)

Obtemos a expressio (2-r).(-2-r)+8 =0, que resulta em > +4 = 0. Resolvendo a equagdo
quadratica incompleta:

r+4=0
r’=-4
r=v-i
r=Vavo1
r==x2.1
O sistema associado a r; = 2i é
: (1)
(2:121 _28_2i) (21)) _o. (3.52)

O autovetor associado é (-2 —2i,1).
O sistema associado a r, = —2i €

2+2i 8 \(vi?)_
(—1 —2+2i)(u§2))_0' (3:53)

O autovetor associado é (-2 +2i,1).
A solucao geral possui o formato:

x(1) = Cp.(=2-2i, 1)T.e®D 4 Cy. (=2 +2i, 1) T.e(72D1, (3.54)

Nessa situagdo, temos que as trajetorias sdo circulos centrados na origem, € a trajetdria
percorrida serd no sentido hordrio se b > 0 e no sentido anti-horério se b < 0. Denominamos o
ponto critico como centro. Observe o plano da figura 3.9.
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Figura 3.9 — Centro.

Fonte:Autora

Considerando os casos citados anteriormente, torna-se perceptivel que o conjunto das
trajetdrias adequa-se a alguma das trés situagdes, descritas em [22][14].

i. Estabilidade Assintética: as trajetdrias aproximam-se do ponto critico x = 0, conforme
t — oo. Esse é o contexto em que os autovalores sdo reais negativos ou complexos com parte
real negativa. A origem € um né atrator ou um sorvedouro espiral.

ii. Estabilidade: as trajetérias permanecem limitadas, mas ndo aproximam-se do ponto
critico x = 0, conforme ¢ — oo . Esse é o contexto em que os autovalores sao imagindrios puros.
A origem € um centro.

iii. Instabilidade: as trajetdrias tendem ao infinito, com excecdo de x = 0, conforme
t — oco. Esse € o contexto em que os autovalores sao reais positivos, a0 menos um autovalor
€ real e positivo ou os autovalores sao complexos com parte real positiva. A origem € um no
fonte, uma fonte espiral, ou um ponto de sela.

A partir do que estudamos neste capitulo, podemos concluir que quando os autovalores
sdo reais negativos teremos uma situagao assintoticamente estdvel, o né atrator. Se os autovalo-
res forem reais positivos teremos o né instavel. Caso haja um autovalor real positivo € um ne-
gativo ocorre a instabilidade com o ponto de sela. No caso de os autovalores reais serem iguais
teremos n6 improprio, que pode ser instdvel ou assintoticamente estavel, dependendo do sinal
dos autovalores. Na possibilidade de aparecerem autovalores complexos da forma z = a + bi
com a # 0, teremos ponto espiral, que pode ser assintoticamente estdvel ou instdvel. Se a >0
serd instdvel e com a < 0 serd assintoticamente estdvel. O tinico exemplo que serd estidvel e nao
assintoticamente estavel acontecera se a = 0, onde teremos infinitas circunferéncias centradas
na origem, representando um tipo de ponto critico denominado como centro.
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Modelos Compartimentais:Sistemas de Equacoes
Diferenciais Ordinarias Nao Lineares

Em decorréncia das inimeras mortes causadas por epidemias, iniciaram-se estudos em
torno das doengas epidemioldgicas, utilizando a modelagem matemadtica para tal. Um destes
estudos foi referente a variola, desenvolvido por Daniel Bernoulli, em 1790 [5].

Posteriormente, muitos outros estudos foram desenvolvidos a fim de construir mode-
los que buscassem retratar o comportamento de doencas infecciosas [5]. Alguns destes estu-
dos sdo apresentados por [2] [23]. Contudo, alguns dos principais trabalhos sobre epidemias
foram desenvolvidos por [24], em especial, um modelo que inspirou o desenvolvimento de
outros modelos importantes conhecidos atualmente, denominado SIR (Suscetivel-Infectado-
Recuperado)[25].

Os modelos compartimentais sdo ferramentas matemdticas poderosas para entender a
dinamica de sistemas complexos e suas interagdes. Eles t€ém aplica¢des significativas em diver-
sas areas cientificas e sdo fundamentais para a tomada de decisdes em satide publica e pesquisa
biomédica [26]. Iniciaremos o nosso estudo a partir destes modelos, que serdo transformados
em sistemas de equagdes diferenciais autbnomas.

Dentro da modelagem matematica, os sistemas de equagdes diferenciais se mostram bas-
tante frequentes para expressar situacdes do cotidiano. A fim de auxiliar no desenvolvimento de
modelos, podemos utilizar o método dos compartimentos [4]. Assim, um sistema de comparti-
mentos €, basicamente, formado por uma quantidade finita de subsistemas correlatos, os quais
relacionam-se entre si € com o meio onde estdo inseridos, por meio de troca de elementos entre
compartimentos. Os compartimentos sdo categorizados diante de suas propriedades fisicas. A
populacdo que serd considerada € dividida em categorias distintas (compartimentos), conforme
a particularidade de cada membro [5], da seguinte forma, segundo [27] [28][25][29].

* Suscetiveis (S): composta por individuos que podem adquirir a doencga, caso sejam
eXpostos a mesma;

* Infectivos ou Infecciosos (I): composta por individuos infectados que podem transmitir
a doenca para algum individuo suscetivel, caso haja contato;

* Removidos (R): composta por individuos que nio sao mais infecciosos por terem ad-
quirido imunidade ou devido a isolamento.

Segundo [30], nesses modelos que estudaremos, o comportamento humano ndo € afe-
tado pelo curso da epidemia. Por exemplo, em todos os modelos iniciais, a constante f, que
representa a taxa de contatos efetivos por individuo contagioso, nio muda a medida que a epi-
demia avanca. Entretanto, sabemos que isso € falso. Conforme o nimero de contagiosos na po-
pulacdo aumenta, muitos suscetiveis reagirao mudando seu comportamento, ficando em casa,



praticando a melhoria da higiene, o distanciamento social e usando mascaras. O resultado é
uma diminuicdo em B. Mais tarde, se o nimero de contagiosos na populagdo cair, os susceti-
veis podem relaxar essas praticas, aumentando novamente f.

Alguns modelos matemdticos s@o desenvolvidos com sistemas autdnomos ndo lineares.
Dessa forma, € importante estudar maneiras de aproximar estes sistemas nao lineares, através
de sistemas lineares, pelo menos em torno dos pontos de equilibrio [5]. Sistemas ndo lineares
possuem equacdes que contenham alguma expressao do tipo xf, xg, X1.X2, sen(Xx), etc.

O sistema vai ser quase linear em uma vizinhanga de um ponto critico, sempre que as
fungdes F e G possuirem pelo menos até a segunda derivada continua. Um sistema de equacdes
diferenciais ndo lineares de primeira ordem pode ser escrito como:

dx
E:F(X,J/)
“4.1)
dy
— =G(x,7).
ar oy

Através da expansdo em série de Taylor em torno do ponto critico, podemos reescrever
F(x, y) e G(x, y) na forma:

F(x,y) = F(xo, yo0) + Fx(xo, ¥0) (x — Xo) + Fy, (X0, ¥0) (¥ — o) + N1(x, ¥)
4.2)
G(x,y) = G(xo, yo) + Gx(x0, yo) (x — Xo) + Gy (X0, Y0) (¥ — yo) + Na(x, ).

Considerando um ponto (x,y) que se aproxima do ponto critico (xg, yp) em 4.2:
No ponto critico, as derivadas dx/dt e dy/dt se anulam, portanto F(xy, yo) = G(xo, yo) =0.
A distancia entre os dois pontos € igual a \/(x — x0)% + (y — o).
Como essa distancia tende a zero, entao N; e N, tendem a zero.
.. dx _dx-xp) dy d(y—yo)
Alémdisso, —=————¢ — = ——"—",

€
dt  dt dat dt
Reescrevendo o sistema;

i (x_ xO) _ (Fx(xo,J/O) Fy(xo,yo)) (]C—JC()) n (Nl(x)y)) (4 3)
dt | |

y=y0) \Gx(x0,30) Gy(xo,y0)) \y—y0) " \Nalx, )

Podemos analisar através da equacdo que se as fungdes F e G forem passiveis de uma
segunda derivada, entdo o sistema serd quase linear e pode ser aproximado localmente no ponto
critico por um sistema linear, da forma:

i(ul) _ (Fx(xo,yo) Fy(x(),yo)) (ul) (4.4)
dt \uz) \Gx(x0,y0) Gy(xo,y0)) \uz)’ '

onde uy=x—xpe Ua=y—J)o

Através da equagdo 4.4, podemos determinar um sistema linear correlato a um sistema
quase linear numa vizinhanca de um ponto critico. A matriz em 4.5 é denominada de matriz
Jacobiana das fun¢des F e Gem relacio ax e y.

F Fy) . 4.5)

Jowoy) = (Gx Gy
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Antes de comegarmos a estudar os modelos compartimentais, vejamos um exemplo [14]
de sistema que € localmente linear:

e
(4.6)
de
E = x% - x%.

Tem-se em 4.6 que F (x, y)=1-x; e G (x, y) = x? — x5 de classe C1, jd que sdo fungdes
polinomiais. Logo, o sistema € localmente linear, e assim € possivel determinar os sistemas
lineares que aproximam esse sistema nao linear na vizinhanca de cada ponto critico. Para
determinarmos os pontos criticos, devemos calcular em quais pontos P1 e P2, as equacdes deste
sistema se anulam: 1 —x, =0, portanto x, =1 e xf - xg = 0, portanto x; = £1.0s pontos criticos

sdo P1=(1,1) e P2=(-1,1).
_ Fxl sz _ 0 _].
]_ (le ze) - (z.xl _2.x2) ) (4.7)

Agora,vamos calcular a matriz jacobiana em 4.7, calculada nesses pontos criticos:
Para o ponto P1 = (1,1),substituimos x; = 1 e x» = 1 na matriz jacobiana, resultando em

um sistema linear dado em 4.8.
d uy) _ 0 -1 u
ail)=le () 43)

Calculando os autovalores r; e 1o, a partir do cédlculo do determinante da matriz(J-r.I),
sendo I a matriz identidade, temos:

-r -1
det(J—r.I) = =0. 4.9
J ) ( 5 _o_ r) (4.9)

A equacdo resultante do determinante da matriz 4.9 é r? +2.r +2 = 0, que possui como
autovalores r = —1 + i. Portanto, o ponto critico P1 € um ponto espiral assintoticamente estavel

desse sistema linear. Observe o plano de fase na figura 4.1 do sistema linear referente ao ponto
P1.

Amcuslanes

Figura 4.1 — Espiral Assintoticamente Estdvel.
Fonte: Autora
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Para o ponto P2 = (-1,1), temos como sistema linear correspondente:

d uy\ 0 -1 u
i)~ (% o)) @10
Calculando os autovalores r; e 1o, a partir do cédlculo do determinante da matriz(J-r.I),
sendo I a matriz identidade, temos:

det(]—r.I):(:; _;r):o. (4.11)

A equagio resultante do determinante de 4.11 é 12 +2.r —2 = 0, que possui como auto-
valores r = —1 + /3. Portanto, o ponto critico P2 é um ponto de sela (instdvel) desse sistema
linear. Observe o plano de fase na figura 4.2 do sistema linear referente ao ponto P2:

/

vl

Pulmagimags -

=

Figura 4.2 — Ponto de Sela(Instavel).

Fonte:Autora

4.1 Modelo SI sem dinamica vital

Esse € o modelo epidémico mais simplificado, pois desconsideramos as quantidades
de aumentos ou decrescimentos em uma populacdo, causados por alguns fatores. Assim,uma
populacdo com N habitantes é formada apenas de individuos suscetiveis S(t) e infecciosos I(t)
onde S(t)+I(t)=N, no instante t considerado. Desta forma, um individuo infectado com uma
doenca contagiosa € introduzido em uma populacdo de suscetiveis e, um suscetivel, uma vez
infectado, torna-se infeccioso.

Neste modelo, ndo hé recuperado e todos na populacdo ou sdo suscetiveis para a doenga
ou infectados.Um individuo infeccioso, uma vez infectado, nunca se recupera da doenca[l],
muito menos volta a ser suscetivel. Além disso, o0 modelo é chamado SI sem dindmica vital,
quando ndo ocorrem nem nascimento, nem mortes, nem qualquer tipo de migracao na popula-
¢do, em um determinado periodo.

Podemos observar que os suscetiveis S(t) diminuem a uma taxa f proporcional ao nu-
mero de encontros com os infecciosos, que por sua vez, aumentam a uma taxa beta proporcional
ao numero de encontros com os suscetiveis. Podemos descrever o sistema de equagdes diferen-
ciais do modelo SI, a partir dos dois compartimentos S(t) e I(t), como pode ser visto na figura
4.3.
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S —

Figura 4.3 — Diagrama compartimental que representa o modelo SI simples.
Fonte: Autora

Considere beta como um niimero positivo. Observe o sistema:

das

—=-p.8.1

dt p

4 (4.12)
I

— =p.5.1.

dt h

Este sistema 4.12 pode ser reescrito usando, para isso, equagdes de diferengas, como pode ser
visto em 4.13:

Si+1— 8 =—-B.S.I.At (4.13a)
Ity — 1= B.S.I.At (4.13b)

Como S(t)+I(t) € igual a N, sendo a derivada primeira da constante N igual a zero, ou
considerando que -$.S.I + $.S.1 =0, temos:

ﬁ + ﬂ — 0

dt dr

Teremos que utilizar apenas uma equacdo, ja que as duas juntas se anulam, por isso,
escolhemos a segunda equacdo em 4.12 e substituimos S por N-I:

(4.14)

% =B.S.I=pB.(N-I.I. (4.15)

Resultando em uma Equacao logistica para I, com capacidade de suporte para N.

dl
T B.I.(N-1). (4.16)
Para determinar os pontos de equilibrio, temos que igualar a equagdo 4.16 a zero.
Se o resultado dessa multiplica¢do € igual a zero, entdo 1=0 ou N-I=0, portanto N=I.
Lembre-se que § € positivo e diferente de zero.
Se I=0 , como I+S = N, entdo S=N o que gera o primeiro ponto: Pl = (N,0), que
representa 0 momento inicial em que nenhum suscetivel foi infectado.
Se N=I, como I+S = N, entdao S=0 o que gera o segundo ponto: P2 = (0,N), que repre-
senta o momento final em que todos os suscetiveis foram infectados.
Voltando ao sistema 4.12, podemos observar que a matriz jacobiana associada ao sistema

¢ dada por:
_(Fs Fr\_(-B.1 -B.S
Jsin = (Gs GI) = ( BI BS ) 4.17)

Agora,vamos obter a matriz jacobiana calculada nesses pontos criticos:
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Para o ponto P1 = (N,0), com S=N e I=0, temos como sistema linear correspondente:

d Ltl) (0 —‘BN) (ul)
= = . 4.18
dt (ug 0 PB.N J\u ( )
Calculando os autovalores r; e 1o, a partir do célculo do determinante da matriz(J-r.I),
sendo I a matriz identidade, temos:

-r —pB.N
det(]—r.I)—( 0 ,B.N—r)_o' (4.19)

A equacdo resultante do determinante em 4.19 € igual a: —r.(B.N—r) =0, que ji é
suficiente para encontrar os valores de r; e ro. Porém, observe que essa equacao representa a
equagio quadratica incompleta: 2 — B.N.r = 0.

Temos que r; =0e f.N—r1, =0. Obtemos r; =0e r, = §.N.

Dessa forma, o ponto de equilibrio P1 € instdvel, pois f e N sdo nimeros maiores que

zero, entdo S.N também € positivo.

_ _ ~ . (0 =B.N) .. 0 -6
Suponha que N =20 e f=0.3, entdo a matriz: (0 BN ) é igual a (0 6 )

Os autovalores sdao: r; =0 e r» = 6. Os autovetores obtidos com a multiplicacao
-r -6 - ,
( 0 6- r).v, sdo: vV = (=6,00T e v@® = (6,—-6)L. Observe que v = (=6,0)7, estd asso-
ciado ao autovalor r; = 0. Entdo, o autovetor que utilizaremos é v@® = (6,-6), associado ao
autovalor r, = 6.

A solucdo x;(f) = Cr.vW.e"! = C1.(-6,0)7.e°/=C;.(-6,0)T, ja que e = 1, representa
vetores no eixo X, se deslocando para direita ou esquerda, dependendo da constante C;. A
solucio x(f) = Co.v® .e™! = C,.(6,—6)T .57, representa vdrias retas, ji que temos um vetor
(6,- 6), multiplicado por uma constante quaisquer C,.e%?. Observe o plano de fase deste exemplo
na figura 4.4.

furesiae

Figura 4.4 — Exemplo Instavel.
Fonte:Autora

Agora, vamos fazer o mesmo procedimento com relagdo ao ponto P2. Para o ponto P2
= (0,N), com S=0 e I=N, temos como sistema linear correspondente:

il (o olli) 42
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Calculando os autovalores r; e 17, a partir do cdlculo do determinante da matriz (J - r.I),
sendo I a matriz identidade:
_[(=B.N-1 0) _
det(J-rI) —( B.N _r =0. “4.21)
A equagdo resultante do determinante em 4.21 € igual a: r.(f.N+71) = 0. Porém, observe
que essa equagio representa a equacdo quadratica incompleta: r? + B.N.r = 0.

Temos que r; =0e B.N+1, =0. Obtemos r; =0e r, = —f.N.
Dessa forma, o ponto de equilibrio P2 € estavel, pois -.N serd negativo.

~ B 3 . (-B.N 0\ .. -6 0
Suponha que N =20 e =0.3, entdo a matriz: ( B.N éigual a 6 of

Os autovalores sdo: r; =0 e r, = —6. Os autovetores obtidos com a multiplicacdo
—6— 0 .
( 6 ’ _r).v, sdo: v = (0,007 e v = (-6,6)T. Observe que v = (0,0)T, associado

ao autovalor r; = 0, € um ponto do plano na origem. Entdo, o autovetor que utilizaremos €
v?) = (-6,6), associado ao autovalor r, = —6.

A solugio x; (1) = Cr.vM.e"! = C1.(0,0)T.e°=C,.(0,0)7, ja que €° = 1, representa pon-
tos sobre a origem. A solugdo x, () = Co.v'?.e"2'=C,.(—6,6)".e~%¢, representa vdrias retas, ja
que temos um vetor (-6, 6), multiplicado por uma constante quaisquer C,.e~%?. Observe o plano
de fase deste exemplo na figura 4.5.

<

Aniirsabae -2

Figura 4.5 — Exemplo Estével.

Fonte:Autora

Destaca-se que o modelo SI € aplicdvel a doencas com grandes possibilidades de in-
feccdo como, por exemplo, o virus influenza, no qual grande parte dos individuos € infectado
[5].Ainda, outras doencas podem ser aproximadas por este modelo, as quais podemos citar: a
AIDS e a Herpes [27][1][28]

4.1.1 Analise Grafica

Segundo [1], uma simulagdo numérica possibilita observar a dinamica de variacdo tem-
poral de um modelo em uma populagdo hipotética. O estudo da dindmica de uma doenga trans-

missivel consiste essencialmente em esclarecer como a quantidade de individuos pertencentes
28



a cada um dos compartimentos, no caso o de suscetiveis e infectados variam a medida que o
tempo passa. Para isso, ¢ muito importante saber como calcular esses dados iniciais referentes
a essa evolucdo. Tendo este conhecimento, podemos implementar algoritmos para determinar
os demais resultados. Mesmo conhecendo a solug¢do analitica deste sistema, resolvemos nu-
mericamente para validar o c6digo, que poderd ser usado em sistemas cuja a solu¢@o analitica
nao é conhecida. A possibilidade de atribuir significado para um problema matematico é o que
permite com que o estudante compreenda a real intencdo deste estudo.

Para interpretar biologicamente este modelo SI, pode-se utilizar um algoritmo a fim de
simular e gerar os graficos que representam o comportamento das solugdes, obtidas numeri-
camente. Nestas simulacOes que consideramos, considera-se uma populacio de 50 individuos
suscetiveis e apenas 1 infectado, porém com taxas de contato distintas, a saber, f = 0,01, =
0,02, =0,1e =0,3, o que ndo impede que sejam utilizados pelo leitor, durante o estudo,
valores de B diferentes dos que foram escolhidos neste trabalho. Como f € a taxa de contato
entre suscetiveis e infecciosos, precisamos escolher valores no intervalo 0<f < 1.

