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RESUMO

Este trabalho explora a hipétese do éaxion, partindo das simetrias discretas da
teoria de Dirac até a caracteriza¢ao do problema CP forte. Aborda como a exis-
téncia dessa particula pode modificar as equacdes de Maxwell, com possiveis
implicagdes no estudo de materiais ex6ticos e na cosmologia. E destacado, ade-
mais, o papel da eletrodindmica axiénica na validagdo da hip6tese da matéria

escura fria puramente axionica.
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INTRODUCAO

Em 1964, o experimento de J. W. Cronin e V. L. Fitch com k&ons neutros nos
mostrou que a simetria C'P (Carga e Paridade) é violada no setor fraco do Modelo
Padrdo. Tal descoberta forneceu uma nova perspectiva no estudo das particu-
las fundamentais, resultando na predigcdo de uma terceira geragao de férmions,
por N. Cabibbo, M. Kobayashi e T. Maskawa, posteriormente confirmada. Em
sequéncia, t'Hooft mostrou que a interagéo forte do Modelo Padrao (MP) possui
um vacuo nao trivial que, em principio, também permitiria a violacao de C P forte.
Entretanto, até hoje a violacao de tal simetria ndo é observada na QCD. Por que
o setor forte parece conservar a simetria C' P? Este problema ficou conhecido
como o problema C'P forte.

Dentre as diversas hipétese de solugcéo para o problema, em 1977, R. D. Pec-
cei e H. R. Quinn apresentaram uma solu¢ao dinamica para o problema C'P por
meio da introducado de um béson pseudo-escalar no MP: o axion. Hoje, o axion
e particulas tipo-axion estdo presentes nas mais variadas extensdes do MP, com
implicagbes diretas na eletrodindamica, onde o aparato da eletrodindmica axio-
nica é utilizado na pesquisa de materiais e fenébmenos exéticos, com aplicacdes
da matéria condensada a cosmologia. Nesta ultima area, em especial, o axion €
considerado um dos potenciais candidatos a matéria escura.

Neste trabalho, faremos uma breve introducao a hipétese axiénica em trés
partes. Na primeira parte, vamos estudar a QCD como uma Teoria de Gauge,
construindo a interacao a partir da invariancia da teoria sob uma transformacao

local do grupo SU(3), estudando seus constituintes e caracteristicas da intera-



céo.

Na segunda parte, vamos abordar o que séo as transformacdes de simetria
C, P e T (reversao temporal) e como essas transformacoes afetam as grandezas
fisicas relacionadas ao problema C P forte. Na sequéncia, veremos como se da
a violagdo de C'P no decaimento dos kaons neutros, discutindo uma possivel
fonte de violacdo de C'P, ndo observada, na interacao forte. Apés uma modela-
gem classica no momento de dipolo elétrico do néutron, também vamos estudar
quais sao os parametros da violacdo C'P na QCD e onde ocorre o ajuste fino no
problema CP forte. Ao fim deste capitulo vamos apresentar a solucao axionica,
caracterizar o0 axion e fazer uma breve abordagem dos modelos axidnicos atuais.

E, ao fim deste trabalho, vamos estudar o acoplamento axion-féton, investi-
gando como esse acoplamento modifica as equag¢des de Maxwell e como elas
podem ser utilizadas na descricao dos efeitos magnetoelétricos observados nos
isolantes topolégicos. Também faremos uma aplicacao dessa eletrodinamica axi-
6nica em uma cavidade ressonante, com o intuito de descrever o comportamento
dos campos eletromagnéticos acoplados ao axion, sob a hipétese da matéria es-

cura axionica.
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NOTACAO
Abaixo as convencgdes utilizadas ao longo deste trabalho. A menos que se

faca necessario, usaremos apenas unidades naturais,
c=1leh=1. (0.0.1)
Assinatura métrica:
n" = diag(1,—1,—1,—1) e n,, = diag(1,-1,-1,-1) (0.0.2)

As matrizes v* na representacao de Dirac sao dadas por:

0 0 1 0 . 0 o
7 =(""17), onde 1" := , Y= _ : (0.0.3)
0 -1 -0l 0
e o7 sdo as matrizes de Pauli
01 0 —2 1 0
ol = , 0% = , 00 = . (0.0.4)
1 0 1 0 0 —1

Na representacao de Weyl, também conhecida como quiral, as matrizes +* serdo
dadas por:

0 H ) )
= ” ], onde 0" = (1,07) e 6 = (1, —07), (0.0.5)
g 0

obedecendo a seguinte relacao de anticomutacao,
{v" 7"} ="+ =2 (0.0.6)

Comum as duas representacdes, a matriz auxiliar ~° é definida como,

1 0
7" =iyl = : (0.0.7)
0 1

anti-comutando com as matrizes ~*,

{+*,7*} =0 (0.0.8)
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Caso o leitor ndo esteja familiarizado com o formalismo da teoria classica de
campos, recomenda-se a leitura dos apéndices previamente a leitura do desen-

volvimento deste trabalho.
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1 INTRODUGAO A CROMODINAMICA QUANTICA COMO UMA TEORIA DE

GAUGE.

No inicio da década de 1960, gracas aos progressos feitos nos aceleradores
de particulas, os fisicos se encontravam imersos em um "zool6gico subnuclear".
Dentre os varios modelos da época, os esforgcos para organizar as particulas
gue hoje conhecemos como hadrons, culminou na elaboracdo do modelo de
quarks, pelos trabalhos de Gell-Mann, Ne’eman e Zweig (MENDES; CUCCHI-
ERI; MORAES, 2022). Os quarks seriam os férmions elementares responsaveis
por constituir os hadrons. Sob esse modelo, o préton, um hadron de spin 1/2,
seria composto por dois quarks do tipo « € um do tipo d. Por serem férmions, os
quarks estao sujeitos ao principio de exclusdo de Pauli. Logo, os quarks tipo u
deveriam ter spin anti-paralelo no estado que forma o préton, mas isso logo vira
um problema quando olhamos para o hadron A**, uma particula de spin 3/2.
O modelo de quarks nos diz que essa particula € composta por trés quarks tipo
u, resultando em trés férmions no mesmo estado quéantico. Assumiu-se entao
gue os hadrons estavam sujeitos a um novo numero quantico que permitisse tal
configuragdo. Este foi o primeiro indicativo do que viria se tornar a hipétese das
cargas de cor na cromodinadmica quantica.

