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RESUMO

Este trabalho explora a hipótese do áxion, partindo das simetrias discretas da

teoria de Dirac até a caracterização do problema CP forte. Aborda como a exis-

tência dessa partícula pode modificar as equações de Maxwell, com possíveis

implicações no estudo de materiais exóticos e na cosmologia. É destacado, ade-

mais, o papel da eletrodinâmica axiônica na validação da hipótese da matéria

escura fria puramente axiônica.
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INTRODUÇÃO

Em 1964, o experimento de J. W. Cronin e V. L. Fitch com káons neutros nos

mostrou que a simetria CP (Carga e Paridade) é violada no setor fraco do Modelo

Padrão. Tal descoberta forneceu uma nova perspectiva no estudo das partícu-

las fundamentais, resultando na predição de uma terceira geração de férmions,

por N. Cabibbo, M. Kobayashi e T. Maskawa, posteriormente confirmada. Em

sequência, t’Hooft mostrou que a interação forte do Modelo Padrão (MP) possui

um vácuo não trivial que, em princípio, também permitiria a violação de CP forte.

Entretanto, até hoje a violação de tal simetria não é observada na QCD. Por que

o setor forte parece conservar a simetria CP? Este problema ficou conhecido

como o problema CP forte.

Dentre as diversas hipótese de solução para o problema, em 1977, R. D. Pec-

cei e H. R. Quinn apresentaram uma solução dinâmica para o problema CP por

meio da introdução de um bóson pseudo-escalar no MP: o áxion. Hoje, o áxion

e partículas tipo-áxion estão presentes nas mais variadas extensões do MP, com

implicações diretas na eletrodinâmica, onde o aparato da eletrodinâmica axiô-

nica é utilizado na pesquisa de materiais e fenômenos exóticos, com aplicações

da matéria condensada à cosmologia. Nesta última área, em especial, o áxion é

considerado um dos potenciais candidatos à matéria escura.

Neste trabalho, faremos uma breve introdução à hipótese axiônica em três

partes. Na primeira parte, vamos estudar a QCD como uma Teoria de Gauge,

construindo a interação a partir da invariância da teoria sob uma transformação

local do grupo SU(3), estudando seus constituintes e características da intera-
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ção.

Na segunda parte, vamos abordar o que são as transformações de simetria

C,P e T (reversão temporal) e como essas transformações afetam as grandezas

físicas relacionadas ao problema CP forte. Na sequência, veremos como se dá

a violação de CP no decaimento dos káons neutros, discutindo uma possível

fonte de violação de CP , não observada, na interação forte. Após uma modela-

gem clássica no momento de dipolo elétrico do nêutron, também vamos estudar

quais são os parâmetros da violação CP na QCD e onde ocorre o ajuste fino no

problema CP forte. Ao fim deste capítulo vamos apresentar a solução axiônica,

caracterizar o áxion e fazer uma breve abordagem dos modelos axiônicos atuais.

E, ao fim deste trabalho, vamos estudar o acoplamento áxion-fóton, investi-

gando como esse acoplamento modifica as equações de Maxwell e como elas

podem ser utilizadas na descrição dos efeitos magnetoelétricos observados nos

isolantes topológicos. Também faremos uma aplicação dessa eletrodinâmica axi-

ônica em uma cavidade ressonante, com o intuito de descrever o comportamento

dos campos eletromagnéticos acoplados ao áxion, sob a hipótese da matéria es-

cura axiônica.
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NOTAÇÃO

Abaixo as convenções utilizadas ao longo deste trabalho. A menos que se

faça necessário, usaremos apenas unidades naturais,

c = 1 e h̄ = 1. (0.0.1)

Assinatura métrica:

ηµν = diag(1,−1,−1,−1) e ηµν = diag(1,−1,−1,−1) (0.0.2)

As matrizes γµ na representação de Dirac são dadas por:

γµ = (γ0, γj), onde γ0 :=

1 0

0 −1

 , γj =

 0 σj

−σj 0

 , (0.0.3)

e σj são as matrizes de Pauli

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (0.0.4)

Na representação de Weyl, também conhecida como quiral, as matrizes γµ serão

dadas por:

γµ =

 0 σµ

σ̄µ 0

 , onde σµ = (1, σj) e σ̄µ = (1,−σj), (0.0.5)

obedecendo à seguinte relação de anticomutação,

{γµ, γν} = γµγν + γνγµ = 2ηµν . (0.0.6)

Comum às duas representações, a matriz auxiliar γ5 é definida como,

γ5 := iγ0γ1γ2γ3 =

−1 0

0 1

 , (0.0.7)

anti-comutando com as matrizes γµ,

{
γ5, γµ

}
= 0 (0.0.8)
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Caso o leitor não esteja familiarizado com o formalismo da teoria clássica de

campos, recomenda-se a leitura dos apêndices previamente à leitura do desen-

volvimento deste trabalho.
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1 INTRODUÇÃO À CROMODINÂMICA QUÂNTICA COMO UMA TEORIA DE

GAUGE.

No início da década de 1960, graças aos progressos feitos nos aceleradores

de partículas, os físicos se encontravam imersos em um "zoológico subnuclear".

Dentre os vários modelos da época, os esforços para organizar as partículas

que hoje conhecemos como hádrons, culminou na elaboração do modelo de

quarks, pelos trabalhos de Gell-Mann, Ne’eman e Zweig (MENDES; CUCCHI-

ERI; MORAES, 2022). Os quarks seriam os férmions elementares responsáveis

por constituir os hádrons. Sob esse modelo, o próton, um hádron de spin 1/2,

seria composto por dois quarks do tipo u e um do tipo d. Por serem férmions, os

quarks estão sujeitos ao principio de exclusão de Pauli. Logo, os quarks tipo u

deveriam ter spin anti-paralelo no estado que forma o próton, mas isso logo vira

um problema quando olhamos para o hádron ∆++, uma partícula de spin 3/2.

O modelo de quarks nos diz que essa partícula é composta por três quarks tipo

u, resultando em três férmions no mesmo estado quântico. Assumiu-se então

que os hádrons estavam sujeitos a um novo número quântico que permitisse tal

configuração. Este foi o primeiro indicativo do que viria se tornar a hipótese das

cargas de cor na cromodinâmica quântica.

Sabendo que os quarks são partículas de spin-1/2 e levando em consideração

a hipótese das cargas de cor, partimos de um lagrangiano livre que descreva

esse campo fermiônico

LYM = ψ̄(iγµ∂µ −m)ψ, (1.0.1)
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com

ψ =


ψr

ψg

ψb

 = ψr


1

0

0

+ ψg


0

1

0

+ ψb


0

0

1

 (1.0.2)

ou

ψ = ψrr + ψgg + ψbb (1.0.3)

onde os ψr,g,b são spinores de Dirac associados aos vetores r, g e b, respectiva-

mente. Note que aqui estamos tratando apenas de um sabor de quark. Similar

ao caso descrito no apêndice B (B.0.9), vamos impor a invariância desse lagran-

giano sob uma transformação local de gauge. no espaço tridimensional de cores,

a fim de encontrar um lagrangiano que descreva a interação entre essas cargas.

Então, seja U uma matriz unitária 3× 3 que atua em ψ,

ψ → ψ′ = Uψ; ψ̄′ = ψ̄U † (1.0.4)

e

ψ̄′ψ′ = ψ̄U †Uψ = ψ̄ψ. (1.0.5)

Sabe-se que a matriz U pode ser reescrita como a exponencial de uma matriz

hermitiana de traço zero (apênd. C),

U = eiX = eiαa(xµ)ta , a = 1, ..., 8 (1.0.6)

αa(x
µ) são parâmetros livres reais contínuos e ta são as matrizes geradoras do

grupo SU(3) que compõem a base de Gell-Mann. Aplicando U ao lagrangiano,

LYM → L′
YM = ψ̄e−iαa(xµ)ta(iγµ∂µ −m)eiαa(xµ)taψ

= ψ̄γµ∂µψ −mψ̄ψ − ψ̄γµtaψ∂µαa(x
µ)

= LYM − ψ̄γµtaψ∂µαa(x
µ).

(1.0.7)
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Como esperado, o lagrangiano não é invariante sob essa transformação1. Pre-

cisamos modificar nosso lagrangiano e o faremos a partir do operador derivada

∂µ. Para isso, são necessários oito campos, um para cada α, que sob a transfor-

mação U satisfaçam a condição abaixo,

Dµψ → Dµ
′ψ′ = eitaαa(xµ)Dµψ, Dµ = ∂µ − igstaA

a
µ, (1.0.8)

onde Dµ é a derivada covariante, gs é a constante de acoplamento da intera-

ção, Aa
µ são os campos de glúons, bósons sem massa e de spin-1 mediadores

da interação forte, e as matrizes ta representam as cargas de cor do respectivo

glúon. Diferentemente do caso U(1), apresentado no apêndice B, o grupo SU(3)

é não-abeliano, o que significa que nem todos os geradores ta comutam entre

si. Esta característica é facilmente observada ao realizarmos uma transforma-

ção infinitesimal. Reescrevendo a exponencial como uma série, obtemos (para

clareza visual αa(x
µ) = αa),

U = eitaαa = 1 + itaαa +O(α2), (1.0.9)

onde o termo O(α) são os elementos com potências αa de grau superior. No

limite onde αa << 1,

U ≈ (1 + iαata). (1.0.10)

Aplicando essa transformação à equação 1.0.8,

L′
YM = iψ̄U †γµ(∂µ − igstaA

a
µ)Uψ

= iψ̄γµ(1− iαata)(∂µ − igstbA
b
µ)(1 + iαctc)ψ

∝ −ψ̄γµtc∂µαcψ − iψ̄γµgsαatatbA
b
µψ + iψ̄γµgsαctbtcA

b
µψ,

(1.0.11)

1 O apêndice B contém a demonstração da invariância global de gauge, i.e, invariância quando
α independe de xµ, para um lagrangiano que descreva um campo de férmions livre, como o
LYM .
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fazendo uma troca de nome nos índices mudos a e c no primeiro e segundo

termo, temos

∝ −ψ̄γµta∂µαaψ + igsψ̄γ
µαc(tbtc − tctb)A

b
µψ. (1.0.12)

Embora a primeira parte da equação esteja escrita apenas com o índice a, existe

uma soma implícita, por isso o uso de índices diferentes nos produtos não comu-

tativos. De fato, este produto segue a seguinte lei de comutação,

tbtc − tctb = [tb, tc] = ifbcata = ifabcta, (1.0.13)

onde fabc é a constante de estrutura do grupo SU(3) (C.0.11). Os campos de

gauge Aa
µ também são transformados, Aa

µ → Aa′
µ . Podemos obter Aa′

µ , a partir da

equação 1.0.11,

L′
YM = iψ̄U †γµ(∂µ − igstaA

a′

µ )Uψ

= iψ̄γµU †∂µU + iψ̄γµU †U∂µψ + ψ̄γµU †gstaA
a′

µ Uψ

= iψ̄γµ∂µψ + iψ̄γµU †∂µUψ + ψ̄γµU †gstaA
a′

µ Uψ.

(1.0.14)

Para garantir a invariância de gauge do campo Aµ, os dois últimos termos da

equação acima devem ser iguais a ψ̄γµgstaAa
µψ. Logo, temos

0 = iψ̄γµU †∂µU + ψ̄γµU †gstaA
a′

µ Uψ − ψ̄γµgstaA
a
µψ,

= iψ̄γµ(U †∂µU − iU †gstaA
a′

µ U + igstaA
a
µ)ψ,

=

(
U † i

gs
∂µU + U †taA

a′

µ U − taA
a
µ

)
,

= U

(
U † i

gs
∂µU + U †taA

a′

µ U − taA
a
µ

)
U †,

=
i

gs
(∂µU)U

† + taA
a′

µ − UtaA
a
µU

†.

(1.0.15)



16

Pela regra do produto, temos a seguinte relação para o primeiro termo da última

igualdade acima

∂µ(UU
†) = (∂µU)U

† + U∂µU
† = 0 (1.0.16)

Substituindo (∂µU)U
† por −U∂µU † na última igualdade em 1.0.15, ficamos com

0 = − i

gs
U∂µU

† + taA
a′

µ − UtaA
a
µU

†,

taA
a′

µ = UtaA
a
µU †+ i

gs
U∂µU

† = U

(
taA

a
µ +

i

gs
∂µ

)
U †.

(1.0.17)

Utilizando a expansão 1.0.10 e a relação descrita em 1.0.13, temos

taA
a′

µ = (1 + iαata)

(
tbA

b
µ +

i

gs
∂µ

)
(1− iαctc),

= tbA
b
µ + tc

1

gs
∂µαc + iαatatbA

b
µ − itbA

b
µαctc,

(1.0.18)

no primeiro e segundo termo, respectivamente, vamos trocar o nome dos índices

b e c para a. E, no terceiro termo, de a para c. Com essa mudança, temos

= taA
a
µ + ta

1

gs
∂µαa + iαcA

b
µ(tctb − tbtc),

= taA
a
µ + ta

1

gs
∂µαa − αcA

b
µfcbata,

= ta

(
Aa

µ +
1

gs
∂µαa + αcA

b
µfabc

)
.