Nesse caso, um individuo portador da doenga € introduzido em uma populacdo sus-
cetivel, composta por 50 pessoas, tendo contato com todos os outros, na mesma intensidade,
que os demais, também t€m contato entre si. Assim, os suscetiveis tornam-se infectados,como
resultado da intera¢do com individuos que ja foram contaminados.

Com base nas informagdes anteriores, sobre os valores de § e utilizando tempos finais
diferentes,medidos em dias, foi utilizado um algoritmo no Octave. Vamos propor algumas al-
teracdes nos dados para ampliarmos nosso estudo. Para a implementagdo € necessdrio fazer
alteracdes na quantidade de suscetiveis, infectados, no valor de 8 e no tempo final a ser con-
siderado. A taxa de contato § influencia na velocidade da dissemina¢do de uma determinada
doenca, como poderemos observar nos graficos.

Vamos entdo, analisar a partir dos dados ja citados, o comportamento da evolugcdo da
doenca.

Ao analisar o gréfico da Figura 4.6, podemos perceber que quando =0,01 hd uma dis-
seminacdo da doenca em todos os individuos suscetiveis, apés um periodo de 20 dias, fazendo
com que a populacao de suscetiveis ndo contaminados desapareca.

— Suscetiveis
— Infactados

50 = —

40 \

Populagdo
(7]
=
T

a 10 20 =i 40
Tempo (dias)

Figura 4.6 — Evolucdo temporal do ndmero de suscetiveis e infectados do modelo SI($=0,01).
Fonte:Autora
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Retornando aos dados iniciais da evolucdo temporal 4.6, onde: Sy = 50,1 = 1,8 =

0.01,At =0.1 e t = 20 dias, podemos perceber que tinhamos um total de 200 iteracdes, para

.. . . t 20
que todos os suscetiveis estivessem infectados. Ao calcular ~ = o1 = 200, temos o total

de iteragdes. E importante para o leitor saber como acontece cada iteracdo, por este motivo
apresentaremos as iteragdes iniciais e aquela que representa a transferéncia total entre os dois
compartimentos.

Temos as seguintes iteracdes iniciais para o grupo dos suscetiveis, 4.7 e 4.8, a fim de de-
monstrar os cdlculos. Sendo uma escolha por parte do estudante, continuar a resolver as demais
iteragdes ou ndo. Uma forma de estudar € fazer mais algumas, porém, como ja mencionamos, a
decisdo € do leitor. O mais interessante é que transformamos um sistema de equagdes diferen-
ciais em um sistema mais simples, formado por equacdes de diferencas, como foi apresentado
no sistema 4.13. Apenas as operacdes basicas de Matematica sdo necessdrias para o calculo das
iteracoes, permitindo que estudantes do Ensino Fundamental ao Superior, tenham condigdes
de compreender o processo. Vejamos como podemos representar as iteracdes dos suscetiveis,
utilizando a equagdo 4.13a.

Ser =S =-B .5 I, LAt
t+1_St' -t.It.At

s / \ N\
Figura 4.7 — Primeira iteracdo dos suscetiveis ( = 0.01)- modelo SI
Fonte: Autora

Observe que nas iteragdes, a quantidade de suscetiveis e infectados do periodo posterior,
S¢+1 € 1141, dependerd sempre da quantidade atual Sy e I; . A taxa f=0,01 é mantida constante
e o0 passo At € considerado como 0,1. Precisamos salientar que qualquer erro na obten¢ao dos
resultados das itera¢des ou na atribuicao de valores para as varidveis, poderd comprometer todas
as iteragdes posteriores.

Enquanto a populacdo dos suscetiveis diminui, a dos infectados aumenta, como con-
sequéncia de uma transferéncia desses individuos entre as categorias.

St - S :-B S0 AL
t. [o. At

/‘”/ VU

Figura 4.8 — Segunda iteragc@o dos suscetiveis(ff = 0.01) - modelo SI

Fonte: Autora

Podemos observar que na ducentésima iteracdo que serd apresentada, todos os susce-
tiveis, ja estardo contaminados, pois I; = 51, que representa toda a populagdo. Se fizéssemos
30



uma simula¢do com f maior, terfamos um tempo menor para que iSso ocorresse, portanto com
menos iteragdes.

S -Se =-B .58 I LA
S|+1 :Sl' I-II'At

///B'i\\

Figura 4.9 — Ducentésima iteracao dos suscetiveis(ff = 0.01) - modelo SI
Fonte: Autora

De forma andloga, a quantidade de pessoas infectadas em um intervalo de tempo pos-
terior, serd obtida a partir de uma quantidade atual de suscetiveis e infecciosos, como pode ser
visto em 4.10 e em 4.11. Para resolver esses calculos de uma forma organizada, aconselhamos
em cada iteracdo, obter os resultados para suscetiveis e infectados concomitantemente. Cons-
truimos um esquema, para que o leitor possa compreender quais valores assumimos para as va-
ridveis, a medida que as iteragdes acontecem. Colocamos apenas duas iteragdes em sequéncia,
com isso, ja € possivel observar como proceder com as substituicdes. Vejamos como podemos
representar as iteracoes dos infectados, utilizando a equagdo 4.13b.

Figura 4.10 — Primeira iteracao dos infectados( = 0.01) - modelo SI
Fonte: Autora

Na segunda iteracdo 4.11, podemos observar que a quantidade de infectados comeca a
aumentar e continua, até que toda a populacao esteja infectada.

Figura 4.11 — Segunda iteracdo dos infectados(f = 0.01) - modelo SI

Fonte: Autora
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Figura 4.12 — Ducentésima iteragdo dos infectados(ff = 0.01) - modelo SI
Fonte: Autora

Nas figuras 4.9 e 4.12 temos 200 iteracdes, para que a categoria dos infectados represente
toda a populacdo, o que faz com que nio exista mais nenhum individuo suscetivel. Portanto,a
populacdo dos suscetiveis, torna-se inexistente e a dos infectados € a tinica que prevalece.

Na septuagésima nona iteragao na figura 4.13, obtida através da equacgao 4.13a, ou seja,
em oito dias, as quantidades de suscetiveis S; e infectados I; se igualam, porém os infectados
ultrapassam os suscetiveis na proxima iteracao.

S|+1'S| :'B .Sl .I] .At
S|+1 :Sl - I-Il-At

///B'i\\

Figura 4.13 — Septuagésima nona iteracao dos suscetiveis( = 0.01) - modelo SI
Fonte: Autora

No caso em que =0,02, na figura 4.14 , temos um aumento na taxa de contato 3, por

isso, o periodo em que a disseminagdo total ocorre é menor, em 10 dias todos os suscetiveis
ficam contaminados. O leitor pode usar esta simulagdo como um exercicio.
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Figura 4.14 — Evolucao temporal do nimero de suscetiveis e infectados do modelo SI($=0,02).
Fonte: Autora

Imagine agora, se a taxa de contato f aumentar para 0,1, na figura 4.15, esta mesma
populacao torna-se infectada apds 2 dias de contatos com infectados. Teremos 20 iteracoes.

— Suscetiveis
— Infectados

50 \ r,,_

a b

Populagao
(=]
=
T

20 |

a 2 ; ] ] 10
Tempo (dias)
Figura 4.15 — Evolucdo temporal do nimero de suscetiveis e infectados do modelo SI(5=0,1).

Fonte:Autora

Vejamos como ficariam as iteragdes iniciais obtidas com a equacdo 4.13a, para o grupo

dos suscetiveis em 4.16 e em 4.17. Perceba que enquanto a quantidade de suscetiveis diminui

com as iteracdes, a quantidade de infectados aumenta, como j4 mencionamos. Apds 2 dias,
teremos a iteracdo 4.18.
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Figura 4.16 — Primeira iteracdo dos suscetiveis(f = 0.1)-modelo SI
Fonte:Autora

S|+1'Sl :'B .Sl .I] .At
S|+1 —Sl - . . IlAt

// N

Figura 4.17 — Segunda iteracao dos suscetiveis(f = 0.1)-modelo SI
Fonte:Autora

S|+1'Sl :'B .Sl .I] .At
S|+1 —Sl - . . Ilét

e / \ N\
Figura 4.18 — Vigésima iteracdo dos suscetiveis( = 0.1)-modelo SI

Fonte:Autora

Observe como ficariam as iteragcdes iniciais obtidas a partir da equacao 4.13b, para o
grupo dos infectados em 4.19 e em 4.20. Ap6s 2 dias, teremos a iteragdo 4.21.

I.,,- I, = B S -L AN
I., =I. +B .S . .. At

Figura 4.19 — Primeira iteracdo dos infectados(f = 0.1)-modelo SI
Fonte:Autora
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Figura 4.20 — Segunda iteracdo dos infectados(f = 0.1)-modelo SI

Fonte:Autora

Figura 4.21 — Vigésima iterac@o dos infectados(f = 0.1)-modelo SI
Fonte:Autora

Se aumentarmos mais, 8 assumindo o valor de 0,3, entdo, em menos de 1 dia, todos ja
estardo contaminados, de acordo com a figura 4.22 .

&0 T T T T

—— Suscetiveis
Infectados

1|

40 || |

|
al |

Populagio
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4o L \ L \ 1 u
a 2 4 [ B8 10
Tempo (dias)

Figura 4.22 — Evolucdo temporal do nimero de suscetiveis e infectados do modelo SI(5=0,3).
Fonte:Autora

Observando o comportamento das solucdes, € perceptivel que quanto maior a taxa de
contato 3, mais rapidamente, ou seja, em uma quantidade de dias menor, todos os individuos
passam para a classe dos infectados. Ademais, ressalta-se que, neste modelo, todos os 50
individuos suscetiveis em contato com infectados serdo infectados, independente dos valores de
pf. Em uma simulacao, usando determinada quantidade de suscetiveis e infectados, temos que
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quanto maior o valor de 8, menor o nimero de dias envolvido, para que todos os suscetiveis
sejam infectados.

4.2 Modelo SIS sem dinamica vital

Se um individuo vulnerdvel a determinada doenca , entrar em contato com uma pessoa
infectada, torna-se infectado. Assim, passa a causar infec¢des em outros individuos susceti-
veis. Em contrapartida, ap6és um periodo de tempo, os individuos infectados se recuperam e
tornam-se sauddveis, voltando ao grupo de suscetiveis, o que ndo acontece no modelo estudado
anteriormente. Quando ha a possibilidade de recuperacdo, temos o modelo denominado SIS.
Segundo [14], os individuos infectados, ao se recuperarem, nao adquirem imunidade e retornam
a classe de suscetiveis.

O Diagrama compartimental da figura 4.23, representa o modelo SIS simples, em que
positivo representa a taxa de contato e y positivo representa a taxa de remogao.

o m

Figura 4.23 — Diagrama compartimental que representa o modelo SIS.
Fonte: Autora

Neste caso, o sistema de equacgdes diferenciais 4.24 descreve a dinamica.

ﬁ——,BSI+ I

P Y.

i 4.22)
— =B.S.1-v.L

P p Y

Reescrevendo o sistema nio adimensionalizado, por meio de equagdes de diferencas temos um
sistema simplificado em 4.23.

Sie1—Si=(=B.S.I+y.D).At (4.23a)
Lioi—I = (B.S.I-y.D.At. (4.23b)

Os suscetiveis decrescem a uma taxa proporcional a quantidade de encontros com as
pessoas infecciosas, do mesmo modo que ha um acréscimo de infectados que ja se recupera-
ram. Os infectados aumentam da mesma forma que os suscetiveis diminuem, retirando-se a
quantidade dos que sdo curados. Assim como no modelo SI temos a equagdo 4.14.

Primeiramente, vamos encontrar os pontos criticos do sistema, sem a utilizacdo do pro-
cedimento de adimensionalizag3o.

Considere a equacao 4.24 obtida a partir do sistema 4.22:

F(S,D)=-B.S.I+7.I
(4.24)
G(S,I)=B.S.I—-y.I.
36



Ao igualarmos F(S,I) e G(S,I) a zero, ocorrem duas possibilidades.

Primeira Situacdo: Se I =0,jdque N=S+1,entdo N=S;

Segunda Situagdo: Se S = %, entdo [ = N — Z.

p
Com isso, determinamos os pontos P1=(N,0) e PZ:(%,N— %)
Em seguida, calculamos a matriz jacobiana:
Fg FI) (—,B.I —,B.S+)/)
)= = ) 4.25
Jisiny (Gs Gy BI  BS—y (4.25)

Ao substituirmos o ponto P1=(N,0) na matriz jacobiana em 4.25, obtemos A = (

J4 que ndo conseguimos calcular os autovalores, faremos uma andlise a partir do traco e do de-
terminante da matriz. Como tr(A)= .N —y >0 e det(A)=0, podemos concluir que P1=(N,0) é
instavel. Agora, vamos substituir o ponto P2=(Z, N- %) na matriz jacobiana obtida em 4.25,

p

sendo representado o procedimento na equagdo 4.26:

. _ﬁ'(N_%) _’6'(%)” :(—ﬁ.N+y 0). @26

plv-1) afr)r) T

Como ¢r(B) = —f.N +7y< 0 e det(B)=0, entdo nada se pode afirmar em relacio ao ponto

al
P2. Segundo [14],apds fazer um estudo sobre —, o ponto P2 € assintoticamente estavel.

Para a andlise do modelo, uma outra possibilidade € utilizar o processo de adimensiona-
lizacdo das varidveis a serem investigadas e que, embora hajam diversas formas de se realizar
esse procedimento, muitas vezes € interessante relacionar as varidveis com algum parametro
relevante ao estudo. Esse processo de adimensionalizac¢do consiste em reduzir o nimero de pa-
rametros agrupando-os de forma significativa, pois, geralmente, esses agrupamentos fornecem
medidas com relagdes diretas aos efeitos dos parametros dimensionais [31].

Assim, definem-se as variaveis adimensionais:

I
=—,v=—,T=7.1. 4.27
o N v N T=Y ( )
1
Faremos a multiplicacdo das duas equagdes do sistema 4.22 por }TV Vamos inici-
1
almente, considerar a multiplica¢do da fragcdo T por TN Ao substituirmos dS = do.N e
Y.

d
dt = a temos:
do.N _@
dt.y.N dr’

Y
O segundo termo da primeira equacao do sistema também deverd ser multiplicado por

(4.28)

1
—— da seguinte forma:
v.N

ﬁ.S.I.N+ y.1
y.N.N y.N

(4.29)
37

-B.SI+y.I=-

0 -B.N+vy
0 B.N-vy

)



) . . . N . ~
Observe que introduzimos também uma fragdo N,que sendo igual a 1, ndo altera o

.N . S I
resultado. Faremos Ry = ﬁ— Observe que ao substituirmos o = N ev= N obtemos a

1
expressdo: -Ry.0.v+v. Agora faremos a multiplicacdo da fracdo 77 por N Teremos que
Y.

.. , dr
fazer substitui¢des também, dI = dv.N e dt = — temos:

dv.N dv
dry.N dr’ (4.30)
Y

O segundo termo da segunda equacdo do sistema também devera ser multiplicado por
—— da seguinte forma:

_BSIN yI

ST-y.d .
h ¥ Y.N.N vy.N

(4.31)

. . . . N . ~
Observe que introduzimos também uma fracdo N que sendo igual a 1, ndo altera o

N . S I
resultado. Faremos Ry = '3— Observe que ao substituirmos o = N evs= N obtemos a

expressdo: Ry.0.v—v.
Conseguimos entdo adimensionalizar o sistema inicial 4.22, simplificando-o em 4.32:

49 (Reo—1)v
dr 0
(4.32)
ﬂ—(R o—-1)v
v ° '

Tome Ry, como a taxa reprodutiva bésica, 8.N € a taxa de infeccdo provocada pela
insercdo de um individuo infectado numa populagido total e — € o tempo médio que um infec-

tado permanece na classe dos infectados. Podemos considerar, Ry como o nimero médio de
infeccdes secunddrias causadas pela introducao de um tnico infectado numa populacao de sus-
cetiveis. As solucOes encontram-se na regido R formada pelos pontos (o,v) onde 0 <o <1e
0<v<lalémde o+v=1.[27] [25] [2] [31] [32].

Para determinar os pontos de equilibrio, fazemos:

do 1
—=0,v=0 ou 0=—
dt RO
(4.33)
dv 1
—=0,v=0 ou o0=—.
drt Ro
Considerando 4.33 temos que 0 +v =1, se v =0 entdo o = 1, temos o ponto P1 = (1,0)
1
€ o ponto de equilibrio livre da doenga. Por outro lado, se o = T entdo P2= (R—, 1- R—).
0 0

0
O ponto P2 é ponto de equilibrio que representa a presenca da doenga. Dessa forma, os

pontos de equilibrio sdo P1 =(1,0) e P2 =(—,1-—) .
Ry R
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A matriz jacobiana é dada por:

]”’Y)Z(G,, Gy) | Ry.v Ryo-1 (4.34)

Para o ponto P1 = (1,0), temos como sistema linear correspondente em 4.35, apds reali-
zar as substituicdes na matriz jacobiana 4.34 :

d up| 0 —Ry+1)\({uy
dr (uz) - (0 Ro—1 ) (uz) (439
A matriz que deveremos calcular o determinante é:

(_r —Ro+1 ) (4.36)

0 Ro—l—r

Obtemos a expressao a partir do determinante da matriz 4.36: -r.(Ry—1—r) =0, onde
r=0ou Ry—1-r =0. Em que os autovalores sdo r; =0 e r, = Ry — 1. Nesse caso, também
temos uma equagio quadritica incompleta, r? + (=Rg + 1).7 = 0.

Dessa forma, temos que o ponto critico P1 é um ponto estavel do sistema linear quando
Ry < 1, pois r, serd negativo. Agora, se Ry > 1, temos r, positivo, portanto P1 serd um ponto
instavel.

1 1
Fazendo a substituicdo de P2 =(—, 1 — —) na matriz jacobiana 4.34 temos:

Ry Ry
1 1
—Ro.(l——) —Ro.(—)+l
Ro Ro “Ry+1 0
= . (4.37)
1 1 Ry-1 0
Ry.[1-— Ry.[— -1
° ( Ro) ° (Ro)
1 1 - . .
Para o ponto P2 :(R—, 1- R—) temos entdo como sistema linear correspondente:
0 0
d u —Ro+1 0)[u
dr (uz) - ( Ro—1 0) (uz) (+39)
A matriz que deveremos calcular o determinante € obtida a partir de 4.38:
—Rp+1-1r O
( Ry—1 —r) . (4.39)

Obtemos a expressao -r.(—Ry+1—-7r) =0, onde r =0 ou -Ry+1—r =0. Em que os
autovalores sd@o r; = —Ryp+1 e rp = 0. Nesse caso, também temos uma equacdo quadratica
incompleta, 2 + (Ry —1).r = 0.

Dessa forma, temos que o ponto critico P2 € um ponto estavel do sistema linear, ou seja,
quando Ry > 1, e instdvel quando Ry < 1. Os planos de fase sdo muito parecidos com os do
modelo SI, por isso, ndo serdo inseridos nesta etapa.
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4.2.1 Analise Grafica

Para realizar a interpretacdo bioldgica do modelo SIS realizou-se algumas simulacoes
e esbocou-se o grafico que representa o comportamento das solu¢des, obtidas numericamente.
Para o modelo SIS, diferentemente do modelo SI, realizou-se o processo de adimensionali-
zacdo, por isso as varidveis que utilizaremos serdo as varidveis adimensionais, representadas
no novo sistema obtido. Utilizaremos as condig¢des iniciais o(0) = 0,7 e v(0) = 0,3, em todas
as simulacdes, respectivamente, as quais representam a populacdo de suscetiveis e infectados
(observando que o +v =1).

Foram escolhidos distintos valores para Ry, o qual representa o nimero médio de in-
feccdes secunddrias causadas pela inser¢do de um infectado na populagao, descritos a seguir:
R() = 0,6, R() = 1,5, R() :2,5, R() = 3,5 € R() =5.