Sabendo que os quarks sao particulas de spin-1/2 e levando em consideracao
a hipétese das cargas de cor, partimos de um lagrangiano livre que descreva

esse campo fermidnico

Ly = Y(iy"0, — m)1, (1.0.1)
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com
(U 1 0 0
=9y, [ = |0+ |1+ ]0 (1.0.2)
Py 0 0 1
ou
P =, + by + Yyb (1.0.3)

onde os 1, 4, s80 spinores de Dirac associados aos vetores r, g e b, respectiva-
mente. Note que aqui estamos tratando apenas de um sabor de quark. Similar
ao caso descrito no apéndice B (B.0.9), vamos impor a invariancia desse lagran-
giano sob uma transformacéao local de gauge. no espaco tridimensional de cores,
a fim de encontrar um lagrangiano que descreva a interacao entre essas cargas.

Entdo, seja U uma matriz unitaria 3 x 3 que atua em v,

Y — o = U ) = U! (1.0.4)

P = pUTUY = b (1.0.5)
Sabe-se que a matriz U pode ser reescrita como a exponencial de uma matriz
hermitiana de traco zero (apénd. C),
U=eX =¢a@t -1 .8 (1.0.6)
a,(z#) séo parametros livres reais continuos e t, sdo as matrizes geradoras do
grupo SU(3) que compdem a base de Gell-Mann. Aplicando U ao lagrangiano,
Ly — Ly = e e (il — m)ei*a(ley)
= YO — map) — Py ta D (a*) (1.0.7)

== ﬁYM - "LE’y“tawﬁuOLa(l’“).
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Como esperado, o lagrangiano ndo é invariante sob essa transformacgao'. Pre-
cisamos modificar nosso lagrangiano e o faremos a partir do operador derivada
0,. Para isso, s§o necessarios oito campos, um para cada «, que sob a transfor-

magcao U satisfagam a condicao abaixo,
Du¢ N D;/W _ 6itaoza(x“)Du¢’ DM = au - igstaAZ, (1.0.8)

onde D, é a derivada covariante, g; € a constante de acoplamento da intera-
¢ao, Af. s@o os campos de gluons, bésons sem massa e de spin-1 mediadores
da interacédo forte, e as matrizes ¢, representam as cargas de cor do respectivo
gluon. Diferentemente do caso U(1), apresentado no apéndice B, o grupo SU(3)
€ nao-abeliano, o que significa que nem todos os geradores ¢, comutam entre
si. Esta caracteristica é facilmente observada ao realizarmos uma transforma-
cao infinitesimal. Reescrevendo a exponencial como uma série, obtemos (para

clareza visual o, (z#) = ay),
U = e =1 4 it,a, + O(a?), (1.0.9)

onde o termo O(«) sdo os elementos com poténcias «, de grau superior. No
limite onde o, << 1,
U= (1+iaut,). (1.0.10)
Aplicando essa transformacao a equacgao 1.0.8,
Ly = iU (9, — igsta AL Ut
= Wy (1 — ity ) (O — igsty Ap) (1 + et )y (1.0.11)
o~ Ot — WV gsaataty A + iV gsatyt Ay,
O apéndice B contém a demonstragao da invariancia global de gauge, i.e, invariancia quando

« independe de z#, para um lagrangiano que descreva um campo de férmions livre, como o
Ly .

1
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fazendo uma troca de nome nos indices mudos a e ¢ no primeiro e segundo
termo, temos

o = ta Ot + gy ac(tute — tety) Ay, (1.0.12)
Embora a primeira parte da equagéao esteja escrita apenas com o indice a, existe

uma soma implicita, por isso o uso de indices diferentes nos produtos nao comu-

tativos. De fato, este produto segue a seguinte lei de comutacéo,
tpte — tety = [to, te] = @ focala = @ fabeta, (1.0.13)

onde f.. € a constante de estrutura do grupo SU(3) (C.0.11). Os campos de
gauge Aj também sao transformados, Ay, — AZ/. Podemos obter A;{, a partir da

equacao 1.0.11,
Yar = WU (9, — igsta Ay YUY
= iy " U0, U + iy UT U + Ut gt A U (1.0.14)
= iWpy 0, + iy U9, U + Yy Ulgst AL U,
Para garantir a invariancia de gauge do campo A, os dois ultimos termos da

equacao acima devem ser iguais a zﬁvﬂgstaAsz/;. Logo, temos

0 = iy UT0,U + Py UT guta AL Ut — " gt o A,
= iy (U'9,U — iU gsta A%U + igsta ALY,
i a’ a
=(W;@U+WQ@U—Q4J, (1.0.15)

_ t o a
-J(U;@U+W%%U—%&JW,

0

QJ@WUH¢M$—Umﬁm.
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Pela regra do produto, temos a seguinte relacao para o primeiro termo da ultima
igualdade acima

0,(UUNY = (0,U)U" + U9, U =0 (1.0.16)
Substituindo (9,U)UT por —U9,UT na Ultima igualdade em 1.0.15, ficamos com

0= ——U,U" +t, A — Ut, AU,
9 , , (1.0.17)
a a t t_ a t
t A% = Ut ASU t +;U8MU = U(taAu + ;aﬂ) Ut

Utilizando a expanséao 1.0.10 e a relagdo descrita em 1.0.13, temos

?