(1.0.19)

Na passagem para a última linha, há uma troca de sinal em decorrência da mu-

dança dos índices c com a no tensor antissimétrico f . Logo, temos que o campo

Aa
µ fica transformado em

Aa
µ → Aa′

µ = Aa
µ +

1

gs
∂µαa + fabcA

b
µαc (1.0.20)

e, consequentemente, a derivada covariante,

Dµ → D′
µ = ∂µ − igsta(A

a
µ +

1

gs
∂µαa + fabcA

b
µαc). (1.0.21)
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Podemos então verificar a relação 1.0.8,

D′
µψ

′ = [∂µ − igsta(A
a
µ +

1

gs
∂µαa + fabcA

b
µαc)](1 + itaαa)ψ

= ∂µψ + ita∂µαψ + itaαa∂µψ − igsta(A
a
µ +

1

gs
∂µαa + fabcA

b
µαc)ψ+

+ gtbA
b
µαctcψ + tb∂µαbtcαcψ +O(α2)

= ∂µψ + itaαa∂µψ − igsta(A
a
µ + fabcA

b
µαc)ψ + gtbA

b
µαctcψ+

+ tb∂µαbtcαcψ +O(α2)

(1.0.22)

Sob o limite imposto, podemos desprezar os termos de ordem α2 frente aos

demais termos não quadráticos2. Já o antepenúltimo pode ser reescrito, com a

ajuda de 1.0.13, como,

gtbA
b
µαctcψ = gsαctctbA

b
µψ + igstafbcaA

b
µαcψ. (1.0.23)

Logo, temos

D′
µψ

′ = ∂µψ + itaαa∂µψ − igsta(A
a
µ + fabcA

b
µαc)ψ+

+ gsαctctbA
b
µψ + igstafbcaA

b
µαcψ

= ∂µψ + itaαa∂µψ − igstaA
a
µψ + gsαctctbA

b
µψ

(1.0.24)

Como os índices do último termo são mudos, podemos escrever

gsαctctbA
b
µψ = gsαbtbtaA

a
µψ. (1.0.25)

Com isso, teremos, a partir de 1.0.8,

D′
µψ

′ = ∂µψ + itaαa∂µψ − igstaA
a
µψ + gsαbtbtaA

a
µψ

= (1 + itaαa)Dµψ.

(1.0.26)

2 assume-se no penúltimo termo que ∂µαa também é infinitesimal.
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Assim, o lagrangiano LYM pode ser escrito com a derivada covariante, mas ainda

é preciso adicionar o "termo cinético"3 para estes campos de gauge. Esse termo,

quadrático em derivadas dos campos, é o responsável pela dinâmica dos cam-

pos de glúons. A partir da relação B.0.17, o tensor que compõe o termo cinético

pode ser obtido através da comutação dos operadores Dµ e Dν ,

[Dµ, Dν ] = (∂µ − igstaA
a
µ)(∂ν − igstaA

a
ν)− (∂ν − igstaA

a
ν)(∂µ − igstaA

a
µ),

= −igsta(∂µAa
ν − ∂νA

a
µ)− g2s(tbtc − tctb)A

b
µA

c
ν ,

= −igsta(∂µAa
ν − ∂νA

a
µ + gsfabcA

b
µA

c
ν),

= −igstaGa
µν ,

(1.0.27)

onde taGa
µν é o tensor de estresse do campo. Sob a transformação Aa

µ → Aa′
µ ,

Ga
µν → Ga′

µν = ∂µA
a′

ν − ∂νA
a′

µ + gsfabcA
b′

µA
c′

ν ,

= Ga
µν − fabcαbG

c
µν .

(1.0.28)

Logo, o produto taGa
µνtdG

dµν se transforma como

taG
a
µνtdG

dµν → taG
a′

µνtdG
dµν′ = ta(G

a
µν − fabcαbG

c
µν)td(G

dµν − fdefαeG
fµν),

= taG
a
µνtdG

dµν − αbfabctaG
c
µνtdG

dµν − αefdef taG
a
µνtdG

fµν +O(α2),

= taG
a
µνtdG

dµν + αbfcbatcG
a
µνtdG

dµν + αeffedtaG
a
µνtfG

dµν +O(α2).

(1.0.29)

Na passagem para a última linha, fizemos uso da troca de nome entre índices

mudos e, então, das propriedades de antissimetria da constante f em relação a

quaisquer dois de seus índices. Ao contrário do caso abeliano, as matrizes de

Gell-Mann fazem com que o produto não seja invariante de gauge. Entretanto,
3 A seção A.3 possui um comentário sobre essa terminologia.
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de acordo com a equação C.0.12, o traço desse produto é invariante, pois

Tr
[
taG

a′

µνtdG
dµν′

]
=

= Tr
[
taG

a
µνtdG

dµν + αbfcbatcG
a
µνtdG

dµν + αeffedtaG
a
µνtfG

dµν
]
,

= Ga
µνG

dµν Tr[tatd] + αbfcbaG
a
µνG

dµν Tr[tctd] + αeffedG
a
µνG

dµν Tr[tatf ],

=
1

2
[Ga

µνG
aµν + αbfdbaG

a
µνG

dµν + αefaedG
a
µνG

dµν ],

(1.0.30)

Os índices b e e representam a mesma soma de parâmetros α e podem ser

substituídos por um índice em comum h. Com essa substituição, as constantes

de estrutura passam a ser fdha e fahd, ou seja, uma permutação ímpar fazendo

com que os dois últimos termos somem zero. Com isso, podemos construir um

termo cinético invariante de gauge dado por

−1

2
Tr

[
taG

a
µνtdG

dµν
]
= −1

2
Tr

[
taG

a′

µνtdG
dµν′

]
= −1

4
Ga

µνG
aµν . (1.0.31)

Agora, podemos escrever o lagrangiano que descreve férmions cromaticamente

carregados,

LQCD = ψ̄q(iγ
µDµ −mq)ψq −

1

4
Ga

µνG
aµν . (1.0.32)

Vamos descrever os elementos desse lagrangiano. O índice q denota o sabor do

quark. Ao todo, foram observados seis sabores de quarks, como descritos na

tabela 14.

Com exceção da primeira geração, ainda há um número de sabor associado a

cada quark: na segunda geração o quark c possui charme = 1 e o quark s possui

estranheza = −1. Na terceira geração a convenção de sinais se repetem, mas

agora para as quantidades superioridade e inferioridade. Essas quantidades são
4 Valores de 2022 compilados pelo Particle Data Group (WORKMAN et al., 2022)
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Geração Nome Símbolo Carga (e) Massa (GeV)

1a. up u 2
3
e 0,003

down d −1
3
e 0,005

2a. charm c 2
3
e 1,290

strange s −1
3
e 0,093

3a. top t 2
3
e 172,69

bottom b −1
3
e 4,180

Tabela 1 – Tabela com as características dos diferentes quarks.

conservadas por essa interação cromática (interação forte) e também pela intera-

ção eletromagnética. Provavelmente, a maneira mais intuitiva de entender como

essa interação funciona é através dos diagramas de Feynman. Derivar tais re-

gras para a QCD está além do escopo desse trabalho5, então vamos apresentá-

las seguindo as ref. (GRIFFITHS, 2008; PESKIN; SCHROEDER, 2018). Para os

férmions e bósons externos:

Quarks:


inicial:

p
= u(s)(p)ci,

final:
p

= ū(s)(p)c†i .

(1.0.33)

Antiquarks:


inicial:

p
= v̄(s)(p)c†i

final:
p

= v(s)(p)ci.

(1.0.34)

Glúons:


inicial: = ϵµ(p)αa,

final: = ϵ∗µ(p)α
†
a.

(1.0.35)

Nesses diagramas, para os quarks (antiquarks), us (vs) é o spinor de Dirac

(A.5.6) p é o momento, s é o spin e ci, i = 1, 2, 3, são os vetores r, g e b, respec-
5 Um tratamento mais detalhado dessas regras pode ser encontrado no Cap. 4 da ref. (PESKIN;

SCHROEDER, 2018)
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tivamente. Para os glúons ϵµ é o vetor de polarização e αa são matrizes coluna

8 × 1 que representam o estado de cor em que o glúon se encontra. Para as

interações que ocorrem entre os vértices, temos as seguintes regras:

Propagadores internos:


(anti)quarks: q

= i
(γµqµ +m)

qµqµ −m2
,

glúons: q
= −iηµνδ

ab

qµqµ
,

(1.0.36)

onde qµ é o momento dessas partículas. E, por último, temos as regras para os

vértices:

Quark-glúon: u

ū

a, µ

= −igstaγµ. (1.0.37)

Aqui aparece uma notável diferença entre a teoria abeliana e a não-abeliana. Na

parte cinética dos campos Aa
µ, abrindo o produto Ga

µνG
aµν , surgem os termos

gsfabcA
b
µA

c
ν(∂

µAaν − ∂νAaµ) e g2sfabcfadeA
b
µA

c
νA

dµAeν . (1.0.38)

Esses produtos implicam que os mediadores da interação forte também intera-

gem uns com os outros, em vértices de três e quatro glúons, respectivamente.

As regras para esses vértices são:

3-glúons:
k

q

p

a, µ

c, ρ

b, ν

=

gsfabc[ηµν(k − p)ρ+

+ηνρ(p− q)µ+

+ηρµ(q − k)ν ].

(1.0.39)

Caso o sentido de um ou mais momentos seja alterado, o sinal dos respectivos

momentos também devem ser invertidos na regra. E, por fim,
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4-glúons:

c, ρ

a, µ

d, σ

b, ν

=

−ig2s [fabefcde(ηµρηνσ − ηµσηνρ)+

+facefbde(ηµνηρσ − ηµσηνρ)+

+fadefbce(ηµνηρσ − ηµρηνσ)].

(1.0.40)

Com as regras definidas, vamos considerar uma interação qqg → qqg, onde um

quark ur, apenas, troca de cor com um quark db:

p1

p2

p3

p4

qµ

ur

db

ūb

d̄r

∝

∝ ūs(p3)c
†
3(−igstaγµ)us(p1)c1

(
−iηµνδ

ab

qµqµ

)
ūs(p4)c

†
1(−igtbγν)us(p2)c3 (1.0.41)

Organizando em colchetes os elementos dos diferentes grupos,

ig2s

[
ūs(p3)γ

µus(p1)
ηµν
qµqµ

ūs(p4)γ
νus(p2)

]
[c†3tac1c

†
1tac3]. (1.0.42)

Vamos abrir o segundo colchete, também chamado de fator de cor f ,

f = [c†3tac1c
†
1tac3] =

(0 0 1
)
ta


1

0

0

(
1 0 0

)
ta


0

0

1


 = (ta)31(ta)13

(1.0.43)

As únicas matrizes ta com essas componentes diferentes de zero são as matri-

zes t4 e t5. Esse é um resultado esperado se considerarmos que essas matrizes

podem ser construídas a partir dos vetores r, g, b. Por exemplo, com uma com-

binação dos produtos diádicos entre os vetores r e b é possível obter a matriz
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t4:

t4 =
1

2


0 0 1

0 0 0

1 0 0

 =
1

2
(br̄ + rb̄). (1.0.44)

Tomando como referência o vértice do quark ur, br̄ pode ser entendido como o

par de cargas de cor portado pelo glúon ao ser absorvido pelo quark e rb̄ o par

para o caso em que o glúon é emitido pelo quark, que passa agora a ter carga b.

Em ambos os casos as cargas de cor são conservadas nos vértices: br̄r → b e

r → rb̄b.

Diferentemente dos bósons abelianos, todo glúon carrega um par cor-anticor

e seus estados de cor são os seguintes:

|1⟩ = 1√
2
(gr̄ + rḡ); |2⟩ = i√

2
(gr̄ − rḡ);

|4⟩ = 1√
2
(br̄ + rb̄); |5⟩ = i√

2
(br̄ − rb̄);

|6⟩ = 1√
2
(bḡ + gb̄); |7⟩ = i√

2
(bḡ − gb̄);

|3⟩ = 1√
2
(rr̄ − gḡ); |8⟩ = 1√

6
(rr̄ + gḡ − 2bb̄).

(1.0.45)

Ainda existe um nono estado de cor singleto, invariante sob transformações do

grupo SU(3),

|9⟩ = 1√
3
(rr̄ + gḡ + bb̄). (1.0.46)

Se existisse algum glúon nesse estado, a interação forte seria similar a uma

interação eletromagnética U(3) (GRIFFITHS, 2008), mas isso não é observado.

De fato, quarks livres definidos por uma cor específica como os da eq. 1.0.41

não são observados, todos os hádrons são neutros em cor. Nos mésons (q̄q), o

quark porta uma cor e o antiquark a respectiva anticor. Logo, o estado de cor dos

mésons é do tipo do estado singleto |9⟩. Nos bárions (qqq), cada quark possui
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uma unidade diferente de cor, isso os torna brancos. Eles são descritos pelo

estado:

|ψ⟩ = 1√
6
(rgb+ gbr + brg − rbg − grb− bgr). (1.0.47)

Acredita-se que tal comportamento está ligado à capacidade dos glúons porta-

rem cor e interagirem com outros glúons. Ainda que quarks e glúons livres sejam

gerados, eles logo se combinam, de modo que estados de cor definida não são

observados na natureza, num processo conhecido como hadronização.
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2 SIMETRIAS DISCRETAS E O PROBLEMA DE CP FORTE

2.1 SIMETRIAS DISCRETAS DA TEORIA DE DIRAC

A teoria de campos de Dirac e Yang-Mills, que serviu de base para cons-

truirmos os lagrangianos da QCD e QED (Eq. B.0.15), admite no mínimo três

transformações discretas que, quando combinadas, mantêm o lagrangiano das

interações invariante. São essas:

• Conjugação de carga (C): Troca as partículas com suas respectivas anti-

partículas, i.e., inverte o sinal de todos os números quânticos aditivos de

uma determinada partícula;

• Transformação de paridade (P ): Inverte a o sinal de todas as componentes

espaciais, ϕ(⃗r) → P r⃗ = ϕ(−r⃗). Tal transformação não é possível de ser

realizada de forma contínua, como uma rotação dos eixos;

• Inversão temporal (T ): Como o nome sugere, este operador inverte o tempo

de um campo, Tϕ(t) → ϕ(−t). Uma interação é simétrica em T quando a

probabilidade de um evento ocorrer é a mesma antes e depois da inversão

temporal.

Diz-se que uma grandeza ou um sistema físico é par sob essas transformações

caso seu sinal não mude, caso contrário ele é ímpar. O campo elétrico E, por
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exemplo, é ímpar sob C e P e par sob T ,

[E] =
N

C
=

Kg ·m
C · s2

→



C[E] =
Kg ·m
(−C) · s2

= −[E],

P [E] =
Kg · (−m)

C · s2
= −[E],

T [E] =
Kg ·m
C · (−s)2

= [E].

(2.1.1)

Enquanto que o campo magnético B é ímpar sob C e T e par sob P .