Foi utilizado um algoritmo no Octave, para implementacdo dos graficos de evolucdo.
Nesse caso como ja definimos os valores iniciais de o e v, s6 precisamos alterar o tempo final
T e o valor de Ry.

Consideraremos, inicialmente, Ry = 0,6, onde Ry < 1. J4 que com Ry < 1, temos como
ponto de equilibrio P1, que representa um ponto estavel, livre da doencga. Nesse caso, a quanti-
dade de infectados iguala-se a zero, apos um periodo adimensional.

Logo, percebe-se que os suscetiveis e os infectados vao tender ao ponto de equilibrio,
isto é,com o passar do tempo o niimero de infectados tende a 0, até se anular e o nimero de
suscetiveis se aproxima de 1, até se igualar, e a populagdo livra-se da doenga, como mostra a
figura 4.24.

— —— Sustativeis
-~ — Infectados
e il

ost/

Froporgao

04 -

0z -

Tempao (1)

Figura 4.24 — Evolugdo temporal do modelo SIS (Ry =0,6).

Fonte:Autora

Retornando ao sistema 4.23, podemos substituir os dados f=10,3 e y = 0,5, pois com
essas taxas o valor de Ry € igual a 0,6 , além disso, devemos utilizar as condi¢des iniciais
S(0)=0.7 e 1(0)=0.3.

S;1—-8;=(-0,3.5.1+0,5.1).At
(4.40)
It 1-1;=1(0,3.5.1-0,5.1).At.
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Partimos entdo para a observacdo das iteragcdes iniciais dos suscetiveis obtidas através da equa-
¢a0 4.23a. Vejamos como ficam as iteragdes nas figuras 4.25 e em 4.26:

| |
?mzsl +(-B S L + Y. I_l] At
]

Figura 4.25 — Primeira iterac@o dos suscetiveis(f = 0.3)-modelo SIS nao vital.
Fonte:Autora

SoTS B s L Y T At
077 |
(01

Figura 4.26 — Segunda iteracao dos suscetiveis(f = 0.3)-modelo SIS nao vital.
Fonte:Autora

A quantidade dos suscetiveis Sy, 1, aumenta a medida que prosseguimos com o calculo
das iteragdes, se aproximando cada vez mais do valor 1, mas ndo o ultrapassando, como pode
ser visto em 4.27.

| |
S =8 + (-B .S, .I + Y. ). At
0595007 | |
0.998987 [ 0.1

Figura 4.27 — Ducentésima sexagésima quarta iteracdo dos suscetiveis(f = 0.3)-modelo SIS

ndo vital.
Fonte:Autora

Agora, vamos observar as iteragdes iniciais dos infectados a partir da equagdo 4.23b,
representadas em 4.28 e em 4.29, onde as quantidades de contaminados, ficam diminuindo até
inexistir como na iteragdo da figura 4.30.

i L : I, ). At
tl i '

Figura 4.28 — Primeira iteracdo dos infectados(f = 0.3)-modelo SIS ndo vital.
Fonte: Autora
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Figura 4.29 — Segunda iterag@o dos infectados(f = 0.3)-modelo SIS nao vital.

Fonte:Autora

I =1 + ( B.S, .1, - Y. I ). At

Figura 4.30 — Ducentésima sexagésima quarta iteracdo dos infectados(f = 0.3)-modelo SIS ndo
vital.
Fonte:Autora

Quando Ry > 1, sendo Ry=1,5, partimos de um ponto P1 instdvel, onde ha um cresci-
mento infimo da quantidade de infectados, assim como, um decrescimento proporcional muito
baixo do nimero de suscetiveis, para um ponto P2 estdvel.

Com isso, os suscetiveis, mantém-se maior que a populagdo de infectados e, apos algum
tempo, a populagdo tende ao ponto de equilibrio P2, ai permanecendo, devido a sua estabilidade,
de acordo com o gréfico 4.31.

Nesse caso, um pouco mais de 30% da populagdo estd infectada e um pouco menos de
70%, encontra-se vulnerdvel. Portanto nao hd um crescimento expressivo dos infectados, porém
ainda existe uma parcela da populacdo que estd doente.
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— Susceliveis
Infectados
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Proporgao
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Tempo (T)

Figura 4.31 — Evolugao temporal do modelo SIS (Ry =1,5).

Fonte:Autora
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Para Ry = 2,5, observa-se que os suscetiveis e os infectados tendem a um ponto P2 mais
rapidamente, se comparado ao caso considerado anteriormente, pois cada individuo consegue
infectar 2,5 individuos, ao invés de 1,5. Nesse caso, em menos de 1 unidades de tempo adimen-

sional, o nimero de infectados ultrapassa o nimero de suscetiveis, como podemos observar no
grafico 4.32.
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Figura 4.32 — Evolugao temporal do modelo SIS (Ry = 2,5).

Fonte:Autora

Agora, vamos utilizar § =1,25 e y = 0,5, pois com essas taxas o valor de Ry € igual a
2,5, além disso, devemos utilizar as condi¢des iniciais S(0)=0.7 e 1(0)=0.3.

Vamos observar as iteragdes iniciais dos suscetiveis através da equacao 4.23a, nas figuras

433 eem 4.34.

S —S[I (-[3,,5l Sl Y Ii). At
i1

Figura 4.33 — Primeira iteracdo dos suscetiveis(f = 1.25)-modelo SIS nao vital.
Fonte:Autora

S =S ¢ (B .S I+ Y. I A
1l

Figura 4.34 — Segunda iterag@o dos suscetiveis(f = 1.25)-modelo SIS nao vital.
Fonte:Autora
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Se continuarmos a calcular as préximas iteragcdes, veremos que a quantidade de susceti-
veis, diminuem se aproximando e se estabilizando em 0,4, ou seja, os suscetiveis jamais ficam
inferiores a 0.4. Os suscetiveis tendem a atingir 40% da populacdo, mantendo-se estdvel ao
assumir esta parcela. Isso podera ser confirmado pelo leitor. Podemos observar isso em 4.35.

=
| 1
S =S 4+ (-B S I+ Y. T) At
0400261 J N 25 0.509715]
01

Figura 4.35 — Centésima iteracao dos suscetiveis(f = 1.25)-modelo SIS ndo vital.
Fonte:Autora

Para o grupo dos infectados foi obtido as iteragdes iniciais a partir da equacdo 4.23b,
representadas em 4.36 e em 4.37.

I .

- . - l
1.25 0.3

Figura 4.36 — Primeira iteracao dos infectados(f = 1.25)-modelo SIS ndo vital.
Fonte:Autora

1

I =1 + S L - YL T At
TR T A G ) A

| 0.1 ]

Figura 4.37 — Segunda iteracdo dos infectados(f = 1.25)-modelo SIS ndo vital.
Fonte:Autora

Podemos perceber que prosseguindo com a execucdo das iteragdes, temos que a quan-
tidade de infectados cresce se aproximando de 0,6, ou seja, os infectados ndo assumem jamais
valor superior a 0,6, como pode ser observado em 4.38. Com isso, os infectados nio atingem
mais de 60% da populagdo.

000712 SN 0 couzs I 05
1

I =1 + LS, VL - YL T At
[tr1 [ (B t ' 'I']/_“

020575 D22

Figura 4.38 — Centésima iteracdo dos infectados(f = 1.25)-modelo SIS ndo vital.
Fonte: Autora
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Quando Ry = 3,5, o tempo para a infeccdo € ainda menor para que o nimero de infecta-
dos, supere o nimero de individuos suscetiveis, menos de 0,5 unidades de tempo. adimensional,
como podemos observar no grafico 4.39. Supondo, que 1 u.t. adimensional representasse vinte
e quatro horas, em menos de doze horas a populagdo de individuos infectados superaria a po-
pulacdo de suscetiveis e tenderia ao ponto P2. O que representaria um pouco mais de 70% da
populacao infectada e um pouco menos de 30% vulneravel.

oa
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Figura 4.39 — Evolugdo temporal do modelo SIS (Ry = 3,5).

Fonte:Autora

No caso de Ry = 5, mais rapidamente a doencga se espalha e tende ao ponto de equili-
brio P2. Neste caso, cada infectado podera contaminar 5 suscetiveis, demonstrando assim que
quanto maior for Ry, mais rapidamente a doenca se disseminard entre a populacdo de susceti-
veis. Além disso, maior serd o nimero de individuos infectados. Podemos observar o grafico

4.40. Nesta situacao, temos 80% da populacdo infectada e isso acontece rapidamente, e os 20%
restantes, encontram-se suscetiveis.
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Figura 4.40 — Evolugado temporal do modelo SIS (Ry =5).

Fonte:Autora

Ademais, conclui-se que, para o modelo SIS sem dinamica vital, a populagdo de susce-
tiveis, assim como a populacdo de infectados, atinge o ponto de equilibrio e estabiliza-se. Por
outro lado, se Ry < 1, a populagdo tende ao equilibrio estavel (S,I)= (1,0), situagdo na qual a
populacao esta livre da doencga. Logo, quando ocorre uma epidemia, tenta-se estabelecer medi-
das como a vacinagdo, por exemplo, para que a taxa Ry reduza-se a um valor menor que um e,
consequentemente, a doenca acabe [5].

Assim sendo, os gréficos estudados, neste modelo, mostram o que ocorre com a popu-
lagdo de acordo com o valor de Ry. Com isso, podemos observar se a doencga ird acabar ou se
disseminar entre a populagdo. Partimos de um modelo SI, onde ndo existia o coeficiente Ry, €
tinhamos uma taxa 8, que indicava o quao rapido, toda a populagdo estaria infectada, para um
modelo SIS ainda sem dindmica vital, com um coeficiente Ry, que relaciona as taxas de conté-
gio e recuperagdo, fazendo com que uma parcela da populagdo, apesar de ter sido contaminada,
volte a ser suscetivel, ndo extinguindo esta categoria, como no modelo SI. Porém, ambos os
modelos, adquirem uma estabilidade, com relagao a quantidade de suscetiveis e infectados . No
modelo SI, ndo ha como ter um resultado, que nao represente uma tragédia. J4 no modelo SIS
ha a possibilidade de se tentar diminuir o valor do Ry, para que este seja menor que 1, e ndo
haja infectados, depois de certo periodo.

4.3 Modelo SIS com dinamica vital

Neste caso ha dinamica vital, isto €, na populagdo considerada hd nascimentos e mortes,
contudo, como a populagdo total N € constante, considera-se que o nimero de nascimentos €
igual ao nimero de mortes, e ainda, que os nascimentos sao de individuos sadios [14]. As
taxas de natalidade e mortalidade sdo iguais a y . O modelo SIS com dindmica vital, pode ser
representado através do diagrama 4.41 a seguir:
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Figura 4.41 — Diagrama compartimental que representa o modelo SIS com dinamica vital.

Fonte: Autora

A saida de suscetiveis, ocorre por morte ou por aquisicdo da doenca. A entrada de
suscetiveis, ocorre com o0s nascimentos (que sdo proporcionais a populagao total), assim como
0s que se recuperaram, ndo adquirindo imunidade. O sistema de equacdes diferenciais que
descreve esse modelo € dado por:

ds

i -B.SI1+a.l+y.N—-vy.S

4 (4.41)
1

—=p.S1-a.l-y.l

dt

Este sistema pode ser reescrito, usando as equagdes de diferencas como em 4.42:

Sis1-Si=(=B.S.I+a.l+y.N—7.5).At (4.422)
Liii—I;=(B.SI-a.I—-y.D).AtL (4.42b)

Observe que N-S=I, entdo:

FS,D=-B.SI+a.l+y.I
(4.43)

GS,D=p.SI-a.I-v.I.

Igualando a zero F(S,I) e G(S,I) em 4.43, podemos obter os pontos de equilibrio:

P1=(N,0)
a+y a+y
P2=(—>,N-——).
p p

A estabilidade desses pontos serd analisada através do calculo do traco e do determinante da
matriz. A matriz jacobiana € dada por:

_ Fs F; _ —IB.I —,B.S+(,¥+’)/
sn=(oy c) (51 Bo-a—y) @4
Substituindo P1=(N,0) na matriz jacobiana 4.44, temos:
[0 =B.N+a+y
A—(O ﬁ.N—a—y)' (4.45)
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Entdo calculando tr(A) = f.N —a —y >0 e det(A)=0, portanto o ponto P1 € instdvel.
Agora, vamos substituir P2 na matriz jacobiana 4.44:

B (a+y o (aty
R R NP

e R

Logo, tr(B) = =.N + a + v e det(B)=0, com isso, nada se pode afirmar sobre o ponto

1 . . .
P2.Segundo [14],ap6s fazer um estudo sobre — , o ponto P2 € assintoticamente estdvel. Pode-

se observar que ao considerar dindmica vital no modelo SIS, quando a populac¢do € constante, a
magnitude de cada coordenada do ponto de equilibrio P2 € alterada, mas o tipo de estabilidade
permanece o mesmo para os dois pontos de equilibrio existentes [14].

4.3.1 Analise Grafica

Vamos realizar algumas simula¢des, tomando como condi¢des iniciais os valores esco-
lhidos: N=1,5,=0,9¢ I, =0,1. E interessante que as quantidades referentes aos suscetiveis
representem a maior parte da populacdo, enquanto os valores para os infectados estejam re-
lacionados a uma minoria. Assim conseguimos simular a evolug¢do partindo de um momento
inicial.

Comecaremos com as seguintes taxas f=0,5,a =0,2 e y =0,01. Lembre-se que esta-

entao

mos considerando a taxa y de natalidade igual a taxa de mortalidade. Como Ry =

0,5

" 0,01+0,2
lagcdo € negativo, pois em 12 dias, aproximadamente, o nimero de infectados ultrapassa o de
suscetiveis. Além disso, ap6s 20 dias, quase 60% da populagdo, apesar de estar numa situagao

estdvel, encontra-se infectada e um pouco mais de 40% torna-se suscetivel.

T
— Sacetiveis
= |nfectados

Ry = 2,4. Observe a figura 4.42, podemos perceber que o panorama desta simu-

Proporgao

1] 20 40 &0 B0 100
Tempo

Figura 4.42 — Evolu¢do temporal do modelo SIS com dindmica vital(Ry = 2,4).
Fonte: Autora
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Vejamos como ficam as primeiras iteracdes, calculadas a partir da equagdo 4.42a do
grupo dos suscetiveis e da equacao 4.42b para os infectados em 4.43 e em 4.44.

Sl=St+(—B.St.it+U.It+3!' Cy.S¢). Al
B o | wm
(g 09 | [ 1] [ 0.1 ]

Figura 4.43 — Primeira iteracdo dos suscetiveis(f = 0.5,a = 0.2,y = 0.01)-modelo SIS vital
Fonte: Autora

B o o

|It+l= (RS L —a Lo -y T A
2 e |
oy B

Figura 4.44 — Primeira iteracdo dos infectados(f = 0.5, ¢ = 0.2,y = 0.01)-modelo SIS vital
Fonte: Autora

Agora, observe as segundas iteragdes para os grupos de suscetiveis e infectados em 4.45
e em 4.46.

Em 0o
. 1

S =S +(-B.S.L+a I +y N-ySt) At
L ! b |
(01

Figura 4.45 — Segunda iteracdo dos suscetiveis(f = 0.5, = 0.2,y = 0.01)-modelo SIS vital

Fonte: Autora

Lo IHCBS,L ma koo y T A
00 |
[ |
0.1024

Figura 4.46 — Segunda iteracdo dos infectados(ff = 0.5, = 0.2,y = 0.01)-modelo SIS vital
Fonte: Autora

49



A préxima iteracdo, representa o momento em que a quantidade de suscetiveis S;41,
torna-se aproximadamente, igual a de infectados I;+; , como pode ser visto em 4.47 e em 4.48.

Figura 4.47 — Centésima décima oitava iteracdo dos suscetiveis(f = 0.5, = 0.2,y = 0.01)-
modelo SIS vital
Fonte: Autora

Figura 4.48 — Centésima décima oitava iteracdo dos infectados(f = 0.5, = 0.2,y = 0.01)-
modelo SIS vital
Fonte: Autora

A partir da ducentésima iteragdo ou seja apds 20 dias, a quantidade de suscetiveis e
infectados, mantém-se estabilizada, onde os suscetiveis tem redu¢des minimas, aproximando-
se do valor 0.4, enquanto os infectados tem acréscimos bem pequenos, aproximando-se de 0.6.

Agora, considere as taxas f=0,3,a =0,2. e Yy =0,01. Entdo Ry = 1,4, um valor bem
proximo de 1, veja a figura 4.49. Aqui, estamos propondo uma reducdo na taxa de infec¢ao
B, o que alterou a situagdo, agora temos 70% de suscetiveis e 30% de infectados apds 40 dias.
Portanto, se continuarmos a reduzir a taxa de contdgio, a situacdo tende a melhorar, pois Ry
tende a ser menor que 1.
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Figura 4.49 — Evoluc¢do temporal do modelo SIS com dinamica vital(Ry = 1,4).
Fonte: Autora

Vejamos o que acontece usando as taxas f =0,5,a = 0,25, e y = 0,01. Entdo Ry = 2
na figura 4.50. Nesta simula¢do, mantemos o mesmo valor de f inicial e aumentamos a taxa
referente as pessoas infectadas, que voltam a ser suscetiveis. Esse aumento se deve a algum tipo
de procedimento, que faca com que os infectados se reestabelecam, apesar de ndo adquirirem
imunidade, voltando a ser suscetiveis. Com isso, 0s suscetiveis assumem a porcentagem de
52% , e os infectados, 48%, aproximadamente.

T
— 5 mceiivais
m— |nfeciadas

o8 r

Proporgao

04

0z r

Tempo

Figura 4.50 — Evolugao temporal do modelo SIS com dindmica vital(Ry = 2).
Fonte: Autora

Usando as taxas f=0,3,a=0,3. ey =0,01. Entdo Ry = 1, veja a figura 4.51 e observe
que igualamos as taxas de contdgio e recuperagdo, fazendo com que todos os infectados voltem
a ser suscetiveis.

51



— Suscetivais
/’-—__ m— |nfeciades

04

Tempo

Figura 4.51 — Evolugdo temporal do modelo SIS com dindmica vital(Ry = 1).
Fonte: Autora

Agora, usaremos as taxas f =0,5,a =0,3 e y =0,01 e Entdao Ry = 1,6., veja a figura
4.52. Apesar de termos uma taxa de contdgio de 50%, um aumento na taxa «, pode provocar
uma grande melhora na situagdo. Temos 60% de suscetiveis e 40% de infectados, aproxima-
damente. Apesar de termos mais suscetiveis do que infectados, essa situacdo, teria que ser
modificada, a fim de recuperar esses individuos contaminados.

T
— Sugcetiveis
= Infectados

Proporgao

04r

0z r

40 &0 B0 100
Tempo

=
=]
(=]

Figura 4.52 — Evolug¢do temporal do modelo SIS com dindmica vital(Ry = 1,6).
Fonte: Autora

Propomos vdrias alteracdes nas taxas, e observamos que alteragdes na taxa de contdgio
B, e na taxa de recuperag¢do a sdo importantes. As alteracdes em 7y, por acréscimo, indicam um
aumento na quantidade de suscetiveis pelos nascimentos, mas também a morte de alguns sus-
cetiveis, além disso, indicam que aumentaram as mortes no grupo dos infectados. Dependendo
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desse aumento, o grafico apresenta uma quantidade de suscetiveis superior aos infectados, po-
rém, isto significa que houveram mortes, o que nds nao desejamos.O ideal é que a taxa y ndo
aumente.

Observe que os gréificos apresentados neste trabalho, mostram de forma clara, a situacao
dos suscetiveis e infectados em determinada quantidade de dias, e s6 recorremos ao célculo
das iteracdes no Scratch, para o esclarecimento de como o programa Octave, pode realizar tais
calculos para a construcao dessas evolugdes temporais. Além disso, fica mais facil compreender,
a dindmica que existe entre os compartimentos, transformando um aprendizado algébrico em
exercicios de Aritmética, envolvendo problemas reais da humanidade.