a . b
Zfaf4u = (1 + ZCYata) (tbAM —+ 7

GM) (1 —dat,),
(1.0.18)
1
= A + fe~Oucte + iaqtaty Al — ity AL o,

no primeiro e segundo termo, respectivamente, vamos trocar o nome dos indices

b e c para a. E, no terceiro termo, de a para c¢. Com essa mudanca, temos
a 1 . b
=1, A7 + tag—aﬂoza + zozCAH(tctb — tpte),
1
= taAZ + tag_a,u&a - Ckcféli)hfcbatom (1 .0.1 9)
a 1 b
= ta AM -+ ;@aa + aCAufabC .
Na passagem para a ultima linha, ha uma troca de sinal em decorréncia da mu-

dancga dos indices ¢ com a no tensor antissimétrico f. Logo, temos que o campo

A¢ fica transformado em
a a’ a 1 b
Au - Au = Au + g_a,uaa + fabcAua/c (1 020)
e, consequentemente, a derivada covariante,

1
D, — D), = 8, —igst. (A} + g—@uaa + favc Al ). (1.0.21)
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Podemos entdo verificar a relagao 1.0.8,
D" = [0, — igsta (A5 + iayoza + fabeAbae)| (1 + itaor )

= 0 + 1t, 0,00 + it 40,00 — igsta(AZ + i@u&a + fabCAZ&c)w—l—
+ gt Abactap + tduonteact) + O(a?) (1.0.22)
= O + ila@a8yh — igsta( AL + fapeAp )t + gly Ay et )+
+ ty 0 apteact) + O(a?)

Sob o limite imposto, podemos desprezar os termos de ordem «? frente aos

demais termos nao quadraticos?. Ja o antepenultimo pode ser reescrito, com a

ajuda de 1.0.13, como,
gtbAZactc¢ = gsactctbAzw + Z.gstafbcafqzo%w' (1 023)

Logo, temos
Dy = 0,1 + it a0ty — igsta(Af + fareApcre) )+
+ gttty ALt + igsta frea A rct) (1.0.24)
= 01 + ita0a 01 — igsta A% + georetety, AY )
Como os indices do ultimo termo sdo mudos, podemos escrever

gs&ctctbAzw = gsabtbtaAzw- (1 025)

Com isso, teremos, a partir de 1.0.8,

D;@D/ = au’(,b + itaaaﬁuw — igstaAZlb + gsabtbtaAZ@D
(1.0.26)

= (1 +ityo,) Dy

2 assume-se no pendltimo termo que 9,,a,, também & infinitesimal.
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Assim, o lagrangiano Ly, pode ser escrito com a derivada covariante, mas ainda
é preciso adicionar o "termo cinético"® para estes campos de gauge. Esse termo,
quadratico em derivadas dos campos, é o responsavel pela dindmica dos cam-
pos de gluons. A partir da relacdo B.0.17, o tensor que compde o termo cinético

pode ser obtido através da comutagao dos operadores D, e D,,

[Dy, Dy] = (9, — igstaAZ)(au —igstady) — (O — igstaAy) (O — igstaAZ)v
= _igsta<aquax - aVAZ) - g§<tbtc - tctb)AZAzCn
(1.0.27)
= —igst,(0,A; — Q,AZ + gsfabcAZAlc,),
= —igst,G%

pv?

onde t,Gf, € o tensor de estresse do campo. Sob a transformagao A — AZ/,

G, — G = 0,AY — 0,AY + g, fanc AV AC,
8 8 8 . (1.0.28)
=G, — fabcabG;l,-

pv

Logo, o produto tanythdW se transforma como

taGotaG™M = .G G = t(GY, — FareanGS ) ta(G™ — faepoeGTM™),
= 1aGotaG™ — oy fancta G taG™ — e faesta Gl taGT + O(),
= 1aGotaG™ + a fabat Gl taG™ + e freata Gl trG™ + O(?).
(1.0.29)
Na passagem para a ultima linha, fizemos uso da troca de nome entre indices
mudos e, entdo, das propriedades de antissimetria da constante f em relacdo a

quaisquer dois de seus indices. Ao contrario do caso abeliano, as matrizes de

Gell-Mann fazem com que o produto ndo seja invariante de gauge. Entretanto,

3

A secado A.3 possui um comentario sobre essa terminologia.



19

de acordo com a equacgéao C.0.12, o traco desse produto é invariante, pois

Tr [t G G | =

=Tr [taGZthGd“” + ap fcbathzythd“” + e freataG,t sG],

(1.0.30)
= GZVGd/U/ Tr[tatd] + CYbfcbaGZVCTdej Tr[tctd] + O‘effedGZVdej Tr[tatf],
1

= é[GZVG“’”” + ap fara Gl G + e faea Gl G,
Os indices b e e representam a mesma soma de parametros « e podem ser
substituidos por um indice em comum h. Com essa substituicdo, as constantes
de estrutura passam a ser fq.. € fana, OU S€ja, uma permutacao impar fazendo

com que os dois ultimos termos somem zero. Com isso, podemos construir um

termo cinético invariante de gauge dado por

1 a v 1 a’ v’ 1 a apv
=3 Te[taGtaGH] = = Te[taGil ta G | = — G G (1.0.31)

Agora, podemos escrever o lagrangiano que descreve férmions cromaticamente
carregados,

o 1 a apy
£QCD = Z/}q(l’)/'uDH — mq>2/}q — ZLG/“’G B (1 032)

Vamos descrever os elementos desse lagrangiano. O indice ¢ denota o sabor do
quark. Ao todo, foram observados seis sabores de quarks, como descritos na
tabela 14.