[B] =
N ·m
C · s

=
Kg ·m2

C · s3
→



C[B] =
Kg ·m2

(−C) · s3
= −[B],

P [B] =
Kg · (−m)2

C · s3
= [B],

T [B] =
Kg ·m2

C · (−s)3
= −[B].

(2.1.2)

Essas transformações ainda podem ser combinadas. Utilizando as relações

acima, o campo elétrico E é par sob CP e o campo magnético B é par sob

CT . Os bilineares dos campos de Dirac e o operador derivada também são mo-

dificados sob essas transformações de acordo com a tabela abaixo,

Transf. Escalar Pseudo-Escalar Vetor Pseudovetor Op. Derivada
ψ̄ψ iψ̄γ5ψ ψ̄γµψ ψ̄γµγ5ψ ∂µ

C 1 1 −1 1 1
P 1 −1 (−1)µ −(−1)µ (−1)µ

T 1 −1 (−1)µ (−1)µ −(−1)µ

Tabela 2 – O elemento (−1)µ é definido como 1 para µ = 0 e (−1) para os demais
índices (PESKIN; SCHROEDER, 2018).

Acreditava-se que essas transformações, isoladamente ou combinadas, eram

conservadas em interações físicas, por exemplo: se o estado antes de uma inte-

ração era par em relação a alguma simetria, após a interação ele deve continuar

sendo par. Entretanto, em 1956, Yang e Lee (LEE; YANG, 1956) publicam um

trabalho onde questionam essa premissa, apresentando fundamentação teórica
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e proposições experimentais onde, a partir decaimentos β, seria possível obser-

var uma violação da conservação de paridade na interação fraca. Publicado no

ano seguinte, o Experimento Wu, conduzido por Chien-Shiung Wu, comprovou

que a interação fraca violava a conservação de paridade nos decaimentos β de

núcleos de Co-60. No mesmo ano, também foi demonstrado que o decaimento

leptônico dos píons π, mésons formados por quarks de primeira geração, tam-

bém não conservavam C (LEE; OEHME; YANG, 1957).

2.2 DECAIMENTO DO MÉSON K NEUTRO E A VIOLAÇÃO DE CP

Mesmo com a violação de C e P , CP ainda era tida como um boa simetria.

Em 1964, o experimento conduzido por Cronin e Fitch testaria essa concepção

através do decaimento do méson K neutro. Também chamados de káons, os mé-

sons K são partículas de spin-0, pseudo-escalares, estranhas leves. Os termos

estranhas e leves implicam, respectivamente, que a partícula é constituída por

um quark s (antiquark s̄) e um dos dois antiquarks (quarks) da primeira geração.

Seguindo essa definição, quatro káons são possíveis,

∣∣K+
〉
= us̄;

∣∣K−〉 = sū;
∣∣K0

〉
= ds̄;

∣∣K̄0
〉
= sd̄. (2.2.1)

O káon neutro barrado pode ser escrito como,

∣∣K̄0
〉
= C

∣∣K0
〉
, (2.2.2)

onde C é o operador de conjugação de carga. De fato, os káons neutros "oscilam"

entre partícula-antipartícula por intermédio da interação fraca em um fenômeno
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conhecido como K0 − K̄0mixing1, que também é comum à outras partículas

neutras (GELL-MANN; PAIS, 1955). Como consequência, os káons observados

em laboratório são na verdade estados mistos descritos por,

∣∣K0
1

〉
=

1√
2

[∣∣K0
〉
+
∣∣K̄0

〉]
,

∣∣K0
2

〉
=

1√
2

[∣∣K0
〉
−
∣∣K̄0

〉]
,

(2.2.3)

que, eventualmente, decaem em pares e trios de píons em intervalos médios

distintos (WORKMAN et al., 2022),

τ1 =8, 954× 10−11s,

τ2 =5, 116× 10−8s.

(2.2.4)

Para testar a conservação da simetria CP , precisamos definir como essas par-

tículas respondem a essas transformações. Quarks e antiquarks possuem pa-

ridade intrínseca Pq = 1 e Pq̄ = −1, respectivamente (NAGASHIMA, 2010). A

paridade de um estado formado por um quark e um antiquark é definida como,

P = PqPq̄(−1)l = (−1)l+1 (2.2.5)

onde o fator l é o momento angular orbital do sistema. Em um referencial onde

l = 0, temos

P |qq̄⟩ = − |qq̄⟩ . (2.2.6)

Também podemos entender o −1 que multiplica o lado direito da equação como

o autovalor λqq̄ do operador P associado ao autoestado |qq̄⟩. A transformação
1 Embora a estranheza dos estados mistos abaixo seja zero, a oscilação entre partícula e anti-

partícula altera a estranheza do méson no estado misto, logo, ela não pode ser intermediada
pela interação forte. Esse também é o motivo pelo qual sabemos que essas partículas são
diferentes.
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CP sob os estados |K0⟩ e ¯|K0⟩ é definida como (NAGASHIMA, 2010),

CP
∣∣K0

〉
= eiαcp

∣∣K̄0
〉
= ηcp

∣∣K̄0
〉
,

CP
∣∣K̄0

〉
= e−iαcp

∣∣K0
〉
= η∗cp

∣∣K0
〉
.

(2.2.7)

Seguindo a convenção αcp = 0 para a fase e assumindo que a simetria se con-

serva, vemos que os mésons observados em laboratório são autoestados do

operador CP ,

CP
∣∣K0

1

〉
=

1√
2

[
CP

∣∣K0
〉
+ CP

∣∣K̄0
〉]

=
1√
2

[∣∣K̄0
〉
+
∣∣K0

〉]
=

∣∣K0
1

〉
;

CP
∣∣K0

2

〉
=

1√
2

[
CP

∣∣K0
〉
− CP

∣∣K̄0
〉]

=
1√
2

[∣∣K̄0
〉
−
∣∣K0

〉]
= −

∣∣K0
2

〉
.

(2.2.8)

onde os autovalores são λ1 = 1 e λ2 = −1. Dizemos então que os autoesta-

dos |K0
1⟩ e |K0

2⟩ são, respectivamente, par e ímpar sob uma transformação CP .

A paridade dos decaimentos dessas partículas é obtida através do produto da

paridade dos píons. Isso significa que o decaimento é par se gera um duo de

píons e ímpar se gera um trio. Já a conjugação de carga nos mostra que o píon

neutro é sua própria antipartícula e os píons carregados são suas respectivas

antipartículas,

C
∣∣π0

〉
=

1√
2

[
C |uū⟩+ C

∣∣dd̄ 〉] = ∣∣π0
〉
,

C
∣∣π+

〉
= C

∣∣ud̄ 〉 = |dū⟩ =
∣∣π−〉 . (2.2.9)

Combinando as transformações e aplicando aos estados dos decaimentos,

CP
∣∣π0π0

〉
=

∣∣π0π0
〉
; CP

∣∣π+π−〉 = ∣∣π−π+
〉
,

CP
∣∣π0π0π0

〉
= −

∣∣π0π0π0
〉
; CP

∣∣π+π−π0
〉
= −

∣∣π−π+π0
〉
.

(2.2.10)

onde os autovalores são λ2π = 1, para o par de píons, e λ3π = −1, para o

trio, sendo respectivamente par e ímpar sob a transformação. Logo, para que a
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simetria CP se conserve, λ1 = λ2π e λ2 = λ3π, fazendo com que os seguintes

comportamentos sejam esperados nos decaimentos:

K0
1 → π0 + π0; K0

1 → π+ + π−;

K0
2 → π0 + π0 + π0; K0

2 → π+ + π− + π0.

(2.2.11)

O experimento realizado para testar essa simetria consistia em emitir feixes de

káons K0
1,2 ao longo de um tubo de ∼17 m, seguido de detectores otimizados

para a observação do decaimento 2π na extremidade final. Por conta das di-

ferentes vidas médias (2.2.4), era esperado que os mésons K0
1 decaíssem por

completo nos primeiros centímetros do tubo, sobrando apenas um feixe "puro"de

mésons K0
2 . Caso houvesse violação CP , um decaimento do tipo 2π seria obser-

vado e a soma dos seus momentos se alinharia com a do méson K0
2 incidente.

Realizado o experimento, dos ∼22,700 eventos observados, 45 eram do tipo 2π,

um fator de 1 para 500 ou 2 × 10−3. Após extensa investigação (FITCH, 1980),

foi confirmado: o experimento havia demonstrado que a interação fraca não con-

servava a simetria CP .

As consequências da observação de tal assimetria são inúmeras, sendo as

mais notáveis a predição de uma terceira geração de férmions (KOBAYASHI;

MASKAWA, 1973) e a confirmação do pre-requisito de violação CP para hipó-

tese da bariogênese, que é a assimetria entre matéria e antimatéria observada

no universo (HORVARTH, 2023). Outra consequência é a busca por essa viola-

ção nas outras interações. Na interação forte, tomando como referência o tensor

eletromagnético (Eq. A.4.12), podemos olhar para Ga
µν como um tensor dos cam-

pos elétricos, Ea, e magnéticos, Ba, "de cores". Nesse caso, o termo cinético que
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construímos é invariante sob uma transformação de CP , pois ele é proporcional

a soma do quadrado dos campos,

Ga
µνG

aµν = (Gai0G
ai0 +Ga0jG

a0j) + (GaijG
aij), i, j = 1, 2, 3,

= −2[(Ea)2 − (Ba)2].

(2.2.12)

Teoricamente, nada nos impede de inserir no lagrangiano um termo do tipo

g2s
32π2

θGa
µνG̃

aµν , (2.2.13)

onde G̃, chamado de tensor Hodge dual ou só dual, é definido como2

G̃aµν =
1

2
ϵµνσρGa

σρ =


0 −Ba

1 −Ba
2 −Ba

3

Ba
1 0 Ea

3 −Ea
2

Ba
2 −Ea

3 0 Ea
1

Ba
3 Ea

2 −Ea
1 0

 . (2.2.14)

Assim como Ga
µνG

aµν , o traço do produto Ga
µνG̃

dµν 2.2.13 é invariante de gauge,

como podemos ver abaixo (para α << 1)

Tr
[
Ga

µνG
d
ρσ

]
→ Tr

[
Ga′

µνG
d′

ρσ

]
= Tr

[
(Ga

µν − αbfabcG
c
µν)(G

d
ρσ − αefdefG

f
ρσ)

]
,

= Tr
[
Ga

µνG
d
ρσ − αbfabcG

c
µνG

d
ρσ − αefdefG

a
µνG

f
ρσ +O(α2)

]
,

(2.2.15)

Na condição do traço, a = d. Logo

Ga′

µνG
a′

ρσ = Ga
µνG

a
ρσ − αbfabcG

c
µνG

a
ρσ − αefaefG

a
µνG

f
ρσ,

= Ga
µνG

a
ρσ − αbfabc(G

c
µνG

a
ρσ +Ga

µνG
c
ρσ),

= Ga
µνG

a
ρσ − αbfabc(G

c
µνG

a
ρσ −Gc

µνG
a
ρσ),

= Ga
µνG

a
ρσ.

(2.2.16)

2 Embora essa transformação seja abordada na seção 2.4, a construção do termo abaixo de-
pende do formalismo do gerador funcional, que não será abordado nesse trabalho. As refe-
rências (PESKIN; SCHROEDER, 2018) seção 19.3.2 e (TONG, 2018a) contém a construção
e discussão detalhada sobre esse termo.
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Seguindo a analogia dos "campos de cor", esse termo é proporcional ao produto

escalar desses campos,

Ga
µνG̃

aµν = −4[Ea ·Ba]. (2.2.17)

Sob uma transformação de CP ,

CP [Ea ·Ba] = −Ea ·Ba, (2.2.18)

fazendo com que a simetria CP não se conserve na QCD. De fato, t’Hooft de-

monstrou que este termo está atrelado ao vácuo da QCD, permitindo que a inte-

ração viole CP (PECCEI, 2008) sem nenhum impedimento teórico. Entretanto,

experimentalmente a interação forte parece não violar essa simetria, sendo con-

siderada uma boa simetria da interação. Nas seções seguintes, veremos alguns

dos possíveis motivos para tal comportamento.

2.3 MOMENTO DE DIPOLO ELÉTRICO DO NÊUTRON

O nêutron é um bárion composto por um quark up com carga elétrica 2
3
e e dois

quarks down com carga elétrica − e
3
, logo sua carga elétrica total é zero (Tab. 1).

Classicamente, o momento de dipolo elétrico (MDE) de uma distribuição com N

cargas pontuais é dado por

d =
N∑
i=0

qiri, (2.3.1)

onde i = 1, ..., N , qi são as cargas e ri suas respectivas distâncias até a origem.

A posição da origem em relação às cargas impacta no MDE, exceto quando

a carga total de distribuição é nula, como é o caso do nêutron. Vamos então

calcular o MDE deste bárion. Por conveniência, definiremos a origem na carga
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positiva, como na figura 1:

Figura 1 – Ilustração com uma representação clássica do nêutron (HOOK, 2023).