4.4 Modelo SIR sem dinamica vital

Neste modelo, a populagdo é formada por pessoas suscetiveis que contraem a doenga in-
fecciosa, tornando-se infectados. Apds um periodo, os mesmos adquirem imunidade. Com isso,
passam a pertencer a classe dos recuperados. Este modelo € diferente dos modelos estudados
anteriormente, pois existe a possibilidade de recupera¢do, ocorrendo a imunizagao.

O processo epidemioldgico pode ser representado por meio do diagrama compartimental
na figura 4.53, que representa o modelo SIR simples, em que > 0 representa a taxa de contato
e Y > 0 a taxa de remocao.

L:}IL/R

Figura 4.53 — Diagrama compartimental que representa o modelo SIR.
Fonte: Autora

O sistema de equagdes diferenciais que representa este modelo, sem dinamica vital, é
dado por:

dsS

— =—-8.8.1

dt p

dl

—=p.8.1-vy.1 4.47
{ P B Y (4.47)

dR_ !

dr

Podemos reescrevé-lo usando as equagdes de diferencas em 4.48:

Sis1—S; = —B.S.LAL (4.482)
Ity =1 =(B.S.I-y.]).At (4.48b)
Rt+1—R[:Y.I.At. (4480)
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O sistema de equagdes, com dinamica vital, € representado da seguinte forma em 4.49:

as
—=a.N-B.S1-u.S
o = TN-pSI-p
dal
4 E = ,BSI—HI— a.]—y.I (449)
— =y.J - R
ar VTH

Porém estudaremos nesta se¢do, o modelo SIR, sem dindmica vital. Neste caso, pode-
mos considerar que as taxas de natalidade 7 e de morte a e p sdo iguais a zero. Atribuimos a
B >0 a taxa de contato, y > 0 a taxa de remocgao.

Podemos observar que os suscetiveis S(t) decrescem a uma taxa proporcional ao nu-
mero de contatos com pessoas infectadas, ja os infectados crescem do mesmo modo como os
suscetiveis diminuem e excluindo-se os que sdao curados ou mortos. A variagao dos retirados ou
removidos é proporcional a quantidade dos infectados que sao recuperados.

Assim como nos outros modelos, a populacdo total N € constante, sendo S+ I+ R =N,
com isso, o somatorio das derivadas se anula. Portanto:

dS dI dR
—+—+—=0.
dt dt dt

As condig¢des iniciais sdo: S(0) = So = N — Iy, 1(0) = Iy, R(0) =0.

(4.50)

Observe que — + a7 em 4.47, dependem apenas de S e I. Devemos proceder a adimen-
sionalizacdo. Para isto, definimos as varidveis adimensionais como:

S 1 R
U—N,V—N,w—ﬁ,r—y.t. 4.51)

O processo serd muito semelhante ao do modelo anterior. O segundo termo da primeira

) . . L 1 .
equacdo do sistema 4.47, também devera ser multiplicado por TN da seguinte forma:
Y.

(4.52)

N
Observe que introduzimos em 4.52 uma fracdo N que sendo igual a 1, ndo altera o

N S I
resultado da multiplicacdo. Faremos Ry = 'B— Observe que ao substituirmos o = N ev= N

na mesma equagao, obtemos a expressio:
—B.S.1=—Ry.0.v. (4.53)

O segundo termo da segunda equacdo do sistema 4.47 também devera ser multiplicado

or —, da seguinte forma:
p YN g

ﬁ.S.I.N_y_ (4.54)

g
B.SI-y.I= .
Y.N.N y.N
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. . . - N . ~
Observe que introduzimos em 4.54 também uma fracao N que sendo igual a 1, ndo

N . S I
altera o resultado. Faremos Ry = ’3— Ao substituirmos o = N ev= N obtemos a expressao:
B.S.I—y.I=Ry.0.v—. (4.55)

dR 1
Vamos considerar a multiplicacdo da fragcao a7 em 4.47 por y_N Ao substituirmos

dR=dw.Nedt= ﬂ temos:

Y
dw.N dw
dty.N  dr’ (4.56)
Y

1
Agora, o segundo termo da terceira equacao y.I ao ser multiplicado por TN resulta na
Y-

1
fracdo N V.
Portanto,o sistema 4.47 na forma adimensional é:
do
— =—-Rpov
T
= (Roo —1)v (4.57)
a’w
dr ~

N . .. . . ~ .
sendo Ry = p-N a taxa reprodutiva bdsica, SN € a taxa de infec¢do provocada pela in-
Y

e ~ 1 ‘1 .
troducdo de um individuo infetado numa populacao total, — € o tempo médio que um infectado

permanece no grupo dos infectados. Logo, Ry € o nimero médio de infec¢cdes secunddrias cau-
sadas pela introducdo de um tnico infectado numa populacdo. As solu¢des encontram-se na
regido R, formada pelos pontos (o,v,w) onde 0 <o <leO0<v<1e0<w=1, além disso

o+v+w=1][27][25] [2] [31].
d
Observe que,d—a e d_v nio dependem de w e considerando o (0) =gy >0, v(0) = vy >0,
T T

wo =0, segue que o +v =1.
Para determinar os pontos de equilibrio, devemos considerar as duas primeiras equagdes
do sistema 4.57, onde as derivadas se anulam de acordo com o sistema 4.58:

—00 0 ou v=0

gv (4.58)
0,0=— ou v=0.
dT R()
Como o+v =1, se v=0 segue que g =1 e assim, P1 = (1,0) € o ponto de equilibrio
livre da doenca.
A matriz jacobiana do sistema 4.57 € dada por:

F, Fv) ~ (—Ro.v ~Roo )

](‘”’):(GU G, Ro.v Ryo—1) (4.59)
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Para o ponto P1 = (1,0), temos como sistema linear correspondente, obtido a partir da
matriz jacobiana em 4.59:

d uy| _ 0 —R() u
=10 mr) ) (4.60)
Agora devemos calcular os autovalores através da matriz:
—r —RO
(0 Ro—l—r)' (4.61)

Obtemos a expressdao —r.(Ryp — 1 —r) = 0, portanto os autovalores correspondentes sao
rp=0e r, = Ry—1. Dessa forma, temos que o ponto de equilibrio P1 € estdavel, sempre que
Ry < 1, mas ndo € assintoticamente estavel.

Suponha Ry = 0.5 e observe o plano de fase na figura 4.54. Os autovalores sdo: r; =0¢e
r, = —0.5 e os autovetores (0.5,0)7 e (-=0.5,-0,5)7.

Figura 4.54 — Exemplo Estavel.

Fonte:Autora

Caso, Ry = 1.5, observe o plano de fase na figura 4.55. Os autovalores sdo: r; =0 e
r, = 0.5 e os autovetores (—0.5,0)7 e (1.5,-0,5)".
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Figura 4.55 — Exemplo Instéavel.
Fonte:Autora

. 1
Agora, vamos determinar as coordenadas do ponto P2. Se o = R como o+v =1,
0

1 1 1
temos que v=1—-— e o ponto P2 =(—,1 - —).
Ro Ry¢’" R
Esse € o ponto onde a doenca estd presente, para o qual temos como sistema linear
correspondente:
d u —Ry+1 —-1)(uy
E(MZ)_(Ro—l 0 )(UZ) (*62)

Calculando o determinante da matriz em 4.62, a ser representada isoladamente em 4.63:

—Ry+1-r -1
( Ry—1 —r) . (4.63)
Obtemos a expressao (—Ryp+ 1—r).(—=r)+ Ry — 1 = 0, que resulta em uma equagdo qua-
dritica completa, 2+ (Ry—1).r + Ry — 1 = 0. Utilizando a férmula de resolugio da equacio

-bFVb%-4.a.c

X = 5 , conseguimos obter as raizes que representam os autovalores dessa ma-
.a

triz.

~Ro+1FV/(Ro—1?2-4.1.(Ry—-1) _
> =

Os autovalores r; e r, possuem o formato: ry,» =

—R0+1J?\/R(2)—2.R0+1—4.R0+4 ~Ry+1%/R2—6.Ry+5

2 2

Observando /R(z) —6.Ry + 5, podemos perceber que A = Rg —6.Ry + 5, uma fun¢do qua-
dratica completa, possui as raizes Ry =1 e Ry = 5, representando os pontos em que A =0.

) . . [0 1
Se Ry =1, a matriz a ser considerada e:( ) Temos r =0 e v = (1,00, observe a

0 O
figura 4.56.
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Figura 4.56 — Exemplo Instavel (Ry = 1).

Fonte:Autora

No caso de Ry =5, temos um exemplo estavel. Verifique na figura 4.57

\"'l' .

Figura 4.57 — Exemplo Estavel (Ry =5).

Fonte:Autora

Além disso, A >0 se Ry <1 ou Ry > 5. Suponha de acordo com a figura 4.58, que
. ~ . ,[05 -1
Ry = 0.5, a matriz referéncia e:(

) a = — = Q) = (— — T
05 0 ), entao temos 05ern=1,v (=0.5,-0.5)
e v® = (1,—0.5)T.
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Figura 4.58 — Exemplo Instavel (Ry = 0.5).

Fonte:Autora

4.5 0
er,=-15, vV =(=3,45)7 e v® = (1.5,-4.5)T .Observe a figura 4.59.

Agora, vamos supor que Ry = 5.5, a matriz resultante é ( ), entdo temos r; = —3

Figura 4.59 — Exemplo Estavel (Ry =5.5).

Fonte:Autora

No caso de (1 < Ry < 5), A serd negativo e ambos os autovalores serdo negativos ou
terdo parte real negativa. Logo, temos que o ponto critico P2 é um ponto estdvel do sistema

-05 -
05 0
rn=-3er=-15vW =(=3,45"Te¢ ¥ =(1.5-4.57T, veja na figura 4.60.

linear sempre que Ry > 1. No caso de Ry = 1.5, a matriz fica igual a ( ), entiao temos
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Figura 4.60 — Exemplo Estdvel (Ry = 1.5).

Fonte:Autora

4.4.1 Analise Grafica

Para estudarmos a dinamica da epidemia no contexto do modelo SIR, foram realizadas
algumas simulagdes, através do algoritmo no Octave.

A partir disso, obtemos os graficos que representam o comportamento das solucdes,
obtidas numericamente. Para o modelo SIR, realizou-se o processo de adimensionalizagdo,
assim como, para o modelo SIS, tais procedimentos estdo descritos neste trabalho.

Iremos considerar uma populagdo inicial oy = 0,8, que representa a populacao de susce-
tiveis e vo = 0,2, que representa os individuos infectados. Atribuiremos distintos valores para
Ry, como: 0,9; 1,5; 2,5; 3,5 e 5, o qual representa o nimero médio de infec¢des secunddrias
causadas pela inser¢do de um infectado na populagdo.

Tomando,Ry = 0,9, isto €, Ry < 1, temos um ponto estavel. A curva dos suscetiveis, nao
decresce de forma intensa, ou seja, poucos individuos passam a ser infectados. No decorrer
do tempo, o nimero de infectados tende a 0 e, em paralelo, o nimero de removidos cresce até

atingir o equilibrio, momento em que a populagdo livra-se da doenca, como mostra a figura
4.61.
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Figura 4.61 — Evolugdo temporal do modelo SIR (Ry =0,9).

Fonte: Autora

Para analisar o processo iterativo desta situacao, vamos assumir que S(0) = 0,8, I1(0) =
0,2 e R(0) =0, as taxas f=0,27 e y =0,3. Vejamos as iteragdes iniciais dos suscetiveis obtidas
pela equacdo 4.48a, nas figuras 4.62 e em 4.63. Os valores para os suscetiveis diminuem,
estabilizando-se em aproximadamente 0, 52.

Figura 4.62 — Primeira iteracdo dos suscetiveis(f = 0.27,y = 0.3)-modelo SIR
Fonte: Autora

|Sl -p S L At
0.79565 | _
027 N 0.19532

s =
|l—1

Figura 4.63 — Segunda iteracdo dos suscetiveis(f = 0.27,y = 0.3)-modelo SIR

Fonte: Autora

Agora,vejamos as iteragdes iniciais dos infectados através da equacgao 4.48b, represen-
tadas em 4.64 e em 4.65. As quantidades diminuem, até que nfo existam mais infectados.
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Figura 4.64 — Primeira iteracao dos infectados(f = 0.27,y = 0.3)-modelo SIR

Fonte: Autora

Figura 4.65 — Segunda iteracdo dos infectados(f = 0.27,y = 0.3)-modelo SIR

Fonte: Autora

Agora,vejamos as iteragcdes iniciais dos recuperados obtidas com a equacao 4.48c, apre-
sentadas em 4.66 e em 4.67. Este grupo aumenta, até se estabilizar em aproximadamente 0, 48.

]i{t+1 t

0.006 :!n

Figura 4.66 — Primeira iteracao dos recuperados(f = 0.27,y = 0.3)-modelo SIR

Fonte: Autora

019832
| I
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Figura 4.67 — Segunda iteracdo dos recuperados(f = 0.27,y = 0.3)-modelo SIR

Fonte: Autora

Agora, quando Ry > 1, a doenca se propaga de forma preocupante entre a populacao.
Na situacdo em que Ry = 1,5, algumas pessoas serdo infectadas e outras ndo, e em
decorréncia, o pico da doenca ndo atinge um valor muito alto, como mostra a curva vermelha.
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Observe a aparéncia da curva que representa os infectados, ela possui um formato “acha-

tado”, como podemos observar no grafico 4.68.
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Figura 4.68 — Evolug¢do temporal do modelo SIR (Ry =1,5).
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Fonte: Autora
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Por outro lado, quando Ry = 2,5, observa-se que o crescimento da curva em vermelho
ocorre mais rapidamente, assim como o seu valor maximo € maior. Isso significa que mais
pessoas terdo se infectado ao final do periodo adimensional. Quanto maior for o Ry, menor sera
o tempo envolvido, para se atingir o maximo de infectados. Além disso, o niimero de removidos

€ maior, porque mais pessoas tornaram-se infectadas.Vejamos o grafico em 4.69.
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Figura 4.69 — Evolugdo temporal do modelo SIR (Ry =2,5).

Fonte: Autora

Quando Ry = 3,5, os suscetiveis decrescem até 4 u.t. adimensionais e a curva dos in-

fectados, cresce rapidamente até atingir o ponto mais alto da doenga, que ocorre em menos de
2 u.t. adimensionais. Observe a figura 4.70. Temos um contexto bem grave nessa situagdo,
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pois um pouco mais de 40% da populacdo de individuos serd infectada, ja que um individuo
infectado podera contaminar 3,5 suscetiveis e, por consequéncia, apds a diminui¢ao do nimero
de infectados, tém-se um crescimento consideravel do numero de individuos removidos.
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Figura 4.70 — Evolugdo temporal do modelo SIR (R =3,5).

Fonte: Autora

Vamos iniciar o processo iterativo, assumindo que S(0) = 0,8, I(0) =0,2 e R(0) =0, as
taxas f=0,7 e y =0,2. Vejamos as iteracdes iniciais dos suscetiveis a partir da equacio 4.48a,

que estdo expostas em 4.71 e em 4.72. Ao passo que as iteracdes acontecem, as quantidades
vao diminuindo, se estabilizando em aproximadamente 0, 03.

S =8 -B.S . I oA

Figura 4.71 — Primeira iteracao dos suscetiveis(f = 0.7,y = 0.2)-modelo SIR
Fonte: Autora

S =S -B.S . LA

Figura 4.72 — Segunda iterac¢do dos suscetiveis(f = 0.7,y = 0.2)-modelo SIR

Fonte: Autora
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Com relacdo ao grupo dos infectados, utilizamos a equacio 4.48b. Observando as itera-
¢oes iniciais em 4.73 e em 4.74 e se continuarmos com O Processo, veremos que este grupo vai
aumentando, até assumir um maior valor de 0,42, ou seja, atinge no maximo 42% da populagio,
depois passa a diminuir, tendendo a inexistir.
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Figura 4.73 — Primeira iteragdo dos infectados(f = 0.7,y = 0.2)-modelo SIR

Fonte: Autora
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Figura 4.74 — Segunda iteracdo dos infectados(f = 0.7,y = 0.2)-modelo SIR

Fonte: Autora
Ja a categoria dos recuperados, com base na equacio 4.48c, tem as seguintes iteracdoes

iniciais em 4.75 e em 4.76. Os removidos crescem se estabilizando em 0,97, ou seja, aproxima-
damente 97% sera recuperada.
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R R ¢ 1/ I (- T t
0.004 =0
Figura 4.75 — Primeira iteracao dos recuperados(f = 0.7,y = 0.2)-modelo SIR

Fonte: Autora
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R = R, + y. I . At.
It—] 1

Figura 4.76 — Segunda iteracdo dos recuperados(f = 0.7,y = 0.2)-modelo SIR

Fonte: Autora

Na situacdo em que Ry = 5, a velocidade de contaminacdo aumenta muito mais. Além
disso, o pico da doenca atinge metade da populagdo em menos de 2 u.t. adimensionais, isto
€ maior se comparado com as situacdes ja estudadas. Neste caso, t€m-se que cada individuo
infectado podera infectar 5 suscetiveis, e, em decorréncia, o pico da doenga € atingido rapida-
mente e, a0 mesmo tempo, a curva de removidos tem um crescimento quase que exponencial

até atingir toda a populacdo, como pode ser observado na figura 4.77.

—— Suscetiveis
— Infectados
Remaovidos

o0&

0.4

Proporgao da Populag3o
P,

ozt \ I"\

-] B 10 12 14
Tempo adimensional (1)

Figura 4.77 — Evolugao temporal do modelo SIR (Ry =5).

Fonte: Autora

Podemos afirmar que quanto maior o Ry, mais rapidamente os suscetiveis se tornam
infectados, e com o passar do tempo, o nimero de infectados diminui, aumentando o nimero
de removidos. Considerando a situacao hipotética na qual Ry = 5, pode-se obervar que a curva
dos removidos, com o passar do tempo, tende a populacao total indicando que toda a populagao
foi infectada . E importante destacar que 2 medida que a curva dos infectados decresce, ocorre
o crescimento do nimero de individuos removidos. Logo, quando ocorre uma epidemia, tenta-
se estabelecer medidas como a vacinagdo, isolamento social, por exemplo, para que a taxa Ry
reduza-se a um valor menor que um e, consequentemente, a doenga acabe [5]. Esta andlise pode
ser usada para determinar se a doenga ird se extinguir ou se espalhar entre a populacao.

Esse modelo é considerado simples para descrever as epidemias atuais, pois 0 mesmo
ndo considera mutacdes de virus e as consequéncias decorrentes destas, como o periodo de
incubac¢do de uma determinada doenga. S6 que apesar disso, este modelo traz a inclusdo de uma
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categoria dos recuperados, o que significa a possibilidade de se reestabelecer de uma doenca,
que pode ter efeitos graves na vida de um paciente. Isso significa que estamos evoluindo, pois
partimos do SI, onde nao havia nenhuma forma de escape para a populacado, passamos pelo SIS,
onde torciamos para que o coeficiente Ry fosse menor que 1, e agora temos uma chance, mesmo
com o coeficiente Ry maior que 1, podemos nos recuperar. SO que essa evoluc¢do, ainda nao
atingiu a todas as doencgas.

4.5 Modelo SIRS sem dinamica vital

Neste modelo ha individuos suscetives que adquirem a doenga, tornando-se infectados
e, apOs a recuperacio, ndo adquirem imunidade, tornando-se suscetiveis novamente [14]. Se-
gundo [20], a grande diferenca entre SIRS e SIR € que, para SIRS, um individuo pode perder
sua imunidade ap6s a cura da doenca, como no caso de tuberculose e maldria. Essa nova ca-
racteristica de reinfeccdo pode ocorrer de dois modos: ou o individuo infectado, ao curar-se,
vai direto ao grupo dos suscetiveis, ou o individuo infectado, ao curar-se, vai para o grupo dos
recuperados, sendo que uma parte deste grupo volta a ser suscetivel (modelo SIRS).

Neste modelo a natalidade e a mortalidade natural nao serdo consideradas, exceto as
mortes causadas pela doenca,cujas pessoas devem ser adicionadas ao grupo dos recuperados.