Com excegéao da primeira geracao, ainda ha um numero de sabor associado a
cada quark: na segunda geracao o quark ¢ possui charme = 1 e o quark s possui
estranheza = —1. Na terceira geragdo a convengao de sinais se repetem, mas

agora para as quantidades superioridade e inferioridade. Essas quantidades séao

4 Valores de 2022 compilados pelo Particle Data Group (WORKMAN et al., 2022)
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Geracao | Nome | Simbolo | Carga (e) | Massa (GeV)
2
1a. up u se 0,003
down d —3e 0,005
2
4. charm C se 1,290
strange s —se 0,093
2
3a. top t e 172,69
bottom b —ze 4,180

Tabela 1 — Tabela com as caracteristicas dos diferentes quarks.

conservadas por essa interacdo cromatica (interacao forte) e também pela intera-
céo eletromagnética. Provavelmente, a maneira mais intuitiva de entender como
essa interacao funciona é através dos diagramas de Feynman. Derivar tais re-
gras para a QCD esta além do escopo desse trabalho®, entdo vamos apresenta-
las seguindo as ref. (GRIFFITHS, 2008; PESKIN; SCHROEDER, 2018). Para os

férmions e bdsons externos:

inicial: _’_<7 = u(p)e;,

Quarks: (1.0.33)

final: >_’_7 = a9 (p)cl.
4
inicial: _i_< =(p)c]
P
final: > % =09 (p)es.
inicial: kQﬂ9J< = €u(P)a,
Gluons: (1.0.35)

final: _MQ90% — ¢ (p)al.

Nesses diagramas, para os quarks (antiquarks), u* (v*) € o spinor de Dirac

Antiquarks: (1.0.34)

\

(A.5.6) p € o momento, s € 0 spine ¢;,i = 1,2,3, sdo 0s vetores r, g € b, respec-

5 Um tratamento mais detalhado dessas regras pode ser encontrado no Cap. 4 da ref. (PESKIN;
SCHROEDER, 2018)
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tivamente. Para os gluons ¢, é o vetor de polarizagéo e «, sdo matrizes coluna
8 x 1 que representam o estado de cor em que o gluon se encontra. Para as

interacdes que ocorrem entre os vértices, temos as seguintes regras:

W
(anti)quarks: ,__J = Z.—(V” q“j:b?,
Propagadores internos: 1 q“(s , (1.0.36)
gltons: q =

Q0000 » q’q,
onde ¢, € o momento dessas particulas. E, por ultimo, temos as regras para os

vértices:

a, i

Quark-glton: ¥ = —igit " (1.0.37)

u
Aqui aparece uma notavel diferenga entre a teoria abeliana e a ndo-abeliana. Na

parte cinética dos campos Aj, abrindo o produto G, G**, surgem os termos
Js fabCAZAg(aﬂAa” — 0" A"™) € g2 fape fadeAZAgAd“Ae”. (1.0.38)

Esses produtos implicam que os mediadores da interacao forte também intera-
gem uns com 0s outros, em vértices de trés e quatro gluons, respectivamente.

As regras para esses vértices sao: )
1%

gsfabc[nyu<k - p),ﬁ-

3-gluons: = (D — @) (1.0.39)

¢, p F0pu(q — K)ol

Caso o sentido de um ou mais momentos seja alterado, o sinal dos respectivos

momentos também devem ser invertidos na regra. E, por fim,
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a, M b, 1%
_Zgg [fabefcde(nupnyg - nugnyp)—i—
4-gluons: = +facefbde<nuu7]pa _ 77ucr771/p)+ (1.0.40)
C7 p d7 o +fad€fbce(np,ynpg - 77#,0771/0)] .

Com as regras definidas, vamos considerar uma interagdo qqg — qqg, onde um

quark u,., apenas, troca de cor com um quark dy:

dy d,
N
g .
NG
Uy i

; ; V(Sab =S . vy,,S
@ (s)ch(—igatar® ) (p1)er (—”q—q)u (po)el (—igtiy)u (po)es (1.0.41)
i

Organizando em colchetes os elementos dos diferentes grupos,

q"q

igg [ﬂs(pg)'y“us (pl)ﬂﬂs (pa)y"u’ (pg)l [cgtaclcitacg]. (1.0.42)
m

Vamos abrir o segundo colchete, também chamado de fator de cor f,

1 0
[ = [cltacrcitaes]) = (0 0 1)ta 0 (1 0 0) ta | 0] = (ta)s1(ta)1s
0 1

As Unicas matrizes t, com essas componentes diferentes de zero sdo as matri-
zes ty e t;. Esse € um resultado esperado se considerarmos que essas matrizes
podem ser construidas a partir dos vetores r, g, b. Por exemplo, com uma com-

binacdo dos produtos diadicos entre os vetores r e b é possivel obter a matriz
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0 01
1 1 _
154:5 00 0 zi(bqﬂrrb). (1.0.44)
1 00

Tomando como referéncia o vértice do quark w,, b pode ser entendido como o
par de cargas de cor portado pelo gliion ao ser absorvido pelo quark e rb o par
para o caso em que o gluon é emitido pelo quark, que passa agora a ter carga b.
Em ambos os casos as cargas de cor sdo conservadas nos vértices: birr — b e
r — rbb.

Diferentemente dos bésons abelianos, todo gliion carrega um par cor-anticor

e seus estados de cor sdo os seguintes:

1) = %wrwg) 2) = %W—ra);
1 i
|4) = —(br—i—rb) 15) = —(br—rb)
vz V2 (1.0.45)
6) = %(bgwb) 7) = é(bg—gm;
3) = %(W —99); 18) = %(Tr—l-gg — 2bb).