Com a carga q0 na origem, o vetor r0 é igual a zero e podemos reescrever as

demais cargas qi como q. Assim,

dn = q(r1 + r2), (2.3.2)

onde r̂1 = r(cos θx̂+ sin θŷ) e r̂2 = −rx̂. O vetor MDE é

dn = −er
3
[(1− cos θ)x̂+ sin θŷ)] (2.3.3)

e seu módulo

dn =
er

3

√
2(1− cos θ). (2.3.4)

Usando a relação do ângulo duplo,

1− cos θ = 2 sin2

(
θ

2

)
, (2.3.5)

ainda podemos escrever o módulo como,

dn =
2er

3
sin

(
θ

2

)
. (2.3.6)
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Além de algumas aproximações, para estimar o valor desse módulo também

precisamos fazer algumas considerações e a primeira é quanto à distancia r

entre os quarks. É razoável assumir que essa distância seja o raio do nêutron e,

mesmo sendo uma concepção bastante clássica, este pode ser comparado ao

raio de confinamento de cor, inferido pela densidade de carga dos núcleons, etc.,

ou pode ser estimado pelo seu comprimento de onda de Compton,

λn ∝ 1

mn

(2.3.7)

Em todos os casos, r é da ordem de 10−15m. Então,

dn ≈ 10−15 sin

(
θ

2

)
em. (2.3.8)

Existe mais um detalhe: até agora, o MDE que construímos é par sob T , mas

quanticamente, a única quantidade vetorial capaz de nos dar a orientação dessa

distribuição de cargas no bárion é momento angular total J = L + S, onde L é

o momento angular orbital e S é o spin. Em um referencial onde L é zero, para

descrever a orientação do MDE utilizamos o spin, que é uma grandeza ímpar sob

T . Isso significa que, dimensionalmente, o nosso MDE adquire um parâmetro f

ímpar sob T . Com base no teorema CPT , uma violação de T implica em uma

violação de CP , então podemos inferir que o parâmetro f é da ordem de 10−3

(PERKINS, 2000). Logo, a magnitude do MDE é

dn ≈ 10−18 sin

(
θ

2

)
em. (2.3.9)

Agora precisamos determinar o valor do θ. É razoável esperar algo em torno da

ordem de grandeza que estimamos até agora, mas o fato é que o valor medido

experimentalmente para o MDE é dn < 1, 8× 10−28 em (WORKMAN et al., 2022).
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Nessas condições, θ < 10−10. Dentro do nosso arranjo clássico é como se os

quarks tendessem a se alinhar. Note que esse é um limite superior, o MDE do

nêutron pode ser bem menor do que isso ou até mesmo ser zero. O que faz o

valor do θ ser tão pequeno?

2.4 O PROBLEMA DE CP DA INTERAÇÃO FORTE

Partindo da referência (PECCEI; QUINN, 1977b), seja o lagrangiano "toy mo-

del"3 que descreve um sabor de quark ψ interagindo com um campo escalar

complexo φ dado por

L = iψ̄ /Dψ − 1

4
G2 + ψ̄[gφP+ + g∗φ∗P−]ψ − L(φ) (2.4.1)

onde /D = γµDµ, G2 = Ga
µνG

aµν , g é a constante de acoplamento complexa de

Yukawa, P± são as matrizes de projeção,

P± =

(
1± γ5

2

)
, (2.4.2)

e o potencial L(φ) = |∂µφ|2 + µ2|φ|2 + h|φ|4. Sabendo que,

z = reiθ, ∀ z ∈ C; r, θ ∈ R, (2.4.3)

podemos escrever φ e G como,

g = |g|eiα, φ = |φ|eiβ, α, β ∈ R. (2.4.4)
3 A expressão "toy model" ("modelo de brinquedo", em tradução livre) é usada para descre-

ver uma modelagem física simplificada, onde detalhes que vão além do mecanismo que se
pretende demonstrar são removidos.
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Com essas modificações, fica mais fácil observar que o terceiro termo é um

termo de massa do férmion,

ψ̄[gφP+ + g∗φ∗P−]ψ = ψ̄
[
|g|eiy|φ|eiβP+ + |g|e−iα|φ|e−iβP−

]
ψ

= |g||φ|ψ̄
[
ei(α+β)P+ + e−i(α+β)P−

]
ψ.

(2.4.5)

Definindo θ′ := α+ β e utilizando a propriedade (γ5)2 = 1, podemos reescrever o

termo entre colchetes como uma exponencial.

[eiθ
′
P+ + e−iθ′P−] =

[
1

(
eiθ

′
+ e−iθ′

)
2

+ γ5
(
eiθ

′ − e−iθ′
)

2

]
, (2.4.6)

reescrevendo as exponenciais como uma expansão em série, temos

1

2

{
1

[
∞∑
n=0

(iθ′)n

n!
+

∞∑
n=0

(−1)n
(iθ′)n

n!

]
+ γ5

[
∞∑
n=0

(iθ′)n

n!
−

∞∑
n=0

(−1)n
(iθ′)n

n!

]}
=

=
1

2

∞∑
n=0

{
1[1 + (−1)n] + γ5[1− (−1)n]

}(iθ′)n
n!

.

(2.4.7)

Quando n é ímpar, o elemento [1 + (−1)n] é igual a zero e [1 − (−1)n] é igual a

zero quando n for par. Logo

∞∑
n=0

[
1
(iθ′)2n

(2n)!
+ γ5

(iθ′)2n+1

(2n+ 1)!

]
(2.4.8)

Como (γ5)2n = 1 e (γ5)2n+1 = γ5, temos

∞∑
n=0

[
(iθ′γ5)2n

(2n)!
+

(iθ′γ5)2n+1

(2n+ 1)!

]
=

∞∑
n=0

(iθ′γ5)n

(n)!
= eiθ

′γ5

. (2.4.9)

Fazendo |g||φ| = |m|, temos o nosso termo de massa4

|m|ψ̄eiθ′γ5

ψ. (2.4.10)

Após essas mudanças, ficamos com o seguinte lagrangiano

L = iψ̄ /Dψ − 1

4
G2 + |m|ψ̄eiθ′γ5

ψ − L(φ). (2.4.11)
4 A expressão "termo de massa" aqui é um abuso de linguagem, afinal o termo é complexo.

Mas, equivale fisicamente a um termo de massa.
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Ainda é possível remover essa fase complexa do termo de massa com uma trans-

formação axial global U(1),

ψ → ψ′ = e−i θ
′
2
γ5

ψ; ψ̄ → ψ̄′ = ψ̄e−i θ
′
2
γ5

. (2.4.12)

Como a matriz γ5 anticomuta com as matrizes γµ (0.0.8) e θ′ é uma constante, a

parte da derivada covariante permanece inalterada

L → L′ ∝ iψ̄e−i θ
′
2
γ5

γµDµe
−i θ

′
2
γ5

ψ

= iψ̄γµei
θ′
2
γ5

e−i θ
′
2
γ5

Dµψ = iψ̄γµDµψ

(2.4.13)

e eliminamos a fase complexa,

L → L′ ∝ |m|ψ̄e−i θ
′
2
γ5

eiθ
′γ5

e−i θ
′
2
γ5

ψ

= |m|ψ̄ψ.
(2.4.14)

Classicamente, essa transformação remove a fase complexa sem consequên-

cias ao lagrangiano. Mas, correções quânticas mostram que o parâmetro θ′ da

transformação axial U(1) se acopla ao tensor dual dos glúons (PESKIN; SCH-

ROEDER, 2018), dando origem ao termo abaixo

g2s
32π2

θ′GG̃, (2.4.15)

onde GG̃ = Ga
µνG̃

aµν . Esse fenômeno é conhecido como anomalia quiral e o

resultado é o seguinte lagrangiano

L′ = iψ̄ /Dψ + |m|ψ̄ψ − 1

4
G2 +

αs

8π
θ′GG̃− L(φ), (2.4.16)

onde αs =
g2s
4π

. Como já discutimos ao final da seção 2.2, sabe-se que o produto

GG̃ viola a simetria CP , fato não observado na QCD. Uma solução seria assumir

que θ′ = 0, mas alguns autores argumentam que θ′ ≈ 1 (HOOK, 2023). E,
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ainda há o outro termo θGG̃ (Eq. 2.2.13), independente ao θ′. Somando essas

contribuições, temos

L′ = iψ̄ /Dψ + |m|ψ̄ψ − 1

4
G2 +

αs

8π
θ̄GG̃− L(φ), (2.4.17)

onde θ̄ = θ+θ′. Ou seja, para que a teoria concorde com os experimentos, θ̄ = 0.

Mas isso implica que θ = −θ′, sendo que esses parâmetros são independentes.

Por que, dentre todos valores possíveis para θ, ele assume exatamente o valor

de −θ′? Este é o problema de CP da interação forte.

2.5 SOLUÇÃO AXIÔNICA PARA O PROBLEMA DE CP FORTE

A solução clássica e mais popular para o problema discutido na seção anterior

parte da observação de que o lagrangiano da Eq. 2.4.17 "possui" uma simetria

global sob as seguintes transformações:

φ→ φ = ϕe−iσ = |ϕ|ei(β−σ), ψ → U ′ψ = ei
σ
2
γ5

ψ. (2.5.1)

Por ser invariante sob transformações globais U(1) e considerando que |φ| = |ϕ|,

a contribuição de L(φ) fica essencialmente inalterada,

L(φ) → L(ϕ) = ∂µϕ∂
µϕ∗ + µ2|ϕ|2 + h|ϕ|4. (2.5.2)

E, o termo de massa do quark também,

ψ̄|m|ψ → ψ̄ei
σ
2
γ5|g||ϕ|U †

[
ei(θ

′−σ)P+ + ei(θ
′−σ)P−

]
Uei

σ
2
γ5

ψ

= ψ̄|g||ϕ|U †ei(θ
′−σ+σ)γ5

Uψ = |g||ϕ|ψ̄ei(−σ+σ)γ5

ψ = |m|ψ̄ψ.
(2.5.3)

Mas isso não é de fato uma simetria do lagrangiano, pois a transformação no

spinor gera um termo anômalo, que atuará em θ̄ → θ̄ − σ. Ainda assim, esse
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resultado é útil. Definindo que o parâmetro σ = θ̄, removemos o termo que viola

CP da teoria. Agora precisamos garantir que σ sempre assuma o valor de θ̄.

Para isso, vamos tratar o σ como uma transformação local σ(x)
fa

, onde fa é uma

constante de decaimento associada ao σ. Isso modificaria L(ϕ), mas deixaria a

parte do potencial V (ϕ) inalterada

L(ϕ) → L(ϕ) = ∂µϕ∂
µϕ∗ − 1

f 2
a

∂µσ∂
µσ + µ2|ϕ|2 + h|ϕ|4. (2.5.4)

Aqui podemos ver que σ é na verdade um bóson de Nambu-Goldstone, i.e., L(ϕ)

apresenta uma simetria azimutal fazendo com que seu vácuo seja degenerado

e que translações em σ não afetem seu potencial. Com isso, podemos definir

o valor esperado de σ no vácuo como ⟨σ⟩ = θ̄fa e eliminá-lo da teoria usando

a anomalia. Entretanto, como já vimos anteriormente, uma transformação local

produz termos que se acoplam aos férmions a partir da derivada covariante,

iψ̄ /Dψ → iψ̄U †γµDµ(Uψ) = iψ̄γµU−1Dµ(Uψ) = iψ̄ /Dψ − ∂µσ

2fa
ψ̄γµγ5ψ. (2.5.5)

onde ψ̄γµγ5ψ é uma corrente axial, que também poder ser escrita como Jµ
A. Po-

demos remediar isso expandindo a nossa teoria para L → L+ La,

La =
1

2
∂µσ∂

µσ +
αs

8π

σ

fa
GG̃+

∂µσ

2fa
Jµ
A, (2.5.6)

onde σ(x) é um campo pseudo-escalar real sem massa. Logo,

L+La = iψ̄ /Dψ− 1

4
G2+ |m|ψ̄ψ+ αs

8π

[
θ̄ +

σ

fa

]
GG̃+

1

2
∂µσ∂

µσ+L[∂µσ;ψ;ϕ]. (2.5.7)

O elemento L[∂µσ;ψ;ϕ] contém os termos de interação provenientes de deri-

vadas do campo σ. Eliminamos a contribuição de θ̄ definindo ⟨σ⟩ = −θ̄fa e

redefinindo σ,

σ = ⟨σ⟩+ a, (2.5.8)
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onde ⟨a⟩ = 0. Por ⟨σ⟩ ser uma constante, essa translação não afeta os demais

termos que dependem de derivadas do σ. Assim,

L+ La = iψ̄ /Dψ + |m|ψ̄ψ − 1

4
G2 +

αs

8π

a

fa
GG̃+

1

2
∂µa∂

µa+ L[∂µa;ψ;ϕ]. (2.5.9)

Utilizando a tab. 2 e sabendo que a é um campo pseudo-escalar, podemos

ver que nosso lagrangiano é invariante sob CP , tanto no acoplamento com os

glúons,

CP [aGG̃] = (−a)(−GG̃) = aGG̃, (2.5.10)

quanto no acoplamento com os quarks,

CP

[
∂µa

2fa
Jµ
A

]
=
∂0(−a)
2fa

(−ψ̄γ0γ5ψ) + (−∂i)(−a)
2fa

ψ̄γiγ5ψ =
∂µa

2fa
ψ̄γµγ5ψ. (2.5.11)

Com isso, eliminamos a fonte de violação de CP , mas inserimos um bóson de

Nambu-Goldstone a na teoria, o áxion. Esse conjunto de transformações consti-

tuem a simetria U(1)PQ introduzida por Roberto D. Peccei e Helen R. Quinn em

1977 (PECCEI; QUINN, 1977a), quando propuseram a solução para o problema

CP que deu origem ao áxion, quase nomeado higglet ((WEINBERG, 1978) e

(WILCZEK, 1978)). Isso também responde a questão do momento de dipolo do

nêutron ser tão pequeno, uma vez que o parâmetro θ̄ é removido da teoria, a

única fonte de violação CP é o termo aGG̃ com ⟨a⟩ = 0, fazendo com que o

MDE do nêutron seja efetivamente zero. Embora resolva o problema, este áxion

clássico, também chamado de visível, nunca foi observado e, dentro dos limites

estabelecidos pela teoria, foi descartado experimentalmente (PECCEI, 2008).

Modificações foram feitas desde então e os modelos mais atuais para o áxion

partem de uma simetria SU(2)L,R × U(1), utilizando o mesmo mecanismo para
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remover o θ̄, mas com algumas diferenças. Faremos aqui uma abordagem breve

das modificações feitas.