A populagido total N serd constante, ndo havendo presenca de dindmica vital. Assim,
segue 0 modelo compartimental na figura 4.78:

LR

L‘“I;/‘R

Figura 4.78 — Diagrama compartimental que representa o modelo SIRS.
Fonte: Autora

Neste caso, o sistema de equagdes diferenciais que descreve a dinamica é:

ds
22 _B.S.I+uR
ar - PSItH
dI
) Gy N e 4.64
ey p % (4.64)
dR_ I R
o = VIR

Reescrevendo em forma de sistema de equacdes de diferencas em 4.65:

Si41 =S =(=p.S.1+ u.R).At (4.65a)
Iis1- 1= (B.S.I-y.]).At (4.65b)
Rt+1 - Rt = (YI - ‘U,R)A t. (4650)

Observe que as taxas 3, y e u sdo nimeros positivos. As condicdes iniciais sdo: S(0) =

So =N -1y, I1(0) = I, R(0) = 0. Nao faremos o procedimento de adimensionalizacdo neste
modelo.
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Vamos analisar o sistema bidimensional obtido a partir de 4.64, substituindo primeira-
mente a expressaio R=N-S-1I:

dS— B.SI+u(N-S-1)
= = BS .
(4.66)
dl
— =6.8.1-v.I.
P p Y
Para determinar os pontos de equilibrio do sistema, devemos considerar as taxas de
ds dI
variagao FT e T em 4.66, iguais a zero:
ds
—=—pSI+p(N-S-D=0
(4.67)
ar _ B.SI-y.I=0
=, = PS y.I=0.

A partir da segunda equacgdo do sistema 4.67, encontramos S = Y da seguinte forma:

B.S.I-y.I=0

L(B.S-y)=0
Como I # 0 entdo .S—y =0, portanto .S =y, resultandoem S = Z. Substituindo S na primeira

equacgdo em 4.67 temos:
—B.SI+p.(N-S—1)=0
) Z).I+ .(N—(I)—I):O
o)1=
Yi_
(—)f—,u).l+,u.(N——)—0
B
Y
(y+w.I= .(N——)
Y+H H 8

Y+Hu

I=

Com isso, se N = Z, o sistema terd um unico ponto de equilibrio, P1=(N,0), que representa

a populacdo livre da doencga, pois I se anularia. Se N > %, o sistema possuird dois pontos

o
de equilibrio, P1=(N,0) e P2= Z,

B y+u

. Agora N < i teriamos I < 0, o que seria um

absurdo, ja que I representa a quantidade de infectados.
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O préximo passo serd analisar a estabilidade dos pontos criticos, comecando pelo ponto
P1=(N,0). Retornando ao sistema 4.67, devemos observar que a matriz jacobiana, assumird o
seguinte formato, representado em 4.68:

R B

Gs Gy
O sistema linear que aproxima o sistema bidimensional na vizinhanca do ponto P1 = (N,
0),onde S=Ne I =0, é o seguinte:

alo)=(¢ 5x%)0) 46

Os autovalores r da matriz jacobiana obtida a partir de 4.69, sdo as raizes do polindmio
—p-r -p-p.N
0 BN—-y-1

Jisiy D) =(

caracteristico, como ja fizemos anteriormente. Calculando o determinante da matriz (

e igualando a zero, temos: (—pu—r71).(B.N—y—r1) =0.
Os autovalores sdo ry = —p e ro = f.N—7y. Como r; <0 < ry, o ponto P1 = (N,0) é
ponto de sela, portanto representa um ponto de instabilidade.
Y
u. (N - —)
p

Em seguida, devemos analisar o segundo ponto critico P2= %, W

, para isso,

retornamos a matriz 4.68 e fazendo as substitui¢des das coordenadas do ponto temos:

U (N—Z) ,3.,u.N+,6.u.(Z)
-u-p P —u—ﬁ(z) o A —u-y
Y+u p Y+u
U. (N— Z) B.u.N—B.p. (Z)
p| 2 (2)y oIl
Y+ p Y+u
Simplificando:
2
—ue—p.u.N
————— —H—~Y
Y+u
(4.70)
B.u.N—p.y 0
Y+u
Calculando o determinante em 4.70 encontramos:
AN — .
—@ﬂ—ylﬁﬁ?:jiz=ﬁ+uV—My=uiﬁN>yr>u 4.71)

Ja que ndo conseguimos calcular os autovalores para realizar a andlise de estabilidade,
utilizaremos o trago da matriz, que é a soma dos elementos da diagonal principal.

—p.(u+ B.N)
Y+u

+0<0. 4.72)
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Como sabemos £ >0¢e .N—7y >0, o que implica em N > Z, entdo o determinante é

positivo, como representado na equacao 4.71. Isso associado ao fato de que o trago da matriz
em 4.72 é negativo, o que nos permite concluir que o ponto P2 € assintoticamente estdvel. A
partir dos resultados obtidos por meio do traco e do determinante da matriz, verificamos que
o ponto P2 é um ponto estdvel e atrator, ou seja, as trajetorias tendem a P2. Podemos fazer
a classificagdo de sistemas lineares hiperbdlicos no plano cujas coordenadas sao traco (eixo
horizontal) e determinante (eixo vertical) de acordo com a figura 4.79:

Figura 4.79 — Plano traco-determinante.
Fonte: [33]

Através dos resultados das andlises de estabilidade dos pontos criticos do sistema, ob-
servamos que se Iy > 0 a doencga nunca ird se extinguir, tornando-se endémica.

Como as trajetérias tendem ao ponto P2, cabe uma indagacdo: serd que podemos in-
terferir nos parametros, a fim de que P2 tenha uma coordenada y menor, o que significaria um
menor nimero de doentes nesse momento de equilibrio?

Segundo [20],dependendo da doenca que estd sendo modelada por SIRS, a resposta é
sim. Por exemplo, no caso da gripe comum, em que ndo hd imunidade vitalicia, posto que o
virus sofre mutacdo de ano para ano, ao incentivar agdes voltadas para a educacao da populagdo,
tais como, higienizacdo das maos, evitar ambientes sem ventilagdo, cobrir a boca ao tossir e ao
espirrar, o valor de B (taxa com que os suscetiveis tornam-se infectados) tende a diminuir.
Portanto, ao diminuir beta (mantendo y e ), o ponto de equilibrio P2 desloca-se para a direita

. . ar .. . . .
e para baixo, o que significa que a coordenada — aumenta enquanto T diminui. Assim, o

ponto de equilibrio ocorrerd com um menor nimero de individuos infectados.

4.5.1 Analise Grafica

Vamos realizar algumas simulac¢des, para analisar o comportamento das curvas que re-
presentam S, R e I, durante um intervalo de tempo t. Faremos algumas propostas para as taxas
B,y e u, a fim de verificar o que acréscimos e diminui¢des, acarretam para o panorama das
doencas modeladas por SIRS. As condig¢des iniciais serdo Sy =0,99,1p = 0,01 e Ry =0, o0 que
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significa que nessa simulacdo ha 99% de suscetiveis e 1% de infectados.

Considerando as taxas f =0,5=50%,y =0,1=10% e p = 0,05 = 5%, podemos observar

que 50% dos suscetiveis ficam infectados, 10% dos infectados se recuperam e 5% dos que se
recuperam voltam a ser vulneraveis.

No grafico 4.80, P1 representa o ponto inicial, livre da doenca e o ponto P2, ponto de
estabilidade, como ja estudamos. Podemos observar que, em menos de 20 dias, a quantidade de
infectados ultrapassa a quantidade de suscetiveis, assumindo o seu maior valor, correspondente
a metade dos suscetiveis. Apds isso, hd um decrescimento na quantidade de infectados, refe-
rente aos 10% que vao integrar a classe dos recuperados, porém 90% dos infectados continuam

nesta categoria, por isso atinge a estabilidade, porém com um grande niimero de infectados. Os

suscetiveis com o passar do tempo, atingem uma estabilidade, porém com a menor quantidade
das categorias. Ja os recuperados superam os suscetiveis e os infecciosos apds 20 dias.

N | | |

— Suscetiveis

— Infectados

\ Racuparados
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5
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100
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Figura 4.80 — Evolugdo temporal do modelo SIRS (6=0,5,y =0,1 e 4 =0,05).

Fonte: Autora

Observe as iteracdes iniciais para os suscetiveis obtidas a partir da equagdo 4.65a, repre-
sentadas em 4.81 e em 4.82.

SI_I_I:?I_ '::— B SIII + “ R } &It
I

Figura 4.81 — Primeira iteracao dos suscetiveis(ff = 0.5,y = 0.1, u = 0.05)-modelo SIRS

Fonte: Autora
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0.988991 0.939505 0 0001

Figura 4.82 — Segunda iterac@o dos suscetiveis(ff = 0.5,y = 0.1, u = 0.05)-modelo SIRS

Fonte: Autora

Agora, vejamos as iteracdes iniciais para os infectados calculadas com a equacio 4.65b
e apresentadas em 4.83 e em 4.84.

11 -
[ =1+ C B STy
0.01

0.010395 (099 0.01

Figura 4.83 — Primeira iteracdo dos infectados(f = 0.5,y = 0.1, u = 0.05)-modelo SIRS

Fonte: Autora
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Figura 4.84 — Segunda iteracdo dos infectados(ff = 0.5,y = 0.1, u = 0.05)-modelo SIRS

Fonte: Autora

As iteragdes iniciais do grupo dos recuperados com base na equacdo 4.65c, podem ser
construidas como em 4.85 e em 4.86.

Figura 4.85 — Primeira iteracdo dos recuperados( = 0.5,y = 0.1, u = 0.05)-modelo SIRS

Fonte: Autora
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Figura 4.86 — Segunda iteracao dos recuperados(f = 0.5,y = 0.1, u = 0.05)-modelo SIRS

Fonte: Autora

Temos que na centésima sexagésima primeira iteracdo, a quantidade de infectados, as-
sume o seu maior valor de aproximadamente 0.51. Deixamos como exercicio para o leitor, a
determinacdo da quantidade de iteragdes, para que o nimero de suscetiveis se torne igual aos
infectados, os removidos igual aos suscetiveis e os removidos igual aos infectados.

Agora, vamos reduzir o valor de 8 para 0,25 e manter as outras taxas com 0S mesmos
valores, como pode ser visto na figura 4.87. O grafico passa a ter a curva dos infecciosos mais
achatada e os 25% irdo representar a maior quantidade de infectados, obtida em menos de 40
dias. A quantidade de suscetiveis se mantém superior a quantidade de infectados durante todo
o periodo. Os recuperados ultrapassam os infecciosos em menos de 40 dias e os suscetiveis
em 40 dias. Ap6s 80 dias, as quantidades de suscetiveis e de recuperados se aproximam. Com
1ss0, propomos uma diminui¢ao no valor de f capaz de resultar num efeito satisfatdrio, que € a
diminuicao no total de infectados.
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Figura 4.87 — Evolu¢do temporal do modelo SIRS (f=0,25,y=0,1¢e p=0,05).

Fonte: Autora

No préximo caso, com o grafico em 4.88, utilizamos = 0,5,y = 0,25 e u = 0,05, que
representa uma situacdo favordvel, onde em 20 dias, os infectados assumem o maior valor,
sofrendo redugdo apds este periodo. Entre 20 e 40 dias, aproximadamente, podemos perceber
que hd mais recuperados do que suscetiveis. Com mais de 40 dias, a quantidade de suscetiveis
ultrapassa a quantidade de recuperados, podendo no futuro, tornarem-se ou nio infecciosos.
Isso deve-se ao fato de que apenas uma parcela dos recuperados p.R, voltam a ser suscetiveis,
0 que os tornam vulneraveis a doenga. Os demais presentes no grupo dos recuperados, nao
voltam a desenvolver a doenga.
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Com base no que estudamos, podemos considerar que o modelo SIRS € importante para
analisar a forma com que uma doenga se espalha e eventualmente declina em uma populagao,

sendo uma ferramenta valiosa, para se prever os surtos e orientar politicas de satide publica.

Proporgao da Populagio

0z r

Figura 4.88 — Evolu¢do temporal do modelo SIRS (=10,5,y =0,25 ¢ p=0,05).
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Fonte: Autora

4.6 Modelo SIRV com dinamica vital

A introduc¢d@o de medidas de controle tal como a vacinag¢do, € uma maneira para controlar
a transmissdo de doencas, mas, ao diminuir o nimero de suscetiveis, imunizando-os, teremos
por consequéncia a diminui¢@o da incidéncia da doenga? Quantas pessoas devem ser vacinadas
de modo que ndo se estabeleca uma epidemia? [20]. Essas sdo perguntas importantes, pois
espera-se que a imunizacdo, obtida através da vacina, venha impedir o estabelecimento ou o

retorno de uma epidemia.

O diagrama 4.89 apresenta o fluxo do modelo SIR com vacinagdo, sendo v a taxa de
vacinagdo, e as demais taxas, lembrando que todas s@ao maiores do que zero. Neste modelo

estamos considerando a dindmica vital.
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Figura 4.89 — Diagrama compartimental que representa o modelo SIRV.

Fonte: Autora

O grupo dos suscetiveis € beneficiado com os nascimentos, 7.N, e prejudicado com a
saida de individuos que se tornaram infectados, B.S.I e pelos individuos que tiveram morte
natural, p.S, e pela transferéncia de individuos imunizados com a vacinacdo, v.S. Ja o grupo
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dos infectados recebe novos infectados, B.S.I, e perde os seus infectados mortos por causa
natural, u.I, além de perder os infectados mortos em decorréncia da doenga, a.I, e também
perde os individuos que adquiriram imunidade apds a cura da doenca, y.I. O ultimo grupo € o
dos removidos que se beneficiam com a entrada dos individuos que adquiriram imunidade apds
a cura da doenga, y.I, e com os individuos imunizados por vacinagdo, v.S, além de sofrer as
perdas com a morte de removidos por causa natural, u.R. O sistema de equagdes sem dindmica
vital, pode ser representado como:

das
22— _B.SI-v.S
ar - PSSy
dl
2= BSI—v.1 473
ey B Y (4.73)
ar I+v.S
— =Y. V..
ar !

Podemos reescrevé-lo com equagdes de diferencas através do sistema 4.74:

Sii1—Si=(=B.S.I-v.8).At (4.74a)
Lis1—1 = (B.S.I-y.D).At (4.74b)
Ris1— R = (y.I+v.5).At. (4.74c¢)

O sistema de equacdes com dindmica vital, é representado da seguinte forma:

ds
T n.N-B.SI-uS-v.S
dl
S —=BSI-pl-al-vy.I (4.75)
dt
ar _ 14 S—u.R
—_— =Y. V.o — U.n.
ar 7 H

Podemos reescrevé-lo com equagdes de diferencas:

St41=Si=@.N-B.S.1—pu.S-v.5).At
Iiiv—1Ii=B.SI-pl—-al-y.I.At (4.76)

Rt+l —R[ = (YI"‘VS—MR)At

o dR dS dI
As condig¢des iniciais sdo S(0) = Sy, 1(0) = Ip e R(0) = 0. Como temos N = BPTRPTS
iremos considerar o sistema bidimensional:
das
—=a.N-B.8SI-uS-v.S
dt & p K v
“4.77)
dl

—=pB.SI1-pl-a.l-y.l

=P Iz Y

Para justificar a necessidade de uma vacinacao, devemos considerar Ry > 1, pois quando Ry < 1,

o0 sistema converge para para uma situacao satisfatoria, onde a populacdo encontra-se livre da
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doenca, portanto ndo ha epidemia. Por este motivo, devemos considerar que a taxa de reprodu-
tibilidade basal seja maior que 1. Como ha uma variacdo crescente de infectados ao longo do

al . ) L
tempo, R >0 em 4.77 e a quantidade de infectados inicial € positiva, temos que:

(B.So—y—p-—a).ly>0

(B.So—y—p—-a)>0
B.So>(y+u+a).l

—Eﬁi—>1
Y+u+a
Portanto:
(ﬁSO—y—y—a)m>0<=:-—ﬁ£1—>1. (4.78)
Y+u+a
.S
Seja Ry = f—i, a reprodutibilidade basal que representa o nimero médio de infec¢des
Yruta

ocasionadas pela dissemina¢cdo de um udnico individuo. Com isso, teremos uma epidemia se

Ro>1:
.S +u+
&>1@50>u_

Ry>1 <
Y+pta B

(4.79)

Y+u+a

Podemos observar que existe um nimero critico de suscetiveis Sg > , onde a doenga

se espalha na populacdo. Se Iy for igual a zero, a populacdo estard livre da doenca, nesse caso,
temos que Sy = S(¢) = N(t), para qualquer intervalo de tempo ¢, porém se Iy > 0, poderemos ter
duas situacdes:

12y 5o < LEHTQ

: a quantidade de pessoas infectadas decrescera até chegar a inexistir.

21 5= LTHTA

dos atingindo valores crescentes até que se atinja o valor critico de suscetiveis Sy obtido em
4.79,para algum intervalo de tempo ¢, até quando I(t) comecar a decrescer até se anular.

e Ip > 0: a doenga se dissemina entre a populacdo, com os infecta-

Segundo [20],quando propomos uma vacinacao da populacdo, estamos propondo uma
intervencdo no processo natural da doenca, por meio da inclusdo de um programa de vacinagao
que terd como objetivo diminuir o nimero de suscetiveis, imunizando-o, consequentemente
diminuindo o nimero de reprodutibilidade basal Ry.Ao vacinar uma populacdo, teremos um
percentual v.S(¢) de individuos imunizados no intervalo de tempo ¢ , enquanto que (1 —v).S(¥)
permanecem suscetiveis a doenca.

A vacinacao tem por objetivo diminuir a quantidade de suscetiveis (1 —v).S(t) até alcan-

Y+u+a

car o valor de S(¢) = , em algum periodo.

Com isso, podemos perceber que quando o porcentual de suscetiveis for menor ou igual
ao ponto critico, a incidéncia da doenga ird decrescer até desaparecer, de acordo com 4.80 :

Y+u+a Y+u+a

Ytuta _y+p+a
B.S

1-v).8< — (1-v) < v=>1 T

(4.80)
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4.6.1 Analise Grafica

Vamos considerar para as nossas simulagdes, os seguintes valores: So=0,9, [y =0,1¢
Ry = 0. Além disso, tomemos a taxa de infec¢do = 0,3, a taxa de recuperacdo y =0, 1, a taxa
de morte natural u = 0,01, a taxa de vacinag¢do v = 0,02, a taxa de morte pela infeccdo a = 0,05
e a taxa de nascimentos 7 = 0,02. Observe o grafico em 4.90.
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Figura 4.90 — Evolu¢do temporal do modelo SIRV ( =0,3,y =0,1,u =0,01,v =0,02,a =
0,05,7 =0,02).

Fonte: Autora

Observe as iteragdes iniciais dos suscetiveis obtidas pela equacdo 4.74a e expostas em
491 e em 4.92. Os suscetiveis comegam a decrescer, até atingir um valor minimo entre 0,2
e 0,4, voltando a crescer novamente, at€ se estabilizar entre 0,4 ¢ 0,6. Isso ocorre devido a
parcela dos suscetiveis que nio foram vacinados, portanto continuam vulneraveis, podendo ser
infectados a qualquer momento.

L 1
S=S+ ()l N-B S,

I - . .
|+ \ | ' | |1- it

Figura 4.91 — Primeira iteracdo dos suscetiveis(f = 0.3,y =0.1,4=0.01,v =0.02,a = 0.05,7 =
0.02)-modelo SIRV

Fonte: Autora
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Figura 4.92 — Segunda iteracdo dos suscetiveis(f =0.3,y =0.1,2=0.01,v =0.02,a = 0.05,7 =
0.02)-modelo SIRV

Fonte: Autora

As iteragdes dos infectados resultantes da aplicacdo da equacdo 4.74b, sdo apresentadas
em 4.93 e em 4.94.
0,1+0,001+0,05

Nesse caso, o ponto critico seria igual a 03 =0,53 e de acordo com 4.79,

como 0,9 > 0,53, entdo, hd uma disseminacdo da doenga. Além disso, Ry = 1,7 aproximada-
mente, o que significou um crescimento maximo em torno de 20% da quantidade de infectados
entre 10 e 15 dias, decrescendo apds este periodo. O decrescimento da curva dos infectados

)

ocorre exatamente na iteragao onde S(f) < , ou seja, os contaminados comec¢am a diminuir,

quando S(¢) <0,54. Ap6s 500 iteragdes, ou ’seja, 50 dias, tendem a inexistir.