Ainda existe um nono estado de cor singleto, invariante sob transformagdes do
grupo SU(3),

9) = %(r?—i— 4G + bD). (1.0.46)

Se existisse algum gluon nesse estado, a interacédo forte seria similar a uma
interacao eletromagnética U(3) (GRIFFITHS, 2008), mas isso ndo é observado.
De fato, quarks livres definidos por uma cor especifica como os da eq. 1.0.41
ndo sao observados, todos os hadrons sao neutros em cor. Nos mésons (gq), 0
quark porta uma cor e o antiquark a respectiva anticor. Logo, o estado de cor dos

meésons € do tipo do estado singleto |9). Nos barions (qqq), cada quark possui
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uma unidade diferente de cor, isso os torna brancos. Eles sdo descritos pelo
estado:

1
|y = %(rgb + gbr + brg — rbg — grb — bgr). (1.0.47)

Acredita-se que tal comportamento esta ligado a capacidade dos gluons porta-
rem cor e interagirem com outros gluons. Ainda que quarks e gluons livres sejam
gerados, eles logo se combinam, de modo que estados de cor definida ndo séao

observados na natureza, num processo conhecido como hadronizacao.
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2 SIMETRIAS DISCRETAS E O PROBLEMA DE CP FORTE

2.1 SIMETRIAS DISCRETAS DA TEORIA DE DIRAC

A teoria de campos de Dirac e Yang-Mills, que serviu de base para cons-
truirmos os lagrangianos da QCD e QED (Eq. B.0.15), admite no minimo trés
transformacodes discretas que, quando combinadas, mantém o lagrangiano das

interagdes invariante. S&o essas:

» Conjugacao de carga (C): Troca as particulas com suas respectivas anti-
particulas, i.e., inverte o sinal de todos os numeros quanticos aditivos de

uma determinada particula;

» Transformacé&o de paridade (P): Inverte a o sinal de todas as componentes
espaciais, ¢(r) — Pr = ¢(—r). Tal transformagao néo é possivel de ser

realizada de forma continua, como uma rotacao dos eixos;

* Inversao temporal (T'): Como 0 nome sugere, este operador inverte o0 tempo
de um campo, T'¢(t) — ¢(—t). Uma interagéo é simétrica em 7" quando a
probabilidade de um evento ocorrer € a mesma antes e depois da inversao

temporal.

Diz-se que uma grandeza ou um sistema fisico é par sob essas transformagdes

caso seu sinal ndo mude, caso contrario ele é impar. O campo elétrico F, por
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exemplo, é impar sob C' e P e par sob T,
( Kg-m
E| = =—|F
C[ ] <—C) '52 [ ]7
_N_Kg-m Kg - (—m)
Kg-m
Enquanto que o campo magnético B é impar sob C' e T e par sob P.
(
Kg - m?
B] = = —[B
O[ ] <—C) 'S3 [ ]7
~N-m Kg-m’ Kg - (—m)?
Kg - m?
T B —|B].
T8 = & s = 1B

Essas transformagdes ainda podem ser combinadas. Utilizando as relagdes
acima, o campo elétrico £ é par sob CP e o campo magnético B € par sob
CT. Os bilineares dos campos de Dirac e o operador derivada também sdo mo-

dificados sob essas transformacdes de acordo com a tabela abaixo,

Transf. | Escalar | Pseudo-Escalar | Vetor | Pseudovetor | Op. Derivada
Yy WY Yy |y Iy
C 1 1 -1 1 1
P 1 1 D" | (17 (=1
T 1 -1 —Dr | (-D” —(-17

Tabela 2 — O elemento (—1)* é definido como 1 para ;o = 0 e (—1) para os demais
indices (PESKIN; SCHROEDER, 2018).

Acreditava-se que essas transformacoes, isoladamente ou combinadas, eram
conservadas em interacoes fisicas, por exemplo: se o estado antes de uma inte-
racao era par em relacao a alguma simetria, ap6s a interacao ele deve continuar
sendo par. Entretanto, em 1956, Yang e Lee (LEE; YANG, 1956) publicam um

trabalho onde questionam essa premissa, apresentando fundamentagéao teédrica
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e proposigdes experimentais onde, a partir decaimentos (3, seria possivel obser-
var uma violagdo da conservagao de paridade na interacéo fraca. Publicado no
ano seguinte, o Experimento Wu, conduzido por Chien-Shiung Wu, comprovou
que a interacdo fraca violava a conservacao de paridade nos decaimentos 3 de
nucleos de Co-60. No mesmo ano, também foi demonstrado que o decaimento
leptdnico dos pions 7, mésons formados por quarks de primeira geracao, tam-

bém néo conservavam C (LEE; OEHME; YANG, 1957).

2.2 DECAIMENTO DO MESON K NEUTRO E A VIOLAGAO DE CP

Mesmo com a violacdo de C' e P, C'P ainda era tida como um boa simetria.
Em 1964, o experimento conduzido por Cronin e Fitch testaria essa concepcao
através do decaimento do méson K neutro. Também chamados de kaons, os mé-
sons K séo particulas de spin-0, pseudo-escalares, estranhas leves. Os termos
estranhas e leves implicam, respectivamente, que a particula é constituida por
um quark s (antiquark s) e um dos dois antiquarks (quarks) da primeira geracao.

Seguindo essa definicdo, quatro kaons sdo possiveis,

|K+> = Uus;

K™)=su; |K°) =ds; |K°) = sd. (2.2.1)
O kaon neutro barrado pode ser escrito como,
|K°) =C |K"), (2.2.2)

onde C' é o operador de conjugacgéo de carga. De fato, os kaons neutros "oscilam"

entre particula-antiparticula por intermédio da interacao fraca em um fenémeno
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conhecido como K° — K%mizing', que também é comum & outras particulas
neutras (GELL-MANN; PAIS, 1955). Como consequéncia, os kdons observados

em laboratério sdo na verdade estados mistos descritos por,

K = —[|K°) + K],
V2 (2.2.3)

1 _
KO — KO . KO
K9) = Z5 1K) = &%),

que, eventualmente, decaem em pares e trios de pions em intervalos médios

distintos (WORKMAN et al., 2022),

71 =8,954 x 107,
(2.2.4)

Ty =5,116 x 107 %s.
Para testar a conservacéo da simetria C'P, precisamos definir como essas par-
ticulas respondem a essas transformagbes. Quarks e antiquarks possuem pa-

ridade intrinseca P, = 1 e P; = —1, respectivamente (NAGASHIMA, 2010). A

paridade de um estado formado por um quark e um antiquark € definida como,
P = P,Py(—1) = (=1)"*! (2.2.5)

onde o fator [ € o momento angular orbital do sistema. Em um referencial onde
[ =0, temos