Os dois modelos que servem de base para o áxion são os propostos por Kim-

Shifman-Vainshtein-Zakharov (KSVZ) e Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)

(CORTONA et al., 2016). A parte comum a essas teorias é

L =
1

2
∂µa∂

µa+
αs

8π

a

fa
GG̃+

1

4
g0aγaF F̃ +

∂µa

2fa
Jµ
a,0 − q̄LMqqR + h.c., (2.5.12)

onde g0aγ é a constante de acoplamento áxion-fóton, F̃ = F̃ µν = 1
2
ϵµνρσFρσ é

o tensor dual eletromagnético, Jµ
a,0 = q̄γµγ5c0qq é a corrente axial e q, c0q e Mq

são respectivamente o dubleto de quarks da primeira geração, a matriz com as

constantes de acoplamento da corrente axial e a matriz de massa dos quarks,

q =

u
d

 , c0q =

c0u 0

0 c0d

 , Mq =

mu 0

0 md

 . (2.5.13)

O valores das constantes g0aγ e c0q dependem do modelo utilizado. Realiza-se a

transformação axial,

q → q′ = ei
a

2fa
Qaγ5

q,Tr{Qa} = 1 (2.5.14)

onde Qa é uma matriz que atua nos campos de quarks. Essa transformação

remove aGG̃ através da anomalia, modificando as constantes de acoplamento,

g0aγ → gaγ e c0q → cq, e a massa dos quarks, resultando em

L =
1

2
∂µa∂

µa+
1

4
gaγaF F̃ +

∂µa

2fa
Jµ
a − q̄LMaqR + h.c., (2.5.15)

com cq = c0q − Qa e Ma = ei
a

2fa
QaMqe

i a
2fa

Qa. Algo que não trataremos aqui, mas

precisamos pontuar é que o áxion ganha uma massa ma a partir do vácuo dos

glúons, se considerarmos que o termo anômalo funciona como um potencial
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efetivo para o então pseudo bóson de Nambu-Goldstone,

m2
a =

〈
∂2Veff
∂a2

〉
∝ αs

fa

∂

∂a

〈
GG̃

〉 ∣∣∣∣
⟨a⟩=⟨σ⟩

. (2.5.16)

Dada a variedade de modelos, o espectro da massa do áxion é bastante amplo.

De acordo com (ADAMS et al., 2023), o valor mais preciso já calculado para a

massa do áxion é

ma = 5, 691± 0, 051µeV(1012GeV/fa). (2.5.17)

Outro fato é o acoplamento do áxion com dois fótons aF F̃ . Diferentemente do

caso não-abeliano, o termo FF̃ não contribui para a ação no setor eletromag-

nético, mas isso muda quando o parâmetro que se acopla ao produto passa a

ser dinâmico. A existência do áxion tem impactos diretos no eletromagnetismo e

é este acoplamento que permite a observação indireta do áxion, agora invisível,

como veremos no capítulo seguinte.
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3 O ÁXION DA QCD NA ELETRODINÂMICA

No capítulo anterior, vimos que o áxion se acopla aos campos de glúons e

também aos campos eletromagnéticos através do termo aF F̃ . Neste capítulo,

vamos obter as equações de Maxwell modificadas por essa partícula e o papel

dessa eletrodinâmica axiônica (EDA) na hipótese da matéria escura axiônica.

3.1 ELETRODINÂMICA AXIÔNICA

Antes de partir para a EDA, vamos tratar do produto aF F̃ quando a é apenas

um parâmetro. Quando ∂µa = 0, diferentemente do caso não-abeliano, este

produto não altera equações as equações de Maxwell, como veremos a seguir.

Seja S a ação dos campos eletromagnéticos (TONG, 2018b),

S =

∫
d4x {Lγ + La} =

∫
d4x

{
− 1

4µ0

F 2 − 1

4
αeaaF F̃

}
, (3.1.1)

onde µ0 é permeabilidade magnética do vácuo e αea =
αe

π
= e2

4π2 é a constante de

acoplamento (µ0 = ϵ−1
0 ). As equações de movimento para Lγ são obtidas a partir

das eq. de Euler-Lagrange A.4.51,

∂κ

[
∂Lγ

∂(∂κAλ)

]
− ∂Lγ

∂Aλ

= ∂κF
κλ = 0 (3.1.2)

Com a indexação usual e sabendo que o tensor F é o descrito na eq. A.4.12,

para i, j = 1, 2, 3, temos

∂µF
µν = 0


ν = 0, ∂iF

i0 = ∇ · E,

ν = i, ∂0F
0i + ∂jF

ji = −Ė+∇×B.

(3.1.3)

1 Esta derivação é feita em detalhes no apêndice A.4.
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Para La, realizando as devidas trocas de índices mudos, o produto aF F̃ pode ser

reescrito como

aF F̃ =
1

2
aϵµνρσ(∂µAν − ∂νAµ)(∂ρAσ − ∂σAρ),

= 2aϵµνρσ(∂µAν∂ρAσ).

(3.1.4)

A partir daqui podemos obter as equações de movimento para La,

∂κ

[
∂La

∂(∂κAλ)

]
− ∂La

∂Aλ

=
1

2
αea∂κ[a(ϵ

κλρσ∂ρAσ + ϵµνκλ∂µAν)] = 0. (3.1.5)

Como ϵµνκλ = ϵκλµν , podemos contrair essa soma substituindo µν por ρσ,

∂κ[a(ϵ
κλρσ∂ρAσ + ϵκλµν∂µAν)] = 2∂κ(aϵ

κλρσ∂ρAσ). (3.1.6)

Observando que ∂ρAσ é uma matriz quadrada, podemos reescrevê-la utilizando

a decomposição de Toeplitz, que nos diz que qualquer matriz quadrada pode ser

decomposta como a soma de suas partes simétrica e anti-simétrica,

∂ρAσ =
1

2
(∂ρAσ + ∂σAρ) +

1

2
(∂ρAσ − ∂σAρ). (3.1.7)

Realizando o produto com tensor de Levi-Civita, vemos que a parte simétrica se

anula,

ϵκλρσ
1

2
(∂ρAσ + ∂σAρ) =

1

2
ϵκλρσ(∂ρAσ − ∂ρAσ) = 0, (3.1.8)

e a parte anti-simétrica retorna o tensor dual F̃ ,

ϵκλρσ
1

2
(∂ρAσ − ∂σAρ) = F̃ κλ. (3.1.9)

Assim, as equações de movimento são,

αea∂µ(aF̃
µν) = 0. (3.1.10)
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Lembrando que ∂µa = 0, ficamos com a identidade de Bianchi,

∂µF̃
µν =


ν = 0, ∂jF̃

j0 = ∇ ·B,

ν = i, ∂0F̃
0i + ∂jF̃

ji = −Ḃ−∇× E.

(3.1.11)

Outro fato relevante é que o produto FF̃ é uma derivada total, i.e.,

ϵµνρσ(∂µAν∂ρAσ) = ∂µ(ϵ
µνρσAν∂ρAσ) = ∂µK

µ, (3.1.12)

pois ϵµνρσAν∂µ∂ρAσ = 0. A derivada ∂µK
µ, também chamada de termo topoló-

gico, depende apenas das condições de contorno. Nas condições em que obte-

mos nossas equações, tomamos o potencial Aµ = 0 no infinito, logo esse termo

também não contribui para a ação. Quando ∂µa ̸= 0, as equações de movimento

para a ação passam a ser2

∂µF
µν = −µ0αea∂µ(aF̃

µν)


∇ · E = − 1

ϵ0
αea∇a ·B,

∇×B− Ė = µ0αea(ȧB+∇a× E).

(3.1.13)

Essas equações nos permitem descrever classicamente o fenômeno magnetoe-

létrico presente, por exemplo, em materiais conhecidos como isolantes topológi-

cos (ITs), materiais cujo o interior se comporta como um isolante e as superfícies

externas como condutores. Para nossa modelagem, fora desses materiais o pa-

râmetro a = 0 e dentro dele a = π, fazendo com que o ∇a ̸= 0 em uma região δl

ao redor das suas paredes.

Vamos partir da primeira equação em 3.1.13 e considerar um IT cilíndrico

imerso em um campo magnético externo Be = Beẑ (Fig. 2). Como

∇a ·Be = ∇ · (aBe), (3.1.14)
2 Por permanecerem inalteradas e somarem zero, as contribuições provenientes da identidade

de Bianchi foram ocultadas.
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podemos usar a lei de gauss para determinar o comportamento desses campos

na parede desse material com uma superfície S no intervalo δz,

Figura 2 – Ilustração com um IT cilíndrico imerso em um campo magnético uni-
forme.

∮
S

E · dâ =
Q

ϵ0
=

∮
S

[
− 1

ϵ0
αeaaBeẑ

]
· dâ

=

∫
A

[
−
(
1

ϵ0
afora −

1

ϵ
adentro

)
αeaBeẑ

]
· ẑda

=
1

ϵ
αeBeA.

(3.1.15)

Logo, a densidade superficial de cargas σ = αeBe. Na condição onde o vetor

deslocamento elétrico ∇ ·D = 0, as cargas induzidas na superfície do material

são de polarização σ = σb. Em outras palavras, o campo magnético polariza

eletricamente o IT,

σb = P · ẑ → P = αeBe, (3.1.16)

que por sua vez dá origem a um campo elétrico, pela condição de contorno

abaixo

(ϵ0Efora − ϵEdentro) · ẑ = σb = αeBe. (3.1.17)

Mantendo a mesma configuração, no caso seguinte, vamos trocar o campo

magnético externo por um campo elétrico, Ee = Eeẑ. Sabendo que ȧ = 0 e

µ0αea(∇a× Ee) = ∇× (µ0αeaaEe), (3.1.18)
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com um circuito amperiano de altura l no intervalo radial δs na borda do IT, cuja

normal é tangente à superfície lateral do material (Fig. 3), podemos utilizar o

teorema de Stokes para estudar o que acontece a partir da segunda equação

em 3.1.13,

Figura 3 – Ilustração com um IT cilíndrico imerso em um campo elétrico uniforme.

∮
C

B · dl = µ0I =

∮
C

(µ0αeaaEe) · dl

=

∫
l

[(adentroµ− aforaµ0)αeaEeẑ] · ẑdz

= µαeEel.

(3.1.19)

Similar ao caso anterior, o campo Ee induz uma corrente superficial Ks no IT, com

Ks = αeEe. Novamente, se as condições permitem H = 0, a corrente superficial

é a corrente de magnetização superficial Kb = Kbφ̂,

Kb = M× ŝ = (αeEeẑ)× ŝ → M = αeEe, (3.1.20)

e a condição de contorno para o campo magnético passa a ser

(µ0Bfora − µBdentro) · ẑ = Kb = αeEe. (3.1.21)

Isolantes topológicos são um tópico extenso e complexo. Aqui foi feita apenas

uma breve abordagem para demonstrar a importância do termo topológico na
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descrição desses fenômenos magnetoelétricos. Uma abordagem introdutória

sobre o tema, envolvendo outros fenômenos, pode ser encontrada em (TONG,

2018b).

Agora vamos para o caso onde o parâmetro a é o áxion da QCD. Isso significa

que a constante de acoplamento gaγ e a massama dependem do modelo axiônico

utilizado no setor forte. Vamos partir do seguinte lagrangiano (SIKIVIE, 1983)

L =
1

2
(∂µa∂

µa−m2
aa

2)− AµJ
µ − 1

4µ0

FµνF
µν − 1

4
gaγaFµνF̃

µν , (3.1.22)

onde Aµ = (V,−A) e Jµ = (ρ,J). As equações de movimento referentes aos dois

últimos termos já foram obtidas na seção anterior, a diferença agora é o termo

de interação AµJ
µ não nulo. Logo

∂κ

[
∂La

∂(∂κAλ)

]
− ∂La

∂Aλ

= ∂κ

[
1

µ0

F κλ + gaγ(aF̃
κλ)

]
− Jλ = 0, (3.1.23)

que resulta em

∂µF
µν = µ0[J

ν − gaγ∂µ(aF̃
µν)]. (3.1.24)

Como a agora é um campo pseudo-escalar, ficamos com mais uma equação3,

∂µ

[
∂L

∂(∂µa)

]
− ∂L
∂a

= ∂µ∂
µa+m2

aa+
1

4
gaγFµνF̃

µν = 0 (3.1.25)

Na notação de Lorentz-Heaviside, as equações de Maxwell modificadas são

∇ · E =
1

ϵ0
(ρ− gaγ∇a ·B),

∇×B− Ė = µ0[J+ gaγ(ȧB+∇a× E)],

ä−∇2a+m2
aa = gaγE ·B.

(3.1.26)

3 O cálculo para obter essas equações está descrito no apêndice A.3.
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As equações associadas à identidade de Bianchi continuam inalteradas,

∇ ·B = 0, ∇× E+ Ḃ = 0. (3.1.27)

A EDA é interessante no contexto das partículas tipo-áxion (ALPs), pois essas

partículas/quasipartículas não precisam resolver o problema CP forte, ou seja,

as constantes de acoplamento e massa não dependem dos parâmetros da QCD,

podendo ser modeladas de acordo com o objeto de estudo, mas mantendo todo

o aparato de um campo pseudo-escalar que se acopla aos campos eletromag-

néticos.

Voltando ao caso dos ITs, por exemplo, a hipótese do polariton axiônico diz

que um material capaz de transmitir um feixe de luz, sob as condições ideais,

pode refletir totalmente essa luz incidente quando exposto a um campo magné-

tico externo paralelo ao campo elétrico desse feixe. Este fenômeno só é possível

para um campo a dinâmico, com potencial aplicação em circuitos computacionais

(SEKINE; NOMURA, 2021).

Esse é um dos principais motivadores da pesquisa em áxions e ALPs: pesqui-

sar materiais exóticos e desenvolver tecnologias mais sofisticadas de metrologia

quântica, a fim de encontrar novos meios de investigar fenômenos atrelados a

eventos de altas energias, especialmente em experimentos de pequena escala.

Nesse contexto, o áxion da QCD aparece também como um possível candidato

à matéria escura, com a sua busca experimental sendo a aplicação mais notável

da EDA, como veremos na próxima seção.
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3.2 MATÉRIA ESCURA AXIÔNICA

Um dos grandes mistérios atualmente na física e cosmologia é a matéria

escura, que constitui cerca de 25% da densidade de energia do nosso universo

(ADAMS et al., 2023). Sua presença é inegável, confirmada indiretamente por

seus efeitos gravitacionais, como por exemplo na curva de rotação das galáxias.