. a. Y II),ﬂ,T

I G
| 5 |

Figura 4.93 — Primeira iteracdo dos infectados(f = 0.3,y =0.1,u =0.01,v = 0.02,a = 0.05, 7 =
0.02)-modelo SIRV

Fonte: Autora

Figura 4.94 — Segunda iteracdo dos infectados(f = 0.3,y = 0.1, = 0.01,v =0.02,a = 0.05, 7 =
0.02)-modelo SIRV

Fonte: Autora

Agora, vejamos os recuperados obtidos através da equacdo 4.74c, e apresentados em

4.95 e em 4.96. H4 um crescimento muito grande nesta categoria, jd que uma parcela dos

infectados se recupera e outra dos suscetiveis, torna-se vacinada, deixando de estar vulneravel
a doenca.
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R=R +(v. L+ +v.8 - 11.R)
=1 It Cy t ' p | H II)&i

Figura 4.95 — Primeira iteragdo dos recuperados(ff = 0.3,y = 0.1, =0.01,v =0.02, @ = 0.05, 7 =
0.02)-modelo SIRV

Fonte: Autora

Figura 4.96 — Segunda iteracao dos recuperados(f = 0.3,y = 0.1, 4 = 0.01,v =0.02, @ = 0.05, 7 =
0.02)-modelo SIRV

Fonte: Autora

Fica evidente que se aumentamos a taxa de contdgio para § = 0,4, continua havendo
um crescimento da quantidade de infectados, ja que Ry = 2,25, porém este aumento € superior,
como mostra o grafico 4.97. Podemos observar que o crescimento maximo de infectados supera
0s 20% anterior. A populacdo ultrapassa essa margem apos 5 dias.
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Figura 4.97 — Evolugdo temporal do modelo SIRV (f = 0,4,y =0,1,u =0,01,v =0,02,a =
0,05,7 =0,02).

Fonte: Autora

Agora, vamos diminuir o valor da taxa de contdgio § para 0,2. Observe que apesar do
ponto critico ser igual a 0,8, menor que Sy, hd uma melhora na situacdo de acordo com 4.98,

pois ndo hd crescimento perceptivel de infectados, ja que Ry = 1,125.
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Figura 4.98 — Evolugdo
0,05, =0,02).

T
— Suscetiveis
Infectadas
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temporal do modelo SIRV (f =0,2,y =0,1,u =0,01,v =0,02,a =

Fonte: Autora

Se diminuirmos ainda mais o contagio,

1,6 e Ry = 0,56 aproximadamente. Com isso,
mais nenhum infectado. Observe isso em 4.99.

colocando = 0,1, o ponto critico passa a ser
a curva dos infectados decresce, até ndo haver

LR}

0.4

Proporgdo da Populacdo

02

—— Suscetiveis
Infectados
Recuperados

Figura 4.99 — Evolugdo
0,05,7 =0,02).

ED 100
Dias

temporal do modelo SIRV (=0,1,y =0,1,u =0,01,v =0,02,a =

Fonte: Autora

Perceba que ainda ndo realizamos alteragcdes na taxa de vacinagdo, onde apenas 2% da
populacdo estava vacinada. Agora, vamos propor algumas mudancas para v. Para isso, retorna-
remos ao caso de f = 0,4, proposto no grafico 4.97. O nosso objetivo serd diminuir a quantidade
de infectados, através do processo da vacinac¢ao. Portanto, utilizaremos primeiramente v = 0, 06,
ou seja 6% da populagdo serd vacinada. Com isso, podemos ver a mudancga no grafico 4.100.

80



Isso fez com que a situagdo melhorasse, mas ainda temos um méiximo de aproximadamente
20% de infectados em 10 dias.
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Figura 4.100 — Evolucao temporal do modelo SIRV (8 =0,4,y =0,1,u=0,01,v =0,06,a =
0,05,7 =0,02).

Fonte: Autora

O préximo passo, serd aumentar ainda mais a quantidade de vacinados, fazendo v =0, 3,
ou seja, haverd 30% de pessoas vacinadas na figura 4.101.
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Figura 4.101 — Evolucdo temporal do modelo SIRV (§ = 0,4,y =0,1,u =0,01,v =0,3,a =
0,05,7 =0,02).

Fonte: Autora

Podemos perceber que quanto mais aumentarmos a taxa de vacinagdo, a situacdo tende
a melhorar. Neste modelo, estamos propondo uma possibilidade de vacinagdo, para que os sus-
cetiveis, nao sejam transferidos para a categoria dos infectados e sejam inseridos no grupo dos
recuperados. Quanto mais aumentarmos a taxa de vacinacao, menos pessoas estardo vulneraveis
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a serem infectadas, aumentando o grupo dos recuperados.Com isso, a quantidade de infectados
diminui, ja que hd uma parcela menor de suscetiveis ndo vacinados, para se infectarem. Diante
de uma situacdo grave onde a taxa de contdgio, estd muito superior ao esperado, para ndo se ter
uma epidemia, deve-se buscar aumentar a taxa de vacinagdo. Por este motivo, que as campanhas
de vacinagdo sdo tdo importantes e a preventiva conscientiza¢do da populacao.

Completamos a evolucao proposta neste trabalho, iniciamos com o modelo SI e alcan-
camos o modelo SIRV com uma proposta de vacinagao.
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Evolucao dos modelos epidemiolégicos para a Aids
e Covid-19.

Segundo [34], independente da ordem do método de Runge-Kutta escolhido, os erros de
truncamento surgem em cada passo, devido ao fato que ndo se considera todos os termos da série
de Taylor, se comportando, como por exemplo, com erro de truncamento local de ordem trés,
para o caso de Runge-Kutta de 4* ordem, assim quanto maior a ordem, maior € a aproximagao
com a solucao exata.

Além da facilidade de implementagdo do método Runge-Kutta, este aproveita a qua-
lidade dos métodos da série de Taylor e a0 mesmo tempo elimina seu maior defeito que € o
calculo das derivadas da func¢do. Dessa forma, o uso de coeficientes possibilita obter solu¢des
com precisdo temporal, atingindo caracteristicas apropriadas de amortecimento de erro [35].

Os métodos de Runge-Kutta sdo técnicas numéricas usadas para resolver equagdes di-
ferenciais ordinarias nao lineares. Em andlise numérica, esses métodos formam uma familia
importante de metddos iterativos implicitos e explicitos para a resolucdo numérica (aproxima-
¢d0), podendo ser utilizados para o estudo dos modelos epidemiol6gicos.

O método de Runge-Kutta de ordem 1 € denominado como método de Euler, que € a
forma mais simples desses métodos. O procedimento € o mesmo que ji utilizamos a partir
dos sistemas de equacdes de diferencas estudados, por isso encontramos os mesmos resultados.
Usando a férmula para esse método de Runge-Kutta temos:

Yna1=Yn+ fln, Yn). AL (5.1)

Substituindo as funcdes referentes aos suscetiveis e infectados do modelo compartimen-
tal ST em 5.1, obtemos as equagdes em 5.2:

Spi1=Sn—(B.S.I).At (5.2a)
Ins1 = In+ (B.S.1).AL (5.2b)

Portanto, quando calculamos as iteragOes a partir dos sistemas de equacdes de diferen-
cas, estamos calculando as iteragdes, utilizando o Runge-Kutta de primeira ordem (RK1).

5.1 Runge-Kutta de Primeira ou Segunda Ordem

Vamos resolver essas equagdes usando o método de Runge-Kutta de segunda ordem
(RK?2) para o modelo SI e SIS. Esse método é uma maneira de aproximar a solucdo de equagdes



diferenciais. O primeiro passo serd calcular os valores intermedidrios K e K, para cada varidvel
(Sel.

Existem alguns beneficios na utilizagdo deste método, tal como a precisdo, pois ele
fornece uma aproximag¢do mais precisa do que métodos simples como o de Euler (RK1), além
da sua flexibilidade, pois ele permite ajustar o tamanho do passo, para melhorar a precisdo ou
reduzir o tempo de cdlculo.

Se estivermos considerando o modelo SI, para S, () temos:

Ksl = _ﬁ.Sn.In.
Ks2 = —B.(Sn + AL.Ks1).(In + ALK ).
At
Sn+1:Sn+7.(K51+k32).. (53)

Para I, (t) temos:
Kll :ﬂ.Sn.In.

Kio = B.(Sn+ At.Ks1).(In + At.Kiq).
Ins1 = In"’%-(Kil + ki2). (5.4)
Se estivermos considerando o modelo SIS, para S, (#) temos:
K1 =-B.Sp.In+vy.1,.
Kso =—B.(Sp+ At.Ks1).(In+ At.Kiy) +y.(In+ At.Kjy).
Sn+1 :Sn+%.(l<sl+k52). (5.5

Para I, (t) temos:
Kil = ﬁ.Sn.In _/)/.In.

Kio = B.(Sp+ At.Ks1).(In+ At.Kip) —y.(In+ At.K;y).

At
In+1:In+?-(Ki1+ki2)- (56)
Se estivermos considerando o modelo SIR, para S, (f) temos:
Ksl = _ﬁ.Sn.In.
Kso ==p.(Sp+ At.K1).(In + At.Kjy).
At
Sn+1 :Sn+7-(Ksl+k32)- (57)

Para I,(t) temos:
Kl]. = ﬁ.Sn.In _Y.In.

Ki» = B.(Sp+ At.Kg1).(In + At.Kip) —y.(In + At.Ky).
At
In+1:In+7-(Kil+ki2)- (5.8)

Para R, (t) temos:
Krl = ’)/.In.

Ky =7.(In + At.K;1).
84



At
Ryy1=Ry+ 7-(Kr1 + kr2). (5.9

Fica como exercicio a constru¢do dos modelos SIRS e SIRV relacionados ao (RK2). Os
mesmos procedimentos realizados com o SI, SIS e SIR deverdo ser executados.

De maneira geral, o método de Runge-Kutta pode ser definido para ordens maiores,
como o de 4%, 5* e 6° ordens, e assim sucessivamente. O método de Runge-Kutta de 4* ordem
¢ o mais usado, por ser uma combinacdo de simplicidade, alta precisdo e economia, sendo
provavelmente, um dos processos numéricos mais populares [36].

No contexto que estudamos, a técnica de se saber calcular o Runge-Kutta, € muito im-
portante. Apesar da utilizacdo de programas de computador, para o célculo é preciso uma
quantidade muito grande de iteragdes, por isso precisamos compreender como isso funciona.

Com base nisso, vamos exemplificar os calculos do Runge-Kutta de primeira e segunda
ordens em situacdes de epidemia. Os graficos das evolucdes temporais, neste capitulo, nio estao
adimensionalizados, portanto, o tempo € dado em dias.

5.1.1 Aids em Manaus

Segundo [37], a situacdo da aids em Manaus entre os anos de 2009 a 2014, foi motivo
de grande preocupacao principalmente nos ambitos estruturais e de saide, pois a regido norte €
uma das que mais sofrem com a falta de servigos publicos de saude, assim, um estudo epidemi-
oldgico nesta regido € de suma importancia devido a caréncia da populagdo, que teve suas altas
variacOes em relacdo aos casos de aids, como pode ser observado na tabela 5.1.

Tabela 5.1 — Numeros de infectados e suscetiveis da Aids em Manaus em 2009 a 2014.
H Ano Infectados Suscetiveis H

2009 229 1.738.412
2010 551 1.802.463
2011 599 1.831.825
2012 674 1.861.164
2013 957 1.981.222
2014 988 2.019.313

Faremos uma andlise sobre a provavel situacdo inicial da Aids neste estado. Para isso,
as quantidades iniciais de suscetiveis e infectados necessarias para este estudo, foram obtidas
pela média aritmética simples no grupo dos suscetiveis e em seguida, no grupo dos infectados.
Assim, a partir da tabela 5.1, durante os anos de 2009 a 2014 foram registrados 3.998 infectados
e 11.234.399 suscetiveis. Dividindo o somatério de cada grupo por seis, ja que foram analisa-
dos num periodo de seis anos, temos os resultados das médias: Iy = 666,3 e Sp = 1.872.399, 8.

. I S )
O valor de N € igual a 1873066, 1, a fracao NO =0,00036 e a fracao NO =0,99964. O que sig-

nifica que aproximadamente, 0,036% da populacdo estava infectada, enquanto 99,964% estava
suscetivel, no inicio da epidemia. De acordo com [37], obtemos a taxa de contdgio =0, 1454.

Para a andlise numérica das iteragdes, criamos uma calculadora de evolucio na figura
5.1. Para inicializé-la, basta clicar na bandeira verde. Selecionamos o botdo preto SI e ao
clicarmos no botdao amarelo, obtemos os valores das proximas iteracdes. Caso os botdes azul S
e vermelho I forem clicados, a calculadora exibe como executou os cdlculos das iteragdes. Foi
utilizado o método de (RK1). A calculadora no Scratch foi desenvolvida com base em 16gica

de programacao visual e estd disponivel online [38].
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Figura 5.1 — Calculadora do modelo SI (f=0,1454,y=0e v =0)

Fonte: Autora

Podemos observar a evolugdo temporal, que ird mostrar o comportamento da doenca na
figura 5.2.
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Figura 5.2 — Evolucdo temporal da Aids em Manaus- modelo SI ( =0,1454)

Fonte: Autora

A ideia principal para as iteracdes € usar uma média ponderada de inclina¢des (deriva-
das) para estimar o proximo valor da solu¢do. Primeiro, calcula-se uma inclinacao inicial ki,
com base no ponto atual. Em seguida, calcula-se uma segunda inclina¢do K3, usando um ponto
intermedidrio, que é ajustado com base em k;. A soluc@o no préximo passo é entdo obtida
usando uma combinacdo dessas inclinagdes.

Entdo, para calcularmos as iteragdes dos suscetiveis e infectados, o primeiro passo serd
calcular K; e K>, para em seguida, calcular as quantidades de cada categoria, para um proximo
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intervalo de tempo. Essas iteragdes possuem resultados aproximados. Agora, observe as tabelas
5.2, referente ao (RK1) e 5.3, referente ao (RK2), ambas possuem os resultados com mais casas
decimais, relacionados as cinco primeiras iteracdes. Podemos observar o comportamento do
modelo SI, enquanto a quantidade de suscetiveis diminui, a de infectados aumenta.

Tabela 5.2 — Resultados iniciais da Aids em Manaus-SI (RK1).

H Iteracio Suscetiveis Infectados H
1 0.999634767484384  0.00036523251561600004
2 0.9996294589431671 0.00037054105683280333
3 0.9996240732725525 0.0003759267274473407
4 0.9996186093527414  0.0003813906472584749
5 0.9996130660477016 0.00038693395229828575

Tabela 5.3 — Resultados iniciais da Aids em Manaus-SI (RK?2).
H Iteracao Suscetiveis Infectados H

1 0.9996347674980786  0.0003652705284164017
2 0.9996294203921628 0.00037061819084865943
3 0.9996239950325571 0.00037604411510509426
4 0.9996184902749058  0.0003815494456612303
5 0.999612904958143  0.00038713534370341543

Ap6s 80 dias, ou seja, depois da octingentésima iteragdo, a populacdo de suscetiveis
diminui progressivamente, até passar a inexistir, como pode ser observado nas tabelas 5.4 € 5.5,
com isso, a populacdo de Manaus considerada, torna-se infectada.

Tabela 5.4 — Resultados finais da Aids em Manaus-SI (RK1).
Iteracao Suscetiveis Infectados

996 0.0014382612184428059 0.9985617387815582
997 0.0014173789777027818 0.9985826210222982
998 0.0013967994976914232  0.9986032005023096
999 0.0013765184012450762  0.9986234815987559
1000  0.0013565313741252692 0.9986434686258757

Tabela 5.5 — Resultados finais da Aids em Manaus-SI (RK2).
H Iteracao Suscetiveis Infectados H

996 0.0014452893220423184  0.9985723287533922
997 0.0014244569361947684 0.9985931611360667
998 0.0014039244060687264 0.9986136936631103
999 0.001383687427702768  0.9986339306384818
1000  0.0013637417585663414 0.9986538763047094

Agora, imagine se no caso da Aids houvesse uma possibilidade de recuperagdo para
os individuos infectados, e estes voltassem a ser suscetiveis. Isso, por enquanto, ndo € ver-
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dade, trata-se apenas de uma suposicao. Teriamos, neste caso, uma representacdo do modelo
SIS ao invés do SI. Chamaremos essa nova doenga imaginada, por Aids Idealizada, que pode
representar modelos diferentes do modelo SI.

Como ficaria a montagem das iteragdes para (RK1) e (RK2)? Quais resultados para os
suscetiveis e infectados obteriamos? Como j4 estudamos, se Ry for menor que 1, ndo teremos
uma evolugdo para a situacdo da doenga. Porém se tomarmos y = 0.05816 e usando a mesma
taxa de contdgio 8 = 0.1454, obtemos Ry = 2.5, nesse caso, hd um crescimento da doencga.

Observe o grifico da evolugdo temporal ndo adimensionalizada na figura 5.4. E fécil
perceber que apds a milésima iteragcdo, os infectados passam a assumir valores superiores aos
de suscetiveis. Essa mudanca de modelo, significaria uma estabiliza¢do da quantidade de infec-
tados para 60% da populacdo, onde os 40% restantes estariam suscetiveis, apds o centésimo dia,
ao invés da populagdo inteira tornar-se contaminada em 80 dias, como no modelo SI. Quanto
menor for o Ry, essa porcentagem de estabilidade, tende a diminuir.
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Figura 5.4 — Modelo SIS (f=0,1454 ey =

Figura 5.3 — Modelo SI (8 =0,1454) 0.05816)

Nas tabelas 5.6 e 5.8, podemos observar os resultados das iteracdes iniciais com (RK1)
e (RK2), onde ha um decrescimento dos suscetiveis e um crescimento dos infectados, e se
continuarmos com as iteracdes, que podem ser vistas nas tabelas 5.7 € 5.9, veremos como essa
estabilizacdo acontece.

Tabela 5.6 — Projecdes Iniciais da Aids Idealizada-SIS (RK1).

H Iteragio Suscetiveis Infectados H
1 0.999636861244384  0.00036313875561600005
2 0.9996336951392663  0.0003663048607337443
3 0.9996305014466276  0.000369498553372476
4 0.9996272799263822 0.00037272007361780656
5 0.9996240303363605 0.00037596966363956564
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Tabela 5.7 — Projecdes Finais da Aids Idealizada-SIS (RK1).

H Iteracio Suscetiveis Infectados H
1495 0.4021742557879025  0.597825744212097
1496  0.40215535631663374 0.5978446436833658
1497 0.4021366205345822  0.5978633794654173
1498 0.4021180470342804 0.5978819529657192
1499 0.4020996344201852  0.5979003655798144

Tabela 5.8 — Projecdes Iniciais da Aids Idealizada-SIS (RK2).

H Iteragio Suscetiveis Infectados
1 0.9996368612525988  0.0003631524303668721
2 0.9996336813537204 0.00036633244899059267
3 0.9996304736265633  0.00036954029693884327
4 0.9996272378278956  0.0003727762174527951
5 0.9996239737123647  0.0003760404558943504

Tabela 5.9 — Projecdes Finais da Aids Idealizada -SIS (RK?2).