Plqq) = —1qq) - (2.2.6)

Também podemos entender o —1 que multiplica o lado direito da equagao como

o autovalor \,; do operador P associado ao autoestado |¢g). A transformacao

1

Embora a estranheza dos estados mistos abaixo seja zero, a oscilagdo entre particula e anti-
particula altera a estranheza do méson no estado misto, logo, ela ndo pode ser intermediada
pela interagao forte. Esse também é o motivo pelo qual sabemos que essas particulas sdo
diferentes.
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C'P sob os estados |K°) e |K°) é definida como (NAGASHIMA, 2010),

CP|K%) = ¢

K’) =ne |K%)
(2.2.7)
cP ’f(0> = e o

0\ __ % 0
K% =n | K%).
Seguindo a convencéo «., = 0 para a fase e assumindo que a simetria se con-

serva, vemos que os mésons observados em laboratério sdo autoestados do

operador C'P,

1 _ 1 _
CP|KY) = —=[CP|K") + CP|K°)] = —=[|K°) + |K°)] = |KY);
) = JGLOP IR+ OPIRY] = IR [ =ity
. (2.2.8)
1 _ _
CP|K)Y = —[CP|K" —CP|K%] = —][|K°) — |[K"] = — |KV).
[K2) = 5 [OP[K®) K%)= IR = |K0)] =~ |13)
onde os autovalores sdo \; = 1 e A\, = —1. Dizemos entdo que os autoesta-

dos |K?) e |KY) sdo, respectivamente, par e impar sob uma transformagéo CP.
A paridade dos decaimentos dessas particulas é obtida através do produto da
paridade dos pions. Isso significa que o decaimento é par se gera um duo de
pions e impar se gera um trio. Ja a conjugacao de carga nos mostra que o pion
neutro € sua prépria antiparticula e os pions carregados sao suas respectivas

antiparticulas,

1 _
—[C |uu) + C|dd )] = |7°),
Ll + o] = ) o

Clat)=Clud) = |du) = |77).

C|7T0> =

Combinando as transformacgdes e aplicando aos estados dos decaimentos,

CcP ’7r07r0> = ‘7r07r0>; CcP ‘7T+7T_> = |7r_7r+>,
(2.2.10)
CcP |7707r07r0> =— ‘7r07r07ro>; CcpP ‘7T+7T77T0> =— ‘7r77r+7r0>.

onde os autovalores sdo )\,, = 1, para o par de pions, e A3, = —1, para o

trio, sendo respectivamente par e impar sob a transformagéo. Logo, para que a
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simetria C' P se conserve, \; = Xy € Ay = A3, fazendo com que os seguintes

comportamentos sejam esperados nos decaimentos:

K)—»a’+7% K) —at +77;
(2.2.11)
K= +7°+7% K =7t + 77 +7°

O experimento realizado para testar essa simetria consistia em emitir feixes de
kéons K7, ao longo de um tubo de ~17 m, seguido de detectores otimizados
para a observagdo do decaimento 2r na extremidade final. Por conta das di-
ferentes vidas médias (2.2.4), era esperado que os mésons K! decaissem por
completo nos primeiros centimetros do tubo, sobrando apenas um feixe "puro”de
mésons K. Caso houvesse violagdo C'P, um decaimento do tipo 27 seria obser-
vado e a soma dos seus momentos se alinharia com a do méson K? incidente.
Realizado o experimento, dos ~22,700 eventos observados, 45 eram do tipo 2,
um fator de 1 para 500 ou 2 x 10~3. Apos extensa investigacdo (FITCH, 1980),
foi confirmado: o experimento havia demonstrado que a interacao fraca nao con-
servava a simetria C'P.

As consequéncias da observagao de tal assimetria sdo inUmeras, sendo as
mais notaveis a predicdo de uma terceira geragcao de férmions (KOBAYASHI;
MASKAWA, 1973) e a confirmagéo do pre-requisito de violagdo CP para hipé-
tese da bariogénese, que € a assimetria entre matéria e antimatéria observada
no universo (HORVARTH, 2023). Outra consequéncia é a busca por essa viola-
cao nas outras interacbes. Na interacao forte, tomando como referéncia o tensor
eletromagnético (Eq. A.4.12), podemos olhar para Gf,, como um tensor dos cam-

pos elétricos, E¢, e magnéticos, B¢, "de cores". Nesse caso, o termo cinético que
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construimos € invariante sob uma transformacgéo de C P, pois ele é proporcional

a soma do quadrado dos campos,

GZVGQMV — (GaioGaiO + GanGGOj) + (Gaiijj)a 27] = 17 27 37
(2.2.12)

= —2[(E")* - (B")?].
Teoricamente, nada nos impede de inserir no lagrangiano um termo do tipo

2

33;2 Tees (2.2.13)

onde G, chamado de tensor Hodge dual ou s6 dual, é definido como?

0 -Bf —-By —Bj§
. 1 By 0 EY -—Ej
G = —evorGe = | ’ ‘1. (2.2.14)
2 By -E$ 0 Ef

B¢ Ey —FE¢ 0
Assim como G, G**, o trago do produto waéd/“’ 2.2.13 é invariante de gauge,

como podemos ver abaixo (para a << 1)

224 nv

Te[Gy, G| = Te| GGl | = Te[(G, = anfune G ) (Gl — e fues G

(2.2.15)
=Tr [Gzsza — abfachwaZU — aefdefGZyG£0' + O(OéQ)] ,
Na condic¢ao do trago, a = d. Logo
GG = GG —  fapeGS Gy — O faey Gl Gy
= G5,G — apfune(GS, Gl + G4,GS,), 2216