De forma resumida, uma galáxia espiral como a nossa é constituída por um bojo

e um disco fino, com a maior parte da massa no bojo. Para uma estrela a uma

distancia r do centro galático temos (PERKINS, 2000)

v2

r
=
GM(r)

r2
, (3.2.1)

onde a massa galática M(r) ∝ r3 no bojo galático e longe do bojo, no disco galá-

tico, a massa M se mantém aproximadamente constante dentro do raio r. Logo,

espera-se que no bojo v ∝ r e no disco v ∝ r−
1
2 . Entretanto, o que foi observado

é que a velocidade aumenta ou se mantém ao longo do disco (BROEILS, 1992).

Essa discrepância é sanada se a galáxia estiver inserida em um halo esférico

de uma matéria escura, que, diferentemente da matéria luminosa, não interage

eletromagneticamente ou interage muito fracamente. No caso da nossa galáxia,

o halo de matéria escura corresponde a 89% da sua massa (PERKINS, 2000).

Dentro desse contexto de proporções, a matéria que estudamos até agora cor-

responde a 5% da densidade de energia do universo4. A natureza de 95% do

universo5 ainda é uma questão em aberto.

Voltando à matéria escura, existem várias hipóteses a respeito da natureza
4 Menos que isso. Afinal, neste trabalho, não demos ênfase ao setor fraco do Modelo Padrão.
5 Dos quais 70% são energia escura, outro grande mistério. Uma ótima apresentação do tema

pode ser encontrada em (ARAÚJO, 2021).
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da matéria escura. As duas principais abordagens para essa questão são: a

matéria escura é uma partícula (ou partículas) e a matéria escura não é uma

partícula, mas sim um reflexo da limitação dos nossos modelos gravitacionais.

Esta última geralmente se baseia em modelos emergentes que não consideram

a Relatividade Geral uma boa descrição do universo. Aqui vamos nos ater a

primeira abordagem, pautada pelo modelo ΛCDM, também chamado de Modelo

Padrão da Cosmologia. Do inglês, a sigla CDM significa matéria escura fria, pois

este modelo determina que a velocidade dessas partículas são muito pequenas

em relação a da luz. Nesse regime, o áxion da QCD aparece como um possível

candidato à matéria escura6. O acoplamento com fótons, permite a sua busca

experimental impondo sob o áxion as condições do halo de matéria escura da

nossa galáxia.

Aqui vamos abordar o haloscópio, que opera com a hipótese de que a ma-

téria escura que compõe o halo galático são áxions distribuídos de forma ho-

mogênea e frios. Para um campo a descrito pela parte real da onda plana

a(r, t) = a0e
i(ka·r−ωat), isto significa que a onda não depende de r e se propaga

com baixas velocidade v da ordem de O(10−3). Das equações de de Broglie,

obtemos a frequência angular ωa = E = ma +
1
2
mav

2 ≈ ma. Logo, o campo a é

dado por a(t) = a0e
−imat. O haloscópio em questão7 é uma cavidade de onda

com um plasma não-homogêneo onde o áxion interage com um campo magné-

tico externo Be e, em ressonância, interfere com os campos eletromagnéticos
6 Neste trabalho nossa ênfase está no áxion. Caso leitor se interesse pelo tema, um resumo

didático de outros candidatos para matéria escura e suas características podem ser encontra-
dos em (BALTZ, 2004).

7 Todo o tratamento realizado aqui segue a idealização desenvolvida pelos pesquisadores do
Axion Dark Matter Experiment (ADMX) (MILLAR et al., 2023).
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dentro da cavidade. Para vermos como isso acontece, vamos fazer algumas

considerações: a cavidade é cilíndrica, de raio R, centrada no eixo ẑ e com um

campo magnético Be = Beẑ em seu interior; é conveniente separar os campos e

operador derivada em componentes transversais e axial,

E = Et + Ezẑ; B = Bt +Bzẑ; ∇ = ∇t + ẑ
∂

∂z
, (3.2.2)

onde E e B oscilam com frequência ω e a dependência em z de Et e Bt é

dada por eikzz; a resposta do plasma se dá apenas na direção axial, assim

ϵijEj = ϵEt + ϵzEz (para clareza visual µ = ϵ = 1); apenas fontes campos oriun-

das do acoplamento fóton-áxion são consideradas, ou seja, cargas e correntes

livres serão desconsideradas. Sob essas condições, a equação que apresenta o

acoplamento com o áxion passa a ser

(
∇t + ẑ

∂

∂z

)
× (Bt +Bz) + iω(Et + ϵzEz) = −imagaγaBe. (3.2.3)

Em ressonância ω = ma. O produto vetorial resultante das partes transversais

só pode ser axial, isso nos permite separar a equação acima em duas,

∇t ×Bt + iωϵzEz = −iωgaγaBe (3.2.4)

e

∇tBz × ẑ+ ẑ× ∂Bt

∂z
= ẑ×

(
∂Bt

∂z
−∇tBz

)
= −iωEt. (3.2.5)

Vemos na primeira equação que o acoplamento aBe atua como uma corrente

oscilando uniformemente ao longo de todo o volume. Fazendo o mesmo para a

Lei de Faraday,

ẑ×
(
∂Et

∂z
−∇tEz

)
= iωBt. (3.2.6)
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Substituindo o Et da equação 3.2.5 pela equação 3.2.4, vemos que as compo-

nentes transversais dos campos só dependem das componentes axiais,

ω2Bt = ẑ×
[
∂(−iωEt)

∂z
+ iω∇tEz

]
,

= ẑ×
{
∂

∂z

[
ẑ×

(
∂Bt

∂z
−∇tBz

)]
+ iω∇tEz

}
,

= ẑ×
{
ẑ×

(
∂2Bt

∂z2
−∇t

∂Bz

∂z

)
+ iω∇tEz

}
,

(3.2.7)

Pela relação ẑ× (ẑ× vt) = −vt, temos

ω2Bt = −∂
2Bt

∂z2
+∇t

∂Bz

∂z
+ iωẑ×∇tEz

= k2zBt +∇t
∂Bz

∂z
+ iωẑ×∇tEz

(3.2.8)

Isolando Bt,

Bt =
1

ω2 − k2z

(
∇t

∂Bz

∂z
+ iωẑ×∇tEz

)
. (3.2.9)

Uma vez que a dependência axial está demonstrada, vamos substituir o resul-

tado acima na eq. 3.2.4,

1

ω2 − k2z

[
∇t ×

(
∇t

∂Bz

∂z

)
+ iω∇t × (ẑ×∇tEz)

]
+ iωϵzEz = −iωgaγaBe.

(3.2.10)

Se voltarmos a eq. 3.2.4 novamente, vemos que a componente Bz do campo

magnético não se acopla ao áxion, apenas as componentes Bt. Isso significa

que Bz resulta das dinâmicas com o campo elétrico. Uma vez que estamos

interessados apenas no áxion como fonte, vamos ignorar a contribuição de Bz

para a equação. Reescrevendo em coordenadas cilíndricas e multiplicando por

1
iω

,

1

ω2 − k2z
[(̂s∂s + φ̂∂φ)× (̂s∂sEz − φ̂∂φEz)] + ϵzEz = −gaγaBe,

(∂2s + ∂2φ)Ez + γEz = − γ

ϵz
gaγBea,

(3.2.11)
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onde γ = ϵz(ω
2 − k2z). Como a só possui dependência temporal, podemos rees-

crever Ez utilizando separação de variáveis somada a uma função que também

só depende de t, Ez = S(s)Φ(φ)Z(z) + g(t), assim a equação diferencial parcial

(EDP) passa ser

ΦZ
∂2S

∂s2
+

ΦZ

s

∂S

∂s
+
SZ

s2
∂2Φ

∂φ2
+ γ[SΦZ + g(t)] = − γ

ϵz
gaγBea(t). (3.2.12)

Separado a eq. acima em duas equações, obtemos a solução particular para a

parte temporal,

g(t) = −gaγBea0
ϵz

e−iωt, (3.2.13)

e ficamos com a seguinte EDP,

ΦZ
∂2S

∂s2
+

ΦZ

s

∂S

∂s
+
SZ

s2
∂2Φ

∂φ2
+ γSΦZ = 0. (3.2.14)

Rearranjando essa equação,

s2

S

∂2S

∂s2
+
s

S

∂S

∂s
+

1

Φ

∂2Φ

∂φ2
+ s2γ = 0,

s2

S

∂2S

∂s2
+
s

S

∂S

∂s
+ s2γ = − 1

Φ

∂2Φ

∂φ2
= p2,

(3.2.15)

vemos que o extremo esquerdo dessa igualdade é a equação diferencial ordi-

nária (EDO) de Bessel e o centro é a EDO do oscilador harmônico. O cap. 11

da referência (ARFKEN; WEBER, 2007) nos diz que a solução para essa EDO é

dada por8

S(s)Φ(φ) = cJJp(isdz)e
ipφ, (3.2.16)

onde idz =
√
γ com dz =

√
ϵz(k2z − ω2) e Jp é a função de Bessel de primeiro tipo,

Jp(isdz) =
∑
n=0

(−1)n

n!Γ(n+ p+ 1)

(
isdz
2

)2n+p

. (3.2.17)

8 Ainda existe uma solução harmônica em z na referência, mas a EDP 3.2.15 não depende
explicitamente dessa variável, logo este resultado é válido para todo z dentro do cilindro.



3.2. MATÉRIA ESCURA AXIÔNICA 55

Por continuidade, a solução harmônica deve ser periódica, o que significa que p

deve ser um número inteiro e, dada a simetria da configuração, a contribuição de

φ é desprezível, logo p = 0. Sendo assim, a solução para essa EDO é dada por

S(s) = cJJ0(isdz) (3.2.18)

Ainda existe uma solução com a função de Bessel de segundo tipo Y0(−isdz).

Entretanto, essa solução é singular, diverge em s = 0, um resultado fisicamente

incongruente. Agora podemos escrever a solução geral para nosso sistema,

Ez(s, t) = −gaγBe

ϵz
a(t) + cJJ0(isdz) (3.2.19)

Para determinar a constante cJ precisamos impor algumas condições de con-

torno no nosso cilindro. A primeira condição é Ez = 0 nas paredes, s = R, que

pode ser realizado com o exterior da cavidade sendo um condutor, e a segunda é

que esperamos acoplamento máximo. Pela eq. 3.2.6, o acoplamento é máximo

quando Et = 0 e kz = 0. Sendo assim

Ez(R, t) = 0 = −gaγBe

ϵz
a(t) + cJJ0(Rω

√
ϵz) → cJ =

gaγBe

ϵzJ0(Rω
√
ϵz)

a(t) (3.2.20)

E, ficamos por fim com

Ez(s, t) =
gaγBe

ϵz

[
J0(sω

√
ϵz)

J0(Rω
√
ϵz)

− 1

]
a(t). (3.2.21)

O campo magnético Bt pode ser obtido diretamente da equação 3.2.6

Bt(s, t) = −gaγBe

ϵz

J1(sω
√
ϵz)

J0(Rω
√
ϵz)

a(t)φ̂. (3.2.22)

Vemos que J0(Rω
√
ϵz) → ∞ quando R → ∞, ou seja, próximo do centro de uma

cavidade muito grande, o campo magnético Bt vai a zero assim como o segundo
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termo do campo elétrico Ez. Logo, a solução é o acoplamento do áxion em um

plasma infinito

Ez(t) = −gaγBe

ϵz
a(t). (3.2.23)

Conhecendo as propriedades do plasma, com ϵz sendo descrito pelo modelo de

Drude, é possível impor um regime de ressonância fazendo Re(ϵz) = 0. No apa-

rato, uma antena captaria o sinal gerado que, posteriormente, seria amplificado.

Embora o fenômeno esperado seja relativamente simples, a massa do áxion é

muito pequena, fazendo com que o grande desafio dessa observação resida no

aprimoramento de técnicas e pesquisa de materiais que possam mitigar o ruído

de fundo frente ao acoplamento.
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CONCLUSÃO

Ao longo deste trabalho, vimos uma breve introdução de como o áxion, uma

partícula inicialmente proposta para resolver um problema específico da cromo-

dinâmica quântica, impacta a física que conhecemos. Em especial na eletrodinâ-

mica, uma vez que o acoplamento áxion-fóton pode oferecer uma nova janela no

estudo de eventos de altas energia com experimentos de pequena escala, com

a possibilidade de ser a chave para um dos grandes mistérios na cosmologia: a

matéria escura (SIKIVIE, 1983). Alguns autores afirmam que, hoje, a busca por

matéria escura axiônica está na sua "era dourada", com um crescente número

de experimentos simultâneos, muitos de pequena escala, motivando a pesquisa

e o desenvolvimento constante de tecnologias de metrologia quântica ultra sen-

síveis. Esses, por sua vez, que são aproveitadas em outras áreas de pesquisa

além da física (ADAMS et al., 2023). E, ainda que não se verifique a existência

do áxion da QCD, o aparato das ALPs se mostrou relevante no estudo de materi-

ais e fenômenos exóticos. Esses progressos experimentais e teóricos ressonam

na física como um todo, impactando outras áreas de pesquisa além da física de

partículas.
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APÊNDICE A – CAMPOS CLÁSSICOS RELATIVÍSTICOS

A.1 TRANSIÇÃO PARA O CONTÍNUO

Diferentemente da formulação lagrangiana com coordenadas generalizadas

qi(t), i = 1, ..., n, que trata de sistemas discretos, a formulação lagrangiana para

campos utiliza funções que variam continuamente no espaço-tempo. Para ilus-

trar a necessidade dessa nova formulação, vamos considerar o sistema infinito

(Fig.4) de massas m acopladas por molas de comprimento a, constante elás-

tica k e sujeitas a deslocamentos φi em relação a posição de repouso da massa,

onde i é o índice que localiza as massas nesse sistema, que se estende ao longo

do eixo x̂.