H Iteracao Suscetiveis Infectados H
1495  0.40215762312340914 0.5978461824552026
1496  0.40213894881228746 0.5978648567637874
1497  0.40212043555483346  0.597883370018748
1498  0.40210208197194525 0.5979017235991856
1499 40208388669615985  0.5979199188725624

Por exemplo, se a taxa de recuperacdo y passar a ser igual a 0.0727, o coeficiente Ry
torna-se igual a 2, observe como as curvas dos infectados e suscetiveis atingem uma porcenta-
gem estabilizante em torno de 50% na figura 5.6.
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Figura 5.5 — Modelo SIS (f =0,1454,y =

0.05816)
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Figura 5.6 — Modelo SIS (f =0,1454,y =

0.0727)

Neste mesmo contexto, € se comecdssemos a imaginar, que existe uma recuperagao,
através de algum tipo de tratamento, onde o individuo recuperado, ndo volte a ser suscetivel.
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Teriamos entdo o modelo SIR, para uma Aids Idealizada. Considerando as mesmas taxas f§ =
0.1454 e y = 0.05816 do modelo SIS, vamos verificar quais resultados, poderiamos obter na
figura 5.7.
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Figura 5.7 — Simulagdo da Evolucao temporal da Aids Idealizada- modelo SIR (8 =0,1454 e
y =0.05816)

Fonte: Autora

O que propomos é uma simulacdo de algo irreal, pelo menos, até a elaboracdo deste
trabalho, onde uma parcela dos infectados se recupera e deixa esta categoria, passando para o
grupo dos recuperados. Isso pode acontecer, devido a algum tratamento que cure o doente, e este
ndo volte a ser vulneravel. Observe a inicializagcdo da calculadora em 5.8. Nesse caso, existe a
possibilidade de observagdo das iteracdes no botao azul dos suscetiveis, no botao vermelho dos
infectados e no botdo verde dos recuperados.
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Figura 5.8 — Calculadora do modelo SIR (5 =0,1454,y =0,05816 ¢ v =0)
Fonte: Autora
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Nas iteracdes iniciais, temos um crescimento dos infectados, o que provoca um aumento
dos infectados que foram recuperados e uma diminui¢do dos suscetiveis, como pode ser obser-
vado na tabela 5.10.

Tabela 5.10 — Projec¢des iniciais para Aids Idealizada -SIR (RK1).

H Tteracio Suscetiveis Infectados Recuperados H
1 0.999634767484384  0.00036313875561600005 0.0000020937600000000003
2 0.9996294893753187  0.0003663048496786129  0.000004205775002662657
3 0.9996241652761708 0.00036949851982075475  0.000006336204008393469
4 0.9996187947868679 0.00037272000573243086  0.000008485207399670979
5 0.9996133775038686 0.00037596954917839447  0.000010652946953010796

Neste caso, a porcentagem de infectados, atinge um pouco mais de 20%, em seu valor
maximo. Podemos verificar na tabela 5.11 que na iteragdo de numero 959, temos a maxima
parcela de infectados encontrada.

Tabela 5.11 — Projecdes com pico para Aids Idealizada -SIR (RK1).

H Iteracio Suscetiveis Infectados Recuperados H
956 0.402676470405198 0.23404619135121127 0.36327733824359165
957 0.401306149642874 0.23405529946463616 0.3646385508924903
958 0.399940438979674 0.23405974450615022  0.3659998165141766
959 0.398579350205399 0.23405954180637734 0.3673611079882244
960 0.397222894702198 0.23405470701443185 0.3687223982833703

Ap6s 200 dias, a populagdo de infectados desaparece, pois irdo integrar o grupo dos re-
cuperados. Esse grupo dos removidos cresce até atingir, aproximadamente, 89% da populacio.
Ja uma parcela de 11%, aproximadamente, mantém-se suscetivel apds 150 dias. Isso poderd ser
observado em 5.12.

Tabela 5.12 — Projecdes finais para Aids Idealizada -SIR (RK1).

H Iteragio Suscetiveis Infectados Recuperados H
1995  0.10886393767899828 0.005219538115580537 0.8859165242054218
1996  0.10885567576787354 0.005197443193025057 0.885946881039102
1997  0.10884744945475579 0.005175441176532173 0.8859771093687127
1998  0.10883925858462082 0.005153531680784432 0.8860072097345953
1999  0.10883110300313331 0.005131714322016498 0.8860371826748508

Perceba que comecamos num modelo SI, onde toda a populacdo, tornava-se infectada,
migramos para um modelo SIS em que a porcentagem de infectados, apesar de poder indicar
uma situacdo grave, estabilizava-se, depois de alguns dias. Ja no modelo SIR, a parcela mdxima
de infectados, foi inferior com relacdo ao modelo SIS, e apds alguns dias, a populagdo infectada
foi extinta.

Passando para uma préxima modificacdo, consideremos que depois de inseridos na
classe dos recuperados, os individuos voltem a ser suscetiveis. O que estamos tratando a partir
de agora, refere-se ao modelo SIRS. Usando os dados ja utilizados inicialmente, tomemos uma
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taxa pu para perda de imunidade, muito préxima ou igual a zero, com isso, teremos a evolug¢ao
temporal apresentada na figura 5.7, ou seja, teremos o modelo SIR. O que significa, que temos
que tomar valores para p mais proximos de 1.

Vamos assumir para o modelo SIRS, uma taxa p = 0.99, com isso, obtemos um gréafico
na figura 5.9, referente ao modelo SIS, porém contendo a curva dos recuperados com valores
muito pequenos.
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Figura 5.9 — Simulacdo da Evolu¢do temporal da Aids Idealizada- modelo SIRS (8 = 0, 1454,
¥ =0.05816 ¢ 1 =0.99)

Fonte: Autora

Se tomarmos u = 0.05, podemos perceber, analisando a evolugdo temporal, através da
figura 5.11, que os suscetiveis decrescem, atingindo um ponto minimo de 37%, aproximada-
mente, e depois voltam a crescer, estabilizando-se em 40%. Ja os infectados crescem, atingem
um ponto maximo de 32%, aproximadamente, e depois se estabilizam em 28%. Os recuperados
crescem e ultrapassam os infectados entre 113 e 120 dias, estabilizando-se em 32%, aproxima-
damente. Esses valores obtidos com as iteracdes, podem ser observados na tabela 5.14.
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Figura 5.10 — Modelo SIR (5 =0,1454,y = Figura 5.11 - Modelo SIRS
0.05816) (f=0,1454,y =0.05816 e 1= 0.05)
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Tabela 5.13 — Proje¢des iniciais para Aids Idealizada -SIRS (RKT1).
H Iteracio Suscetiveis Infectados Recuperados H

1 0.999634767484384  0.00036313875561600005 0.0000020937600000000003
2 0.9996294998441186  0.0003663048496786129  0.0000041953062026626565
3 0.999624196721446  0.00036949851987651234  0.000006304758677380157
4 0.9996188577557666 0.00037272000595761455  0.000008422238275595052
5 0.9996134825836142  0.00037596954974679185  0.000010547866638866564

Tabela 5.14 — Projecdes finais para Aids Idealizada -SIRS (RK1).

Iteracao Suscetiveis Infectados Recuperados
1998 0.4012984058408369  0.2767038833664175  0.32199771079274786
1999  0.40129386076607804 0.27670910720948105  0.3219970320244432
2000 0.4012893001034148 0.27671431286473613  0.3219963870318513
2001  0.40128472419125427  0.2767195002684346  0.32199577554031333
2002  0.40128013336564045 0.2767246693581888  0.321995197276173

Analisando a transformagao do modelo SIR para o modelo SIRS, podemos concluir que
houve um retrocesso. Para termos uma evolu¢do dos modelos, precisamos retornar ao modelo
SIR e avancar para o modelo SIRV.

Portanto, para completar o processo de evolu¢ao dos modelos epidemioldgicos, para a
Aids Idealizada, precisamos considerar que existe uma vacina, capaz de imunizar os suscetiveis.
Assim, uma parcela desses individuos, serdo imunizados, fazendo com que nenhum deles, ap6s
terem sido vacinados, desenvolvam a doenga. O modelo que estamos mencionando € o SIRV,
cujo sistema, sem dinamica vital, foi apresentado em 4.73. Se considerarmos valores muito
proximos ou iguais a zero, para a taxa de vacinacdo v, retornaremos para a evolugdo temporal
da figura 5.7, ou seja, estaremos estudando o modelo SIR. Por exemplo, tomemos v = 0.0001,
observe a figura 5.12, que mostra a situagao.
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Figura 5.12 — Evoluc@o temporal da Aids Idealizada- modelo SIRV (f =0.1454,y = 0,05816 e
v =0.0001)

Fonte: Autora

Na calculadora ao clicarmos no botdo preto SIRV estaremos atribuindo automaticamente
a taxa de vacinacdo v = 0.01. Para utilizarmos uma taxa com valor diferente temos que clicar
no botdo rosa e digitar uma nova taxa. O que faremos para supor que a taxa v seja igual a
0.001, ou seja, temos 0,1% dos suscetiveis, recebendo a vacina, isso ndo é uma situagdo ideal,
mas pode acontecer. Devido a vdrios fatores, suscetiveis podem evitar a vacinagdo. Vejamos a
inicializacdo da calculadora em 5.13.
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Figura 5.13 — Calculadora do modelo SIRV (8 =0,1454,y =0,05816 ¢ v =0,001)

Fonte: Autora

Observe como fica a evolugdo neste caso, através da figura 5.15.
Nesse caso, de acordo com a equagdo dada no capitulo 4, em 4.79, se Sp > Z, obtemos

5
94



0.05816
0.99964 >
0.1454

lacdo. Com a intervenc¢do da vacina, de acordo com a equagao 4.80, temos (1-0,001).5(¢) < 0,4,
ou seja, 0,999.5(¢) < 0,4, o que significa S(t) < 0,4 aproximadamente.

, que resulta em 0.99964 > 0.4, com isso, a doencga se dissemina entre a popu-
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Figura 5.14 -  Modelo  SIRV Figura 5.15 -  Modelo  SIRV
(f=0,1454,y =0.05816 e v = 0.0001) (B=0,1454,y =0.05816 e v = 0.001)

Observe a tabela 5.15, com resultados aproximados, que mostra até a quinta iteracao no
caso da evolucao da figura 5.15.

Tabela 5.15 — Projecdes iniciais para Aids Idealizada -SIRV (RK1).
H Suscetiveis Infectados Recuperados Vacinados H

0.9995348035  0.0003631387556160 0.0001021 0.0000999640000000
0.999429572423 0.0003663043218649 0.0002041232553511  0.000199917480348
0.99932430644  0.0003694969226346 0.0003061966385293  0.000299860437591
0.999219005153  0.000372716783634  0.0004082780632753  0.00039979286823460
0.999113668183  0.0003759641324075  0.00051036768460 0.00049971476875

A tabela 5.16 apresenta os resultados aproximados da iteracdo de nimero 995 até a
999. Quando os suscetiveis atingem a porcentagem de aproximadamente, 40%, os infectados
atingem o ponto miximo de aproximadamente, 19% e comecam a decrescer, até inexistir. Os
recuperados se igualam aos suscetiveis e em seguida, ultrapassam.

Tabela 5.16 — Projecdes com pico para Aids Idealizada -SIRV (RK1).
H Suscetiveis Infectados Recuperados Vacinados H

0.401530144707 0.1906757191686  0.407794136124  0.0830956540236
0.400376779499  0.19067996138  0.408943259121 0.0831358070380
0.3992267025496 0.190681006 0.4100922914543  0.083175844716
0.3980799231170 0.1906788620275 0.4112412148554 0.0832157673862

0.39693645022  0.190673538671  0.412390011109  0.0832555753785

A tabela 5.17, mostra as iteracdes de nimero 2496 a 2500. Os vacinados crescem e
estabilizam-se em 11%, aproximadamente, assim como os suscetiveis, que decrescem e estabilizam-
se na mesma faixa. J4 os recuperados estabilizam-se em 89%, aproximadamente.
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Tabela 5.17 — Projec0Oes finais para Aids Idealizada -SIRV (RK1).

H Suscetiveis Infectados Recuperados Vacinados H
0.1100385827509 0.000985624102544 0.888975793147 0.1069932225497
0.1100260019325 0.000981468672882 0.8889925293946082 0.1070042264079

0.110013429200  0.00097733058314 0.889009240217 0.1070152290081
0.110000864524  0.000973209761835 0.889025925714 0.1070262303511
0.1099883078736 0.000969106137786 0.889042585989 0.1070372304375

Podemos verificar, observando as evolugdes temporais, que a medida que a taxa de va-
cinacdo aumenta, a méxima quantidade de infectados vai diminuindo, até ndo existir mais ne-
nhum infectado e a curva vermelha fixar-se sobre o eixo das abscissas. Vamos tomar uma taxa
de vacinacdo v = 0.01, para poder visualizar o que acontece com as curvas, na figura 5.16.
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Figura 5.16 — Evolucdo temporal da Aids Idealizada- modelo SIRV (f =0.1454,y = 0,05816 e

v =0.01)

Fonte: Autora

Agora, vamos imaginar que 9% dos suscetiveis e recuperados foram vacinados, isso
pode ser observado na figura 5.17. Usando a equacdo de intervengao 4.80, temos que a por-
centagem de ndo vacinados (1 —0,09), que representa 91%, devera ser menor ou igual a 0,4,

0,4 ) . . . ~
portanto, S(f) < ——, ou seja, S(f) < 0,44, aproximadamente. Por este motivo, a intervengdo €

)
realizada no inicio e nao ha nenhum crescimento dos infectados. Apds 50 dias, toda a populagao
estd vacinada e ndo existem mais individuos suscetiveis.

96



— Sumnativeis

=== |nfectados
Recuperados

—acNA00E

0.

04

Proporgao da Populagao

0.2

a 50 100 150 200 250 300
Tempo

Figura 5.17 — Evolucao temporal da Aids Idealizada- modelo SIRV (f = 0.1454,y = 0,05816 e
v =0.09)

Fonte: Autora

Portanto, nesta simulacao, para o modelo SIRV, a doenga se dissemina entre a populacao,
. Y
pois Sp > —.
B

Porém, na iteracdo em que a quantidade de suscetiveis, for menor ou igual a 1-0)
-V
os infectados comecam a decrescer até desaparecer. Para isso acontecer mais rapidamente, a

parcela de nao vacinados (1 — v).S(#), precisa ser a menor possivel, pois terd mais chances de

ser inferior a Z.

Portanto, espera-se que a taxa de vacinagdo, esteja proxima ou seja igual a 1, o que sig-
nificard que a maior parte ou a totalidade da populagdo ja estd vacinada, com isso a quantidade
de infectados ird decrescer.

5.1.2 Covid-19 no Brasil

No periodo de 25/02/2020 a 23/03/2020, os autores [39], obtiveram para a taxa de con-
tdgio B = 0,370057653 e para a taxa de recuperagdo y = 0,1, além de tomarem o coeficiente
Ry =3.700576528. Fizemos uma modificacdo pois os autores denominaram a taxa de contigio
de a, s6 que a trataremos como f e a taxa de recuperacao chamaram de f, s6 que a denomina-
mos como Y, a fim de continuar com as nomenclaturas j estabelecidas neste trabalho.

Foi considerado como nimero de suscetiveis inicial 211 milhdes de pessoas e apenas
um infectado, sendo inserido nessa populacdo de suscetiveis brasileira.

Consideremos, Sy = 0,9999999953 e Iy = 0.00000000474, como propor¢des de susceti-
veis e infectados para a utilizagdo do cdigo no Octave.

Vamos supor inicialmente, que ndo haja uma taxa de recuperacdo y e que ndo hd ne-
nhuma parcela de vacinados v, por algum motivo. Imagine que a Unica taxa que temos &
B =0.37.

Para sabermos sobre as iteragcdes podemos recorrer a calculadora. Ela podera partir da
primeira iteragdo, ou entdo, partir da quingentésima. Quando a calculadora € inicializada de
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acordo com a figura 5.18, os valores para as categorias, ja estio armazenados. Basta clicarmos
no botao preto SI que teremos o nosso modelo inicial. Apds o selecionarmos basta clicar uma
primeira vez no botdo amarelo e esperar que rapidamente o programa alcance a quingentésima
iteragcdo. A calculadora no Scratch foi desenvolvida com base em l6gica de programacao visual
e estd disponivel online [40].
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Figura 5.18 — Calculadora do modelo SI (6=0,37,y =0¢e v=0)

Fonte: Autora

Depois disso, esse botdo pode ser usado para se obter os proximos resultados. A qual-
quer momento, os botdes azul S ou vermelho I podem ser clicados, para a demonstracdo de
qualquer iteracdo. Se quisermos observar as iteracdes iniciais, reinicialize o programa, seleci-
one o botdo preto SI e ndo clique no botdo amarelo, clique em S ou I para ver internamente
os cdlculos. Nesse caso, ele poderd continuar a visualizar as préximas iteracdes dos susceti-
veis internamente, clicando no botdo verde. Caso o acesso seja feito no grupo dos infectados,
para visualizar as proximas iteragdes, precisamos clicar no botdo vermelho. Ja no grupo dos
recuperados, devemos clicar no botdo azul.

Observando o comportamento das solugdes, € perceptivel que quanto maior for a taxa
de contato 3, mais rapidamente, todos os individuos passam para a classe dos infectados. Apds
70 dias, toda a populacao suscetivel, torna-se infectada.

Podemos observar os resultados obtidos das iteragdes 697 a 701, na tabela 5.18 e na
figura 5.19 .

Tabela 5.18 — Proje¢des finais para a Covid-19 Idealizada (RK1).
Iteracao Suscetiveis Infectados

697 0.001852814362434498  0.9813475514984858
698 0.001785538933430114 0.9814123841661216
699 0.001720701982627988  0.9814748667408244
700 0.0016582154299112702 0.9815350841212441
701 0.0015979943549161734 0.9815931181596165
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Figura 5.19 — Evolug¢do temporal da Covid Idealizada- modelo SI(f=0,37,y =0e v =0)

Fonte: Autora

Perceba que todo modelo SIR, pode ser considerado como um modelo SIRV, com taxa
de vacinagdo nula. Neste caso, da covid como modelo SIR, s6 temos as taxas e y. Como Sy é

maior que 0’?, ou seja, 0,9999999953 > 0,27, a doenca se espalha entre a populagao.

Observe a evolugdo na figura 5.20.
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Figura 5.20 — Evolugdo temporal da Covid-19 no Brasil- modelo SIR (f=0,37,y=0,1)

Fonte: Autora

Depois de observarmos a evolugdo temporal representada em 5.20, € facil compreender
que antes de 50 dias temos toda a populagdo suscetivel, ou seja, ndo ha infectados e recuperados.
Ap6s 50 dias hd um crescimento dos infectados, até que na iteracdo de nimero 779, comegam
a decrescer. O que serd que provocou essa mudanca no grupo dos infectados? Sabemos que
nao temos vacinados, porém temos uma taxa de nao vacinados (1 —v) = 1, isso porque todos os
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suscetiveis nao foram vacinados por algum motivo. Na iteracdo onde S(¢) < 0,27, os infectados
comec¢am a decrescer. Isso acontece na iteracao de nimero 761.

Na segunda etapa, devemos clicar na calculadora o botao preto SIR e o botdo amarelo
para ingressar no periodo apds 50 dias, como mostra a figura 5.21.
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Figura 5.21 — Calculadora do modelo SIR (f=0,37,y=0,1e v=0)

Fonte: Autora

Podemos comprovar e observar os resultados através da tabela 5.19.

Tabela 5.19 — Simula¢des com pico para Covid-19 -SIR (RK1).
H Iteracao Suscetiveis Infectados Recuperados H

757 0.28073077859472456  0.37759457972118066 0.34167464172409506
758 0.2768086890414684  0.37774072347722504 0.34545058752130686
759 0.272939898206326  0.3778321070775951  0.34922799475607913
760 0.2691242563030669  0.37786942791007827  0.3530063158268551

761 0.2653615846387262  0.3778534052953182  0.35678501010595587

Ja a iteracdo de ndimero 760, ou seja apds 76 dias, temos a quantidade maxima de in-
fectados desta situacdo, aproximadamente 0,378. O que significa que 37,8% da populagdo,
encontra-se infectada.

Agora, vamos considerar que existe uma vacina e que uma parcela ndo nula de susce-
tiveis, serd vacinada. Como j4 vimos, se tomarmos uma taxa de vacina¢do v com valor muito
préximo de zero, voltamos para o modelo SIR, cujo grafico é semelhante a 5.20.