= GZVGZO' - Oébfabc<G;CwGZU - GZZ/GZO'>7

__ ra a
=G,G,.

2 Embora essa transformagéo seja abordada na secdo 2.4, a constru¢éo do termo abaixo de-
pende do formalismo do gerador funcional, que ndo sera abordado nesse trabalho. As refe-
réncias (PESKIN; SCHROEDER, 2018) se¢ao 19.3.2 e (TONG, 2018a) contém a construgao
e discussao detalhada sobre esse termo.
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Seguindo a analogia dos "campos de cor", esse termo é proporcional ao produto
escalar desses campos,

Go, G = —A[E" - B, (2.2.17)

Sob uma transformacgao de C'P,
CP[E®-B?] = —E* - B“, (2.2.18)

fazendo com que a simetria C'P ndo se conserve na QCD. De fato, t'Hooft de-
monstrou que este termo esta atrelado ao vacuo da QCD, permitindo que a inte-
ragcéo viole C'P (PECCEI, 2008) sem nenhum impedimento tedrico. Entretanto,
experimentalmente a interagéo forte parece nao violar essa simetria, sendo con-
siderada uma boa simetria da interacdo. Nas sec¢des seguintes, veremos alguns

dos possiveis motivos para tal comportamento.

2.3 MOMENTO DE DIPOLO ELETRICO DO NEUTRON

O néutron é um barion composto por um quark up com carga elétrica 2 e dois
quarks down com carga elétrica —£, logo sua carga elétrica total & zero (Tab. 1).
Classicamente, o momento de dipolo elétrico (MDE) de uma distribuigdo com N

cargas pontuais é dado por
N
d= Z qiTr;, (231)
=0
ondei=1,...,N, ¢; SA0 as cargas e r; suas respectivas distancias até a origem.
A posicao da origem em relagdo as cargas impacta no MDE, exceto quando
a carga total de distribuicido é nula, como é o caso do néutron. Vamos entao

calcular o MDE deste béarion. Por conveniéncia, definiremos a origem na carga
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positiva, como na figura 1:

Figura 1 — llustracdo com uma representagao classica do néutron (HOOK, 2023).

Com a carga ¢, na origem, o vetor rqy € igual a zero e podemos reescrever as

demais cargas ¢; como ¢. Assim,
dn = q(r1 + 1'2), (232)

onde i; = r(cosx +sinfy) e o = —rX. O vetor MDE é

d, = —%[(1 — cos )% + sin 0F)] (2.3.3)

e seu moédulo

d, = —+/2(1 — cos0). (2.3.4)
Usando a relagdo do angulo duplo,
.o (0
1 —cosf = 2sin 7) (2.3.5)

ainda podemos escrever 0 modulo como,

2er . (0
dn == ? Sin (5) . (236)
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Além de algumas aproximagdes, para estimar o valor desse médulo também
precisamos fazer algumas consideragcbes e a primeira € quanto a distancia r
entre os quarks. E razoavel assumir que essa distancia seja o raio do néutron e,
mesmo sendo uma concepcao bastante classica, este pode ser comparado ao
raio de confinamento de cor, inferido pela densidade de carga dos nucleons, etc.,

ou pode ser estimado pelo seu comprimento de onda de Compton,

An 0C — (2.3.7)

n

Em todos os casos, r é da ordem de 10~ "m. Entao,
5. (0
d, ~ 107"’ sin (5) em. (2.3.8)

Existe mais um detalhe: até agora, o MDE que construimos é par sob 7', mas
guanticamente, a unica quantidade vetorial capaz de nos dar a orientagdo dessa
distribuicao de cargas no barion € momento angular total J = L + S, onde L é
o momento angular orbital e S é o spin. Em um referencial onde L é zero, para
descrever a orientacdo do MDE utilizamos o spin, que € uma grandeza impar sob
T. Isso significa que, dimensionalmente, o nosso MDE adquire um parametro f
impar sob 7. Com base no teorema C'PT, uma violagao de T implica em uma
violacdo de C'P, entdo podemos inferir que o parametro f é da ordem de 1073

(PERKINS, 2000). Logo, a magnitude do MDE é
—18 _; 4
d, ~ 107" sin (5) em. (2.3.9)

Agora precisamos determinar o valor do 0. E razoavel esperar algo em torno da
ordem de grandeza que estimamos até agora, mas o fato é que o valor medido

experimentalmente para o MDE é d,, < 1,8 x 10728 em (WORKMAN et al., 2022).
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Nessas condigdes, § < 10~!°. Dentro do nosso arranjo classico € como se 0s
quarks tendessem a se alinhar. Note que esse é um limite superior, o MDE do
néutron pode ser bem menor do que isso ou até mesmo ser zero. O que faz o

valor do 6 ser tao pequeno?

2.4 O PROBLEMA DE CP DA INTERAGAO FORTE

Partindo da referéncia (PECCEI; QUINN, 1977b), seja o lagrangiano "toy mo-
del"® que descreve um sabor de quark i interagindo com um campo escalar

complexo ¢ dado por
- 1 n * %
L=y — G +PlgpPy + g7 PJY = L(p) (2.4.1)

onde ) = vD,, G* = G, G, g é a constante de acoplamento complexa de

Yukawa, P, s&o as matrizes de projecao,

P = (1 275), (2.4.2)

e o potencial L(p) = [0.¢]* + 1?|¢]* + h|p|*. Sabendo que,

z=ré’ YzeC;rbeR, (2.4.3)

podemos escrever p e G como,

g=lgle", o = |ple”, a, B € R. (2.4.4)

3 A expressdo "toy model" ("modelo de brinquedo”, em tradugéo livre) é usada para descre-
ver uma modelagem fisica simplificada, onde detalhes que vdo além do mecanismo que se
pretende demonstrar sdo removidos.
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Com essas modificagdes, fica mais facil observar que o terceiro termo é um

termo de massa do férmion,

DlgpPy + g 0 Py = P [|gle’|ple” Py + |gle™|ple™ P P_]¢
(2.4.5)
= |gllpld [P Py 4+ e TP ]y,
Definindo ¢’ := « + 3 e utilizando a propriedade (7°)? = 1, podemos reescrever o

termo entre colchetes como uma exponencial.