Figura 4 – sistema massa-mola infinito (GOLDSTEIN et al., 2002)

A energia cinética e a energia potencial desse sistema são, respectivamente,

T =
1

2

∑
i

m

(
dφi

dt

)2

, V =
1

2

∑
i

k(φi+1 − φi)
2 (A.1.1)

Logo, o lagrangiano é

L =
1

2

∑
i

[
m

(
dφi

dt

)2

− k(φi+1 − φi)
2

]
(A.1.2)
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multiplicando esse lagrangiano por a
a
,

L =
1

2
a
∑
i

[
m

a

(
dφi

dt

)2

− ka

(
φi+1 − φi

a

)2
]
=

∑
i

aLi. (A.1.3)

Da equação de Euler-Lagrange

∂L

∂φi

− ∂

∂t

[
∂L

∂
(
dφi

dt

)] = 0, (A.1.4)

temos

m

a

d2φi

dt2
− ka

(
φi+1 − φi

a2

)
+ ka

(
φi − φi−1

a2

)
= 0. (A.1.5)

No limite onde a→ 0, as massa ficam infinitesimalmente próximas e faz mais

sentido indexá-las com uma variável contínua do que uma discreta. Por conve-

niência, usarei a variável x, já que essas massas estão dispostas ao longo do

eixo x̂. Sob esse limite, m
a
= µ passa a ser a massa por unidade de comprimento

do sistema e ka, considerando que as molas obedecem a lei de Hooke, pode

ser entendido como o módulo de Young Y que descreve a tensão elástica nesse

meio contínuo. Assim,

µ
d2φ(x)

dt2
− lim

a→0

Y

a

[(
φ(x+ a)− φ(x)

a

)
−
(
φ(x)− φ(x− a)

a

)]
= 0 (A.1.6)

Os termos em parênteses são derivadas de φ em relação a x

µ
d2φ

dt2
− lim

a→0

Y

a

[(
dφ

dx

)
x

−
(
dφ

dx

)
x−a

]
= 0 (A.1.7)

e o limite restante, a sua segunda derivada. Logo,

µ
d2φ

dt2
− Y

d2φ

dx2
= 0 (A.1.8)

é a equação de movimento para esse sistema, a equação de onda. Voltando ao

lagrangiano A.1.3 e aplicando o mesmo limite onde a → 0, o somatório passa a
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ser uma integral,

L =
1

2
lim
a→0

∫
a

{
µ

(
dφ

dt

)2

− Y

[
φ(x+ a)− φ(x)

a

]2}
. (A.1.9)

a pode ser escrito como dx,

L =

∫
dx

1

2

[
µ

(
dφ

dt

)2

− Y

(
dφ

dx

)2
]

(A.1.10)

L =

∫
dxL

(
dφ

dt
,
dφ

dx

)
(A.1.11)

Podemos entender L como uma densidade do lagrangiano L. Com isso a ação

é dada por,

S =

∫
dt L =

∫
dt

∫
dxL, (A.1.12)

S =

∫∫ ∞

−∞
dt dxL

(
dφ

dt
,
dφ

dx

)
. (A.1.13)

Seguindo o Princípio de Hamilton, a minimização da ação é feita de maneira

similar ao caso discreto,

0 = δS =

∫∫ ∞

−∞
dt dx δL

(
dφ

dt
,
dφ

dx

)
,

=

∫∫ ∞

−∞
dt dx

[
∂L
∂(dφ

dt
)
δ

(
dφ

dt

)
+

∂L
∂(dφ

dx
)
δ

(
dφ

dx

)]
,

(A.1.14)

Como as variáveis são independentes, a ordem com que as derivadas e integrais

são realizadas é arbitrária. Sendo assim,

0 = δS =

∫∫ ∞

−∞
dt dx

[
∂L
∂(dφ

dt
)

d

dt
(δφ) +

∂L
∂(dφ

dx
)

d

dx
(δφ)

]
. (A.1.15)

Usando a regra do produto, o primeiro termo pode ser reescrito como,

∂L
∂(dφ

dt
)

d

dt
(δφ) =

d

dt

[
∂L
∂(dφ

dt
)
(δφ)

]
− d

dt

[
∂L
∂(dφ

dt
)

]
(δφ) (A.1.16)

e o segundo,

∂L
∂(dφ

dx
)

d

dx
(δφ) =

d

dx

[
∂L
∂(dφ

dx
)
(δφ)

]
− d

dx

[
∂L
∂(dφ

dx
)

]
(δφ). (A.1.17)
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Substituindo na ação e organizando os termos, ficamos com três integrais,

δS =

∫
dx

∫ ∞

−∞
dt

{
d

dt

[
∂L
∂(dφ

dt
)
(δφ)

]}
+

+

∫
dt

∫ ∞

−∞
dx

{
d

dx

[
∂L
∂(dφ

dx
)
(δφ)

]}
−

−
∫∫ ∞

−∞
dt dx

{
d

dt

[
∂L
∂(dφ

dt
)

]
+

d

dx

[
∂L
∂(dφ

dx
)

]}
(δφ) = 0.

(A.1.18)

Pela condição de extremos fixos, δφ é zero quando avaliado nos limites de in-

tegração. Logo, a primeira e a segunda integral também são zero. Da terceira

integral, temos as equações de Euler-Lagrange para esse sistema,

d

dt

[
∂L
∂(dφ

dt
)

]
+

d

dx

[
∂L
∂(dφ

dx
)

]
= 0 (A.1.19)

Da qual obtemos a seguinte equação de movimento

µ
d2φ

dt2
− Y

d2φ

dx2
= 0. (A.1.20)

Como esperado, está é exatamente a solução que encontramos a partir da equa-

ção A.1.5, depois de levá-la para o limite contínuo. Outro fator a se notar é que

φ é a coordenada generalizada e a coordenada x atua apenas como um índice.

Se o sistema se estendesse nas direções ŷ e ẑ, as coordenadas y e z também

atuariam como índices e todas seriam independentes entre si, o que veremos na

generalização a seguir.

A.2 EQUAÇÃO DE EULER-LAGRANGE PARA CAMPOS

Seja φn(x
µ) um campo que varia com as componentes do quadrivetor posição

xµ, com n = 1, ..., N ∈ N e µ = 0, 1, 2, 3.

L = L[φn(x
µ), ∂µφn(x

µ)]. (A.2.1)
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Com isso o Lagrangiano fica

L =

∫ ∞

−∞
d3xL[φn(x

µ), ∂µφn(x
µ)], (A.2.2)

L =

∫ ∞

−∞
d3xL. (A.2.3)

e o funcional da ação

S =

∫ ∞

−∞
d4xL. (A.2.4)

Aqui, o processo de minimização da ação segue os passos da seção anterior

(φn(x
µ) = φ para clareza visual),

δS =

∫ ∞

−∞
d4x δL[φ, ∂µφ] = 0

=

∫ ∞

−∞
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
= 0,

(A.2.5)

utilizando regra do produto, o segundo termo pode ser reescrito como

δS =

∫ ∞

−∞
d4x

{
∂L
∂φ

δφ+ ∂µ

[
∂L

∂(∂µφ)
δ(φ)

]
− ∂µ

[
∂L

∂(∂µφ)

]
δφ

}
= 0, (A.2.6)

separando as duas integrais

δS =

∫ ∞

−∞
d4x

{
∂L
∂φ

− ∂µ

[
∂L

∂(∂µφ)

]}
δφ+

∫ ∞

−∞
d4x ∂µ

[
∂L

∂(∂µφ)
δ(φ)

]
= 0. (A.2.7)

Sob a condição de extremos fixos, a segunda integral é igual a zero. Da primeira

integral obtemos a equação de Euler-Lagrange para campos

∂L
∂φn

− ∂µ

[
∂L

∂(∂µφn)

]
= 0. (A.2.8)

Resultado bem similar ao da equação A.1.19, a diferença aqui é que esta den-

sidade de lagrangiano depende explicitamente de φn, fazendo com que o pri-

meiro termo não seja zero. Agora, utilizando a equação A.2.8 e os lagrangianos1

1 A menos que a distinção seja necessária, chamarei a densidade de lagrangiano apenas de
lagrangiano.
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oferecidos pela literatura (GRIFFITHS, 2008), podemos obter as equações dos

campos de spin 0, 1 e 1
2
.

A.3 CAMPO ESCALAR (SPIN-0)

Seja L0 o lagrangiano para um campo escalar livre massivo sem carga

L0 =
1

2
∂µϕ∂

µϕ+
1

2
m2ϕ2, (A.3.1)

onde ϕ é um campo escalar real e m é a massa desse campo. O primeiro termo,

chamado de termo cinético. Embora aceita, a terminologia não é precisa, pois

existe um gradiente do campo no termo. Considerando a aproximação massa-

mola que fizemos no início desse apêndice, uma variação cinética em ponto do

campo resultaria em uma variação potencial elástica na vizinhança desse ponto.

Então, também podemos entendê-lo com um termo de dinâmica do campo. Esse

termo é quadrático em derivadas do campo e pode ser reescrito em função da

matriz ηµν

L0 =
1

2
ηµν∂µϕ∂νϕ+

1

2
m2ϕ2 =

1

2
(∂tϕ)

2 − 1

2
(∇ϕ)2 +

1

2
m2ϕ2. (A.3.2)

Agora, basta substituir L0 na equação A.2.8 para obter as equações de campo,

∂L0

∂ϕ
= m2ϕ (A.3.3)

e

∂κ

[
∂L0

∂(∂κϕ)

]
=
∂κ
2

(
∂µϕ

∂κϕ
∂µϕ+ ∂µϕ

∂µϕ

∂κϕ

)
=
∂κ
2

(
∂µϕ

∂κϕ
∂µϕ+ ∂µϕη

µν ∂νϕ

∂κϕ

)
=
∂κ
2

(
δκµ∂

µϕ+ ∂µϕη
µνδκν

)
=
∂κ
2
(∂κϕ+ ∂µϕη

µκ) = ∂κ∂
κϕ

(A.3.4)

Trocando κ por µ, ficamos com

∂µ∂
µϕ−m2ϕ = 0, (A.3.5)
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que nada mais é do que a famosa equação de Klein-Gordon, em homenagem

a Oskar Klein (1894-1977) e Walter Gordon (1893-1940). Com alguns ajustes e

considerando os operadores energia e momento da mecânica quântica, é possí-

vel notar a semelhança com outra famosa equação E2 = p2 +m2, fato que não

é mera coincidência (GRIFFITHS, 2008). Embora a equação de Klein-Gordon

tenha sido inicialmente proposta para descrever elétrons relativísticos, ela só

descreve partículas de spin-0, i.e., partículas escalares e pseudo-escalares. As

soluções de onda plana para essa equação são,

ϕ± = ae∓ipµxµ

(A.3.6)

onde a amplitude a é uma constante real. Para um campo ϕ complexo, o lagran-

giano fica alterado em

L0 = ∂µϕ̄∂
µϕ+m2ϕ̄ϕ, (A.3.7)

A equação de movimento para esse lagrangiano continua sendo A.3.5.

A.4 CAMPO VETORIAL (SPIN-1)

Seja Lγ o lagrangiano para uma campo vetorial livre e sem massa

Lγ = − 1

16π
FµνF

µν , (A.4.1)

Fµν = ∂µAν − ∂νAµ, (A.4.2)

onde o quadrivetor Aµ é o campo vetorial. Existem algumas manipulações de ín-

dices que precisam ser feitas no lagrangiano para que possamos obter as equa-

ções de campo. Abrindo o produto entre os tensores FµνF
µν , tem-se

Lγ = − 1

16π
(∂µAν∂

µAν − ∂µAν∂
νAµ − ∂νAµ∂

µAν + ∂νAµ∂
νAµ), (A.4.3)
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uma vez que esses índices são mudos (não são livres nesse somatório), pode-

mos trocar ν ↔ µ. Fazendo isso no terceiro e no quarto termo,

Lγ = − 1

8π
(∂µAν∂

µAν − ∂µAν∂
νAµ). (A.4.4)

Para evitar uma confusão com índices iguais nos passos seguintes, farei algumas

modificações na equação A.2.8

∂Lγ

∂Aρ

− ∂ρ

[
∂Lγ

∂(∂ρAσ)

]
= 0, ρ, σ = 0, ..., 3. (A.4.5)

Como Lγ não depende explicitamente de Aµ,

∂Lγ

∂Aρ

= 0. (A.4.6)

Logo,

∂ρ

[
∂Lγ

∂(∂ρAσ)

]
=

1

8π
∂ρ

[
∂(∂µAν∂

µAν − ∂µAν∂
νAµ)

∂(∂ρAσ)

]
= 0. (A.4.7)

Resolvendo para o primeiro termo:

∂ρ

[
∂(∂µAν∂

µAν)

∂(∂ρAσ)

]
= ∂ρ

[
∂(∂µAν)

∂(∂ρAσ)
∂µAν + ∂µAν

∂(∂µAν)

∂(∂ρAσ)

]
,

= ∂ρ

[
∂(∂µAν)

∂(∂ρAσ)
∂µAν + ∂µAνη

µκηνλ
∂(∂κAλ)

∂(∂ρAσ)

]
,

= ∂ρ
[
δρµδ

σ
ν ∂

µAν + ∂µAνη
µκηνλδρκδ

σ
λ

]
,

= ∂ρ
[
δρµδ

σ
ν ∂

µAν + ∂κAλδρκδ
σ
λ

]
,

= 2∂ρ(∂
ρAσ).