Vamos considerar que v = 0.0026 e inicializar a calculadora em 5.22. Como ja foi
mencionado se clicarmos no botdo preto SIRV estaremos atribuindo v = 0.01, portanto temos
que clicar no botdo rosa para alterar essa taxa de vacinagao.
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Figura 5.22 — Calculadora do modelo SIR (=0,37,y=0,1 e v=0,0026)

Fonte: Autora

Nesse caso, de acordo com a figura 5.23, houve uma diminui¢do nos nimeros de infec-
tados. A quantidade médxima desses contaminados, ficou em torno de 25%.
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Figura 5.23 — Evolucdo temporal da Covid-19 no Brasil- modelo SIRV (= 0,37,y =0,1 e
v =0.0026)

Fonte: Autora

Tomemos v = 0.005, com isso a quantidade maxima de infectados reduz ainda mais, fica
em torno de 14%. Isso pode ser observado em 5.24.
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Figura 5.24 — Evolugdo temporal da Covid-19 no Brasil- modelo SIRV (f =0,37,y =0,1 ¢
v =0.005)

Fonte: Autora

Observe a situagdao em que v = 0.0063 na figura 5.25.
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Figura 5.25 — Evolucdo temporal da Covid-19 no Brasil- modelo SIRV (= 0,37,y =0,1 ¢
v =0.0063)

Fonte: Autora

Se aumentarmos mais v para 0.02, temos o desaparecimento dos infectados na figura
5.26. Além disso, os suscetiveis vacinados igualam-se aos recuperados.
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Figura 5.26 — Evolucdo temporal da Covid-19 no Brasil- modelo SIRV (= 0,37,y =0,1 e

v=0.02)

Fonte: Autora

Quando v = 0.03, temos o seguinte grafico, apresentado em 5.27. Nesse caso, os vaci-
nados aproximam-se mais de 100%.
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Figura 5.27 — Evolugdo temporal da Covid-19 no Brasil- modelo SIRV (f =0,37,y =0,1 ¢
v =0.03)

Fonte: Autora

Independentemente do valor da taxa de vacinagdo, na iteragdo onde S(t) < 0.27, os in-
fectados comecam a decrescer. S6 que quando aumentamos o v, esse decrescimento demora
mais pra acontecer, ou seja, ele inicia-se em iteragdes superiores, ou seja, em uma quantidade de
dias maior. Assim, concluimos nossa evolugdo, esperando que mais pessoas sejam vacinadas,
para que a taxa de vacinacdo aumente, € possamos extinguir os infectados, além de imunizar os
suscetiveis.
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Um modelo SLI para a Tuberculose

Em nossos estudos foram apresentadas as categorias dos suscetiveis, infectados, recu-
perados ou vacinados, porém nesta situacdo da tuberculose, serd introduzida a categoria dos
latentes. Para este modelo da Tuberculose, proposto pelos autores [41][42], temos um sistema
de quatro equacdes diferenciais ordindrias ndo lineares, que irdo descrever a variacao ao longo
do tempo (t), para os grupos de individuos organizados em S, L, T; e T,.

Existem duas possibilidades, quando tratamos da velocidade com que os sintomas apa-
recem, ou seja, o individuo contaminado desenvolve a doenga rapidamente ou fica com o bacilo
incubado, assim a doenca podera se desenvolver futuramente. Nesse caso, a tuberculose pode
ser pulmonar ou nio.

Considera-se que o individuo possa ter sua doenca detectada ou ndo, e caso tenha a
doenga notificada, pode receber tratamento e conclui-lo ou abandona-lo [43]. No caso de trata-
mento com sucesso, o individuo continua com o bacilo. Ja aquele que abandona o tratamento
da tuberculose pulmonar continua como um agente transmissor da doenca. Além disso, uma
parcela dos portadores curados, voltam a desenvolver a doenca.

Dessa forma, a populagdo total N(t) € subdividida nas seguintes categorias: individuos
que nunca tiveram contato com o bacilo, como por exemplo, os nascidos € os que migraram,
sdo denominados suscetiveis S(t); L(t) € a categoria dos individuos infectados, isto €, os que
possuem o bacilo mas ndo desenvolvem a doenca (latentes); T;(¢) a dos individuos que desen-
volvem a tuberculose pulmonar, responsdveis pela transmissiao da doenca (infectantes) e T, ()
os individuos que adquirem a tuberculose extra-pulmonar e que nao sao infectantes [43].

Uma parcela p dos suscetiveis desenvolve a doenca rapidamente, em até um ano apds
o contagio. Destes, alguns irdo apresentar sintomas de uma tuberculose pulmonar, sendo re-
presentados por uma porcentagem f, enquanto o restante (1 — f), terdo uma tuberculose extra-
pulmonar.

A pulmonar € a forma mais comum e contagiosa da doenga. A bactéria Mycobacterium
tuberculosis se instala nos pulmdes, causando tosse persistente, febre, suores noturnos e perda
de peso. A transmissdo da doenca acontece quando os bacilos sao eliminados pelo ar, ou seja,
quando a pessoa infectada tosse ou espirra. Ja a Tuberculose extrapulmonar, atinge outros
orgaos, além dos pulmdes, como ossos, pleura, ganglios linfaticos e até o sistema nervoso
central. Os sintomas variam conforme o 6rgao afetado.

Agora, os individuos em estado de laténcia (1 — p), que nao desenvolveram a doencga
no primeiro ano, apds serem contaminados, permanecem infectados, e apenas uma parcela (v)
adquire a Tuberculose. Neste caso, uma parcela infima dos individuos em estado de laténcia, g
¢ associada a tuberculose pulmonar enquanto (1 — g) relaciona-se a outros tipos de tuberculose.



No caso de uma parcela de individuos terem sido diagnosticados e receberem tratamento (d),

somente uma fracdo (€) € considerada curada, sendo que a outra permanece doente. Depois

da cura obtida com o tratamento, esses individuos sao retirados do grupo dos infectados T3,

retornando para o grupo dos latentes, pois ainda possuem o bacilo em seus organismos.
Vejamos o esquema deste modelo proposto na figura 6.1.

pth

Figura 6.1 — Diagrama compartimental que representa o modelo SLI da Tuberculose.
Fonte: Autora

Observe que as expressdes que originam-se na categoria dos suscetiveis, representadas
por p.fA+(Q-p)A+p.1-flA=p.f.A+A—-p.A+p.A—p.f.A, resultam na taxa A.
O sistema de equagdes para a Tuberculose , € representado da seguinte forma no sistema

6.1: s
7:77:—(/.1,+/1).S(t)
dL(t
% =1 -p)A.S() +e.d(T;(t) + T,(1)— (v+w).L(1)
4 (6.1)
daT;(t
dlt( ) =p.fASH)+q.v.L(t)— (u+ s +e.d).T;(1)
aT,(t
dt( ) =p.(1-ASO+ (1 —-q).v.L(t) — (u+ ps +e.d). Ty(t).

Podemos considerar a taxa de risco de infec¢do A = 5.7}, o coeficiente de transmissao f,
o numero de individuos que migram ou nascem por unidade de tempo 7, a taxa de mortalidade
por tuberculose (i, e a taxa de mortalidade por outras causas y. Além disso, temos uma taxa de
cura desses individuos infectados representada por ¢ =e€.d.

Analisando a figura 6.1, podemos concluir que apenas aumentos na taxa de nascimentos,
causam acréscimos no grupo dos suscetiveis. Quando ocorrem aumentos na taxa de mortos por
causa natural ou na taxa dos individuos que adquirem tuberculose em até um ano, diminuimos
os valores das curvas dos suscetiveis e aumentamos a quantidade de latentes. Os acréscimos
na taxa de infeccdo, influenciam negativamente os grupos de latentes e dos que desenvolvem
a doenga em menos de um ano. Se a taxa referente aos individuos que desenvolvem a tuber-
culose pulmonar sofrer acréscimos, aumentamos este grupo e diminuimos a categoria dos que
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desenvolverdo a tuberculose extra-pulmonar. J4 os aumentos na taxa dos latentes que desen-
volvem algum tipo de tuberculose, causam acréscimos nos dois grupos. Ao aumentarmos a
porcentagem de pessoas latentes que desenvolverdo a tuberculose, aumentamos os com tuber-
culose pulmonar e diminuimos os com tuberculose extra-pulmonar. Os acréscimos nas mortes
de qualquer tipo, reduzem as categorias dos que possuem tuberculose. O sucesso no tratamento
faz com que individuos que adquiriram tuberculose, em algum momento, retornem ao grupo
dos latentes.

6.1 Taxa de Reprodutibilidade Efetiva

Como ja foi mencionado neste trabalho, a utilizacdo da taxa de reprodutibilidade € fun-
damental na andlise qualitativa de um modelo matemdtico. Nesse caso, R; aparece como uma
féormula que relaciona trés taxas de reprodutibilidade diferentes, caracterizadas pelas situacdes
que podem ocorrer com individuos infectados neste modelo da Tuberculose.

A taxa de reprodutibilidade é obtida a partir dos parametros do modelo e, tem grande
importancia quando se deseja propor politicas de tratamento, pois através dessa taxa pode-se
obter a taxa de tratamento necessdria para que se controle ou erradique uma doencga [43].

Se a taxa de reprodutibilidade efetiva R; for menor do que um, a doenga € extinta; se
for igual a um, a doencga se torna endémica e caso seja maior do que um, a propagagao entre 0s
individuos suscetiveis ao entrarem em contato com os infectados gera uma epidemia. Vejamos
as trés taxas relacionadas:

A primeira das taxas ocorre por progressao direta Ré) 4 ¢ relaciona-se aos suscetiveis que
ficaram doentes em até um ano apds serem infectados, podemos obter seu resultado através da
equacao 6.2 .

Rpd =PI (6.2)

U+ +ed
J4 a segunda taxa acontece por uma reativagdo endégena e R{® representa os individuos que
apesar de terem sido contaminados, ndo desenvolvem a tuberculose no primeiro ano apds a

infeccdo, apresentada na equacao 6.3.

re_ qv.(1-p)
0 (v+w.(u+us+ed)—edv

(6.3)
A terceira taxa R estd relacionada aos individuos curados que voltam a desenvolver a tubercu-
lose, ou seja, sdo casos de recidiva, como podemos observar na equacao 6.4.

R = q.v.(e.d.p)
O (V4w .(u+ s +e.d) —e.dv].(u+ s +e.d)

(6.4)

Portanto, a taxa de reprodutibilidade efetiva Ry tem grande importincia na andlise qualitativa

deste modelo. Ela pode ser obtida através da expressao que relaciona Ré’ a R)° e R} apresentada

na equagao 6.5.

RS- B.m.(RYY+R}®+R))
° u

(6.5)

6.1.1 Simulacées Numéricas

Para realizarmos as simulagdes com base em [43] tomaremos como condi¢des iniciais:
Suscetiveis S(0) = 74999; Latentes L(0) = 0; Individuos com tuberculose pulmonar T;(0) =
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1; Individuos com tuberculose extrapulmonar T,(0) = 0. Além disso, considere os mesmos
parametros propostos em [43]: (;r = 1500); (u = 0.04); (B =0.00018); (p = 0.15); (v = 0.005);
(g =0.87); (f =0.66); (u; =0.461) e (c = 0.1659). Utilizamos At = 0.5, mesmo valor proposto.

Observe que estamos propondo, pelo menos inicialmente, que a parcela de individuos
que terdo sucesso no tratamento serd maior que a taxa de contagio. O usudrio devera digitar
todos os valores para os parametros. O programa ja possui armazenado as condi¢des iniciais,
porém é possivel alterar internamente de acordo com o problema analisado. E possivel obser-
vando o esquema refazer cdlculos de iteracdes que julgar necessario. A calculadora no Scratch
foi desenvolvida com base em ldgica de programacao visual e estd disponivel online [44].

Neste caso obtemos as taxas na Figura 6.2 onde hd uma propagac@o da doenga pois (R)
¢ maior do que um.
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Figura 6.2 — Primeira Simulac¢ao
Fonte: Autora

Vejamos como ficaria a primeira iteracdo para esta mesma simulacdo na Figura 6.3.
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Figura 6.3 — Primeira Simulagdo-Iteracdo inicial
Fonte: Autora

Agora, assumindo (¢ = 0.7), vamos aumentar a quantidade de pessoas que t€m sucesso
no tratamento na Figura 6.4, o que ocasiona uma diminuicdo em Ré’ d e R}®, porém ha um
aumento em Rj. O que faz com que Rj também diminua. Com isso, melhoramos a situagéo,
porém (R{) continua maior que 1. Jd a taxa (R()), aumenta, se existirem mais individuos latentes,
que poderdo voltar a desenvolver a doenga. Isso acontece devido ao aumento da porcentagem
de pessoas curadas que retornam ao grupo dos latentes.

Se a parcela de individuos que terdo sucesso no tratamento (c) for suficientemente maior
que a taxa de contdgio, hd um crescimento no grupo dos individuos em laténcia, ja que uma por-
centagem deles, deixa de pertencer aos grupos de contaminados, retornando a categoria L(t).
Isso faz com que essa situacdo represente um momento onde a tuberculose serd temporaria-
mente extinta. Ao aumentarmos a taxa de contdgio , diminuimos a quantidade de suscetiveis,
e aumentamos o valor maximo atingido pelos individuos em laténcia. Isso também podera
ocasionar um aumento na quantidade de infecciosos e ndo infecciosos.

Existe uma interdependéncia entre os parametros neste modelo, que € determinante
nesse processo de evolugdo da doencga. Para realizarmos algumas andlises € necessario reinici-
lizar a calculadora, clicando na bandeira verde e digitar uma nova combinagdo de pardmetros.
Com isso, comprovaremos os efeitos que essas alteracdes provocam. E possivel observar as
iteragdes, registrando as porcentagens de suscetiveis, latentes ou infectados obtidas para cada
iteracdo, fazendo a correspondéncia com a quantidade de dias. Para tal conversdo basta cal-
cular a metade do valor dada pela varidvel iteracdo. Com isso, teremos a quantidade de dias
envolvido.

Quando aumentamos a quantidade de pessoas que desenvolvem a tuberculose em até
um ano p, diminuimos a porcentagem méxima de latentes. Caso contrério, se diminuirmos p,
aumentamos (1 — p), o que favorece o crescimento do grupo em laténcia. O que significa que
qualquer alteracao na porcentagem correspondente aos individuos que adquirem a tuberculose
em até um ano influencia em todas as taxas de reprodutibilidade. Se aumentarmos a taxa v dos
latentes que desenvolvem a tuberculose e a taxa  admitida for maior que a porcentagem de
pessoas que obtém sucesso no tratamento, a doenga se agrava e pode se tornar uma epidemia.
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Figura 6.4 — Segunda Simulagao

Fonte: Autora

Vejamos como ficaria a primeira iteracdo para esta segunda simulagdo em 6.5.

N o ® R
iteracdo [END Rpd [IEFZE]
Rre
beta 0.073153]
lambda ([[0EE) g 0007524
Re

Figura 6.5 — Segunda Simulagdo-Iteracao inicial
Fonte: Autora

Como j4 foi mencionado aumentos na taxa de nascimentos causam acréscimos no grupo
dos suscetiveis. Quando ocorrem aumentos na taxa de mortos por causa natural ou na taxa dos
individuos (p) que adquirem tuberculose em até um ano, diminuimos os suscetiveis, ja que uma
parcela (p) multiplicada pela taxa de infec¢@o, sai dos suscetiveis para integrar os grupos de
contaminados.

Se a taxa referente aos individuos que desenvolvem a tuberculose pulmonar (f) sofrer
acréscimos, aumentamos este grupo de infecciosos e diminuimos a categoria dos que desen-
volverdo a tuberculose extrapulmonar. Os acréscimos nas mortes de qualquer tipo, reduzem
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as categorias dos que possuem tuberculose. Neste modelo, estamos considerando as taxas de
mortes com valores iguais para todas as trés categorias, por este motivo, utilizamos os mesmos

parametros.
Se passarmos (¢ = 0.9) na Figura 6.6 teremos diminui¢do em todas as taxas. A doenca
tende a ser extinta ainda que temporariamente, pois R € menor que um.

~ m 52

Rpd

iteragéo

beta

Figura 6.6 — Terceira Simulacio
Fonte: Autora

Neste capitulo tratamos apenas dos cédlculos relacionados as taxas de reprodutibilidade
e os valores obtidos com os individuos em cada categoria mediante os valores iniciais e pa-
rametros dados. Uma possibilidade para trabalhos futuros poderd ser a construcao e a anélise
da evolucdo temporal deste modelo, além de uma proposta de recuperacdo onde o individuo
infectado ndo volte ao estado de laténcia, como também uma reformulagdo para este modelo
contemplando uma suposta vacinacao.
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Conclusao

A modelagem matematica desempenha um papel crucial na compreensao dos dados e
previsdo da evolucdo, ao longo do tempo, de doengas infecciosas. Por meio da modelagem,
€ possivel criar uma visdo clara e organizada da situagdo vivenciada pela populagdo, o que
facilita a compreensdo e a andlise das informacdes. Os modelos utilizam esses sistemas de
equagdes, para descrever a dindmica da propagacdo. Eles consideram fatores como taxas de
infec¢do, recuperacdo e algumas vezes, natalidade e mortalidade. Esses modelos ajudam a
estimar o numero de casos, por periodo e a avaliar estratégias de controle biologico. O que
se espera com este trabalho € a constru¢do de um levantamento bibliogréfico, sobre algumas
das modelagens que estio sendo aplicadas, objetivando o controle de doencas epidemioldgicas.
Para isso, estudaremos, a principio, modelos mais simplificados da Epidemiologia.

Esses estudos tornam-se essenciais na tentativa de prever cendrios, analisando a dis-
seminacdo de doencas infecciosas, e dando subsidios ao governo, para o desenvolvimento de
possiveis acOes e medidas de controle para conter a propagacdo de doencgas. Além disso, bus-
camos contribuir para a contextualizacdo da Matemadtica a nivel superior, através da utilizagcdo
de um problema real. Promoveremos assim, um estudo minucioso sobre o contetido matema-
tico, contido nessas propostas. Com isso, construiremos um material importante, que além de
tratar sobre os sistemas de Equacdes Diferenciais Ordindrias, estard embasado em uma situ-
acdo vivenciada pela populacdo brasileira, e por vezes, pela mundial, que almeja por novas
investigagdes e estudos.

Tais descobertas para modelagem matemdtica tornam-se essenciais, pois possibilitam a
construcdo de uma tentativa de evoluc@o para doencas. O que permite com que um modelo
seja substituido por um outro que seja capaz de solucionar casos graves ou até mesmo con-
trolar situagdes de disseminacdo. Por isso, desejamos que novos tratamentos e vacinas, sejam
testados e futuramente possam ser implementados. Enquanto isso, os matemaéticos continuarao
aperfeicoando os seus modelos, tornando-os cada vez mais complexos. Para isso, precisamos
criar uma coletanea de modelagens, para serem implementadas computacionalmente, a fim de
testar os resultados.

Nesta dissertacdo apresentamos algumas simulagdes numéricas, para testar resultados e
fazer andlises. Esperamos construir uma dissertacdo que atenda as expectativas estudantis do
leitor, que almeja por novos conhecimentos, acerca do ato de fazer modelagens. Além de des-
pertar a vontade de aprender a modelar, enriquecendo o estado da arte. Essa busca por solucdes
para situacdes reais, traz inimeros beneficios para a sociedade, como poderd ser observado
neste trabalho. SO que esse processo de modelagem nao € algo tdo simples, existem varias
etapas envolvidas, até a validacdo de um modelo. Espera-se que esses dados possam contri-
buir para a reflexdo sobre o tema, bem como para a orienta¢do ou direcionamento das acoes.



Esperamos despertar o desejo de estudar essas e outras modelagens envolvidas, assim como,
contribuir com a investigacao desses processos, para a nao proliferacdo dessas e outras doengas
infecciosas, que causam tantos prejuizos a sociedade.

Como uma proposta de trabalhos futuros, podemos incluir a andlise das Evolu¢des Tem-
porais da Tuberculose, podendo ser representado pelos modelos SLIS, SLIR, SLIRS e SLIRYV,
além do estudo de modelos mais complexos para outras doencas.
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