0’ —it/ o =it
) e e )], (2.4.6)

i’ —io’
P P | =
[e” Py +e ] 5 + 5

reescrevendo as exponenciais como uma expansao em série, temos

%{1 [Z (ifb?n + Z(—l)”@i,,)n +7° > @Z!)n - Z(—l)”(if;)n] } =
= % 2% {1+ (D" +9°L = (=1)"]} (ii,!)n

(2.4.7)
Quando n € impar, o elemento [1 + (—1)"] € igual a zero e [1 — (—1)"] é igual a

zero quando n for par. Logo

=) (i)
2 {]1 ey (2n—|—1)!} (2:4.8)

n=0

Como (7°)* =1 e (v°)*"*! = 4>, temos

00 (2-6)/,)/5)271 (i9/75)2n+1 B 00 (10/75)71 o
. 0[ (2n)! (2n+1)!]—2 ()] e (2.4.9)

Fazendo |g||¢| = |m|, temos o nosso termo de massa*

n=0

|m|e® " 1p. (2.4.10)
Apoés essas mudangas, ficamos com o seguinte lagrangiano
_ 1 s
L =i — ZG2 + [m|e® "y — L(p). (2.4.11)

4 A expressdo "termo de massa" aqui € um abuso de linguagem, afinal o termo é complexo.
Mas, equivale fisicamente a um termo de massa.
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Ainda é possivel remover essa fase complexa do termo de massa com uma trans-

formacgéo axial global U(1),
Yo ) = e Y s = e EY (2.4.12)

Como a matriz 4° anticomuta com as matrizes v (0.0.8) e #’ € uma constante, a

parte da derivada covariante permanece inalterada

LT 405 05
L— L xipe 274" De™ 27

(2.4.13)
= ipyte' 27 e Dy = iy Dy
e eliminamos a fase complexa,
L— L |m|1/_)e_i%l75ei9/75e_i%/75w
(2.4.14)

= [m|yy.
Classicamente, essa transformacao remove a fase complexa sem consequén-
cias ao lagrangiano. Mas, correcoes quanticas mostram que o parametro ¢’ da
transformagéo axial U(1) se acopla ao tensor dual dos gluons (PESKIN; SCH-

ROEDER, 2018), dando origem ao termo abaixo

92 i
32;2 0'GG, (2.4.15)

onde GG = G%,G*. Esse fendmeno é conhecido como anomalia quiral e o

resultado é o seguinte lagrangiano
_ _ 1 .
L= i + [mly - 16 + %H’GG ~ L(p), (2.4.16)

onde o, = % Como ja discutimos ao final da secéo 2.2, sabe-se que o produto
GG viola a simetria C'P, fato ndo observado na QCD. Uma solugao seria assumir

que ¢ = 0, mas alguns autores argumentam que ¢’ ~ 1 (HOOK, 2023). E,



2.5. SOLUCAO AXIONICA PARA O PROBLEMA DE CP FORTE 38

ainda ha o outro termo GG (Eq. 2.2.13), independente ao ¢'. Somando essas

contribuicdes, temos
_ _ 1 .
L= i + mly - 76+ g—;GGG ~ L(p), (2.4.17)

onde § = 6+ 6. Ou seja, para que a teoria concorde com 0s experimentos, 6 = 0.
Mas isso implica que 6 = —¢’, sendo que esses parametros sdo independentes.
Por que, dentre todos valores possiveis para 6, ele assume exatamente o valor

de —¢'? Este é o problema de C' P da interacao forte.

2.5 SOLUCAO AXIONICA PARA O PROBLEMA DE CP FORTE

A solucéo classica e mais popular para o problema discutido na secao anterior
parte da observacédo de que o lagrangiano da Eq. 2.4.17 "possui" uma simetria

global sob as seguintes transformacdes:
o p=de 7 = |9l > U = €37 (2.5.1)

Por ser invariante sob transformacgdes globais U (1) e considerando que |¢| = |¢|,

a contribuicao de L(p) fica essencialmente inalterada,
L(p) = L(§) = 0,00"¢" + p*|o|* + hlg|". (2.5.2)

E, o termo de massa do quark também,

1/_1|m’77/) — 77/_)ei%75|g|’¢|UT [ei(9'—U)P+ 4+ 0= p Uel%f)@/)
(2.5.3)

= Plgl[g|UTe T UY = |g]|glipe T = [ml.
Mas isso nao é de fato uma simetria do lagrangiano, pois a transformacao no

spinor gera um termo anémalo, que atuara em § — 6 — . Ainda assim, esse
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resultado é Util. Definindo que o parametro o = #, removemos o termo que viola
CP da teoria. Agora precisamos garantir que o sempre assuma o valor de 6
Para isso, vamos tratar o o como uma transformacéao local =~ 2@) onde fo € uma
constante de decaimento associada ao ¢. Isso modificaria £(¢), mas deixaria a

parte do potencial V'(¢) inalterada

L(6) = L(9) = 8,00"¢" — Fa 000 + 12 6[ + hlg|*. (2.5.4)
Aqui podemos ver que ¢ é na verdade um béson de Nambu-Goldstone, i.e., £(¢)
apresenta uma simetria azimutal fazendo com que seu vacuo seja degenerado
e que translacées em o nao afetem seu potencial. Com isso, podemos definir
o valor esperado de ¢ no vacuo como (o) = 6f, e elimina-lo da teoria usando

a anomalia. Entretanto, como ja vimos anteriormente, uma transformacéo local

produz termos que se acoplam aos férmions a partir da derivada covariante,

i DY — iU D, (UY) = idy* U~ D, (UY) = ih [Pip — O ity (2.5.5)

2fa

onde y*y° é uma corrente axial, que também poder ser escrita como J/. Po-

demos remediar isso expandindo a nossa teoria para £ — L + L,,

1
L= 50,000 + e yn (2.5.6)

87 fa 2fa

onde o(z) € um campo pseudo-escalar