(A.4.8)

No segundo termo o processo é o mesmo, exceto que os índices da parte con-

travariante ficam trocados,

∂ρ

[
∂(∂µAν∂

νAµ)

∂(∂ρAσ)

]
= 2∂ρ(∂

σAρ). (A.4.9)
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Substituindo esses termos na equação A.4.7, temos

∂ρ

[
∂Lγ

∂(∂ρAσ)

]
=

1

4π
∂ρ(∂

ρAσ − ∂σAρ) (A.4.10)

Reescrevendo com a indexação mais usual,

∂µ(∂
µAν − ∂νAµ) = ∂µF

µν = 0. (A.4.11)

Essa equação só é valida para partículas de spin 1 sem massa, como é o caso

dos fótons. Nesse cenário, o tensor eletromagnético F µν é dado por

F µν = ηµρηνσFρσ =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 (A.4.12)

e a equação retorna as equações de Maxwell para campos longe da fonte,

∇ · E = 0, ∇×B = Ė. (A.4.13)

E, pela identidade de Bianchi,

∂ρF
µν + ∂µF

νρ + ∂νF
ρµ = 0, (A.4.14)

obtemos as demais equações de Maxwell,

∇ ·B = 0, ∇× E = −Ḃ. (A.4.15)

A.5 CAMPO SPINOR (SPIN-1/2)

Seja LD o lagrangiano para um campo spinor livre massivo

LD = iψ̄γµ∂µψ −mψ̄ψ (A.5.1)
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onde o spinor ψ é uma matriz coluna com quatro componentes complexas e o

spinor adjunto ψ̄ = −iγ0ψ†. Embora o spinor tenha oito variáveis independentes,

as equações de campo resultam em uma combinação linear de ψ. O mesmo vale

para ψ̄. Então, vamos escrever a equação A.2.8 em função dos spinores. Para

ψ̄, tem-se

∂LD

∂ψ̄
= iγµ∂µψ −mψ, ∂µ

[
∂LD

∂(∂µψ̄)

]
= 0, (A.5.2)

Portanto,

iγµ∂µψ −mψ = 0. (A.5.3)

E, para ψ

∂LD

∂ψ
= −mψ̄, ∂µ

[
∂LD

∂(∂µψ)

]
= iψ̄γµ. (A.5.4)

Resultando em

i∂µψ̄γ
µ +mψ̄ = 0. (A.5.5)

A.5.3 e A.5.5 são, respectivamente, a equação de Dirac e sua forma adjunta.

Esta é equação responsável por descrever os férmions, partículas de spin 1
2
. E

foram as suas soluções que permitiram que Paul Dirac previsse a existência das

antipartículas. As soluções de onda plana para as partículas são,

ψ = ae−ipµxµ

u(1,2), com u(1) =


1

0

pz
E+m

p+
E+m

 , e u(2) = N


0

1

p−
E+m

−pz
E+m

 , (A.5.6)

e, para as antipartículas,

ψ = aeipµx
µ

v(1,2), com v(1) = N



p−
E+m

−pz
E+m

0

1

 , e v(2) = −N


pz

E+m

p+
E+m

1

0

 , (A.5.7)
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onde N =
√
E +m e p± = px ± ipy.
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APÊNDICE B – TRANSFORMAÇÕES DE GAUGE

Seja a matriz 1× 1 unitária U um elemento do grupo U(1) sob a forma

U = eiqα(x
µ) (B.0.1)

onde q é uma constante real e α é uma função de xµ. Vamos aplicar essa trans-

formação aos campos dos lagrangianos estudados no apêndice anterior, come-

çando pelo caso onde α é constante.

Para o lagrangiano de Klein-Gordon A.3.7 com ϕ complexo

ϕ′ = eiqαϕ = Uϕ, ϕ̄′ = ϕ̄e−iqα = ϕ̄U † (B.0.2)

E o lagrangiano L0 → L′
0

L′
0 = ∂µϕ̄′∂µϕ′ +m2ϕ̄′ϕ′

= ∂µ(ϕ̄U
†)∂µ(Uϕ′) +m2ϕ̄U †Uϕ.

(B.0.3)

Por serem constantes, U e U † podem ser retirados da derivada

L′
0 = ∂µϕ̄U

†U∂µϕ′ +m2ϕ̄U †Uϕ

= ∂µϕ̄∂
µϕ+m2ϕ̄ϕ

= L0.

(B.0.4)

Vemos então que o lagrangiano de Klein-Grodon é invariante sob essa transfor-

mação. O mesmo acontece com o lagrangiano de Dirac

L′
D = iψ̄′γµ∂µψ

′ −mψ̄′ψ′,

= iψ̄U †γµ∂µUψ −mψ̄U †Uψ,

= iψ̄γµ∂µψ −mψ̄ψ,

= LD

(B.0.5)
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Em ambos os casos dizemos que os lagrangianos apresentam simetria global,

pois os lagrangianos permaneceram invariantes após as transformações. Esse

resultado era esperado, uma vez que não houve alteração na magnitude dos

componentes do lagrangiano, apenas uma rotação sob um angulo fixo.

Agora faremos uma transformação de gauge local. Isto significa que podemos

ter rotações diferentes para cada ponto xµ. Em essência, o processo é o mesmo

que no caso global, mas α(xµ) não é mais uma constante.

Começando por Lγ, a transformação de gauge é feita no quadrivetor Aµ,

Aµ → A′
µ = Aµ + ∂µα(x

µ). (B.0.6)

Reescrevendo Lγ (para clareza visual α(xµ) = α),

L′
γ = − 1

16π
[∂µ(Aν + ∂να)− ∂ν(Aµ + ∂µα)][∂

µ(Aν + ∂να)− ∂ν(Aµ + ∂µα)]

= − 1

16π
[Fµν + ∂µ∂να− ∂ν∂µα][F

µν + ∂µ∂να− ∂ν∂µα].

(B.0.7)

Onde assumimos a analiticidade de α e que os operadores derivada são simétri-

cos: ∂µ∂να = ∂ν∂µα. O mesmo vale para a parte contravariante. Logo, os termos

em função de α somam zero e Lγ permanece invariante sob transformações

locais de gauge,

L′
γ = − 1

16π
FµνF

µν . (B.0.8)

Para o lagrangiano do campo spinor, temos

L′
D = iψ̄′γµ∂µψ

′ +mψ̄′ψ′

= iψ̄e−iqα(xµ)γµ∂µ
[
eiqα(x

µ)ψ
]
+mψ̄ψ.

(B.0.9)

O termo cinético se modifica, enquanto o termo ψ̄ψ fica inalterado. Teremos

∂µ
[
eiqα(x

µ)ψ
]
= iq∂µα(x

µ)ψ′ + eiqα(x
µ)∂µψ. (B.0.10)
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Este gradiente ∂µα, que se acopla aos spinores, faz com que o lagrangiano não

seja invariante localmente,

L′
D = LD − qψ̄γµψ∂µα(x

µ). (B.0.11)

Para que o lagrangiano do campo spinor seja localmente invariante é preciso

que ele contenha um elemento, que sob uma transformação de gauge, se anule

com o gradiente. A partir da equação B.0.6, podemos escrever o gradiente como

∂µα = A′
µ − Aµ. Assim,

LD − qψ̄γµψ(A′
µ − Aµ) = L′

D,

LD + qψ̄γµψAµ = L′
D + qψ̄γµψA′

µ.

(B.0.12)

Do lado direito da equação estão os termos sob a transformação local de gauge.

Abrindo esses termos,

LD + qψ̄γµψAµ = LD − qψ̄γµψ∂µα(x
µ) + qψ̄γµψ[Aµ + ∂µα(x

µ)],

LD + qψ̄γµψAµ = LD + qψ̄γµψAµ.

(B.0.13)

Encontramos o elemento que deixa o lagrangiano invariante, o campo Aµ aco-

plado ao termo qψ̄γµψ. Podemos entenderAµ como um campo que faz a conexão

entre rotações independentes α(xµ). Só que esse campo é estático, precisamos

adicionar o termo cinético para esse novo campo vetorial, que nada mais é do

que Lγ (que como já vimos também é invariante localmente), então

L = LD + qψ̄γµψAµ + Lγ. (B.0.14)

Acontece que este campo vetorial de gauge é exatamente o potencial eletromag-

nético. Este é um resultado notável: ao impor que o lagrangiano de Dirac deve
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ser invariante sob transformações locais do grupo U(1), construímos um lagran-

giano que descreve a interação entre os férmions carregados eletricamente e os

fótons. Ou seja, L é o lagrangiano da eletrodinâmica quântica

LQED =
[
iψ̄γµ∂µψ −mψ̄ψ

]
+ qψ̄γµψAµ −

1

16π
FµνF

µν . (B.0.15)

Esse é o processo que dá origem as interações fundamentais do modelo padrão.

No caso da interação forte, por exemplo, o lagrangiano que descreve a interação

é invariante sob transformações locais do grupo SU(3).

LQED também pode ser escrito como

LQED =
[
iψ̄γµDµψ −mψ̄ψ

]
− 1

16π
FµνF

µν , (B.0.16)

onde Dµ = ∂µ − iqAµ é o operador derivada covariante. E, pela definição, o

comutador entre Dµ e Dν retorna os tensor eletromagnético Fµν que compõe o

termo cinético

[Dµ, Dν ] = (∂µ − iqAµ)(∂ν − iqAν)− (∂ν − iqAν)(∂µ − iqAµ),

= −iq∂µAν + iq∂νAµ,

= −iqFµν .

(B.0.17)

A situação é bastante parecida para L0. Localmente também surgem gradi-

entes de α acoplados a ϕ, deixando o lagrangiano invariante. A solução aqui é a

mesma do caso anterior, resultando em

L = Dµϕ̄D
µϕ+m2ϕ̄ϕ− 1

16π
FµνF

µν . (B.0.18)

Chamada de eletrodinâmica quântica escalar, descreve a interação entre partí-

culas escalares carregadas e fótons.
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APÊNDICE C – GRUPO SU(3) E BASE DE GELL-MANN

O grupo das matrizes unitárias 3 × 3 de determinante 1 é o grupo SU(3).

Sendo imprescindível para o estudo da QCD, neste apêndice serão obtidas as

matrizes geradoras do grupo, a base de Gell-Mann e algumas das suas repre-

sentações.

Seja q uma matriz coluna complexa 3× 1, com q† = (q∗)T e:

q†q = |q|2 = C (C.0.1)

onde C ∈ R. Realiza-se uma transformação do tipo:

q → q′ = Rq (C.0.2)

Nessa transformação, R é uma matriz complexa 3× 3. Assim:

(q′)†q′ = |q′|2

= q†R†Rq

(C.0.3)

Para que |q′|2 = |q|2, R†R = I, ou seja, R† = R−1. Isso implica que R é uma

matriz unitária, podendo ser reescrita como:

R = eiX (C.0.4)

onde X é uma matriz hermitiana 3× 3, pois:

R†R = e−iX†
eiX = ei(X−X†) = I. (C.0.5)

O det(R) = 1 quando Tr(X) = 0. Essa relação fica clara quando diagonalizamos

a matriz X,

X = V DV −1, (C.0.6)
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onde D é uma matriz diagonal. Assim,

det(R) = det
(
eiX

)
= det

(
eiV DV −1

)
= det

[
∞∑
n=0

V (iD)nV −1

n!

]
=

= det(V ) det
(
eiD

)
det

(
V −1

)
= det

(
eiD

)
=

3∏
j=1

eiDjj = eiTr(D) = 1.

(C.0.7)

Portanto, Tr(D) = 0 ⇒ Tr(X) = 0. Sob essas condições,

X =


ϵ1 ϵ2 + iϵ3 ϵ4 + iϵ5

ϵ2 − iϵ3 ϵ6 ϵ7 + iϵ8

ϵ4 − iϵ5 ϵ7 − iϵ8 −ϵ1 − ϵ6

 = X†, (C.0.8)

com oito parâmetros reais independentes ϵa, a = 1, ..., 8. Reescrevendo X como

a combinação linear ϵaχa e possível observar que X = 0 ↔ ϵa = 0, i.e., as

matrizes χa constituem uma base para o conjunto de matrizes hermitianas 3 ×

3 de traço nulo. Não só isso, as condições para a matriz X são as mesmas

das matrizes do grupo SU(3), pois o número de parâmetros livres é dado por

(n2 − 1) e com oito parâmetros livres, n = 3. Também é possível observar que

qualquer combinação linear dessas matrizes resulta em uma matriz hermitiana

de traço nulo. Utilizando essas propriedades, vamos compor a base de Gell-
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Mann fazendo as seguintes alterações:

λ1 = χ2 =


0 1 0

1 0 0

0 0 0

 ;λ2 = −χ3 =


0 −i 0

i 0 0

0 0 0

 ;

λ4 = χ4 =


0 0 1

0 0 0

1 0 0

 ;λ5 = −χ5 =


0 0 −i

0 0 0

i 0 0

 ;

λ6 = χ7 =


0 0 0

0 0 1

0 1 0

 ;λ7 = −χ8 =


0 0 0

0 0 −i

0 i 0

 ;

λ3 = χ1 − χ6 =


1 0 0

0 −1 0

0 0 0

 ;λ8 =
χ1 + χ6√

3
=

1√
3


1 0 0

0 1 0

0 0 −2

 .

(C.0.9)

A matriz λ8 fica com essa fator de normalização 1√
3

para atender a propriedade

Tr (λaλb) = 2δab, a, b = 1, ..., 8. As matrizes de Gell-Mann obedecem a lei de

composição [
λa
2
,
λb
2

]
= ifabc

λc
2

ou

[ta, tb] = ifabctc, ta =
λa
2
,

(C.0.10)

a constante de estrutura fabc é um tensor totalmente antissimétrico que assume

os valores

f123 = 1,

f147 = f246 = f257 = f345 =
1

2
,

f156 = f367 = −1

2
,

f458 = f678 =

√
3

2
.

(C.0.11)
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Todas as outras combinações comutam. Na convenção das matrizes ta,

Tr(tatb) =
δab
2
. (C.0.12)

A representação obtida com a matriz ta é chamada de representação fundamen-

tal. Outra representação é a antifundamental

[t̄a, t̄b] = ifabct̄c, t̄a = −ta∗. (C.0.13)

Na verdade, existem infinitas representações para o grupo SU(3), inclusive com

matrizes que não são 3 × 3, uma vez que elas atendam a lei de composição

C.0.10. Uma dessas representações é a adjunta, formada por oito matrizes Ia,

8× 8, dadas pela relação abaixo

Ia = (−ifabc)bc. (C.0.14)

Logo vemos que essas matrizes possuem traço nulo. Por exemplo, para a matriz

I1, usando os valores em C.0.11, temos

I1 =



0 0 0 0 0 0 0 0

0 0 −i 0 0 0 0 0

0 i 0 0 0 0 0 0

0 0 0 0 0 0 − i
2

0

0 0 0 0 0 i
2

0 0

0 0 0 0 − i
2

0 0 0

0 0 0 i
2

0 0 0 0

0 0 0 0 0 0 0 0


. (C.0.15)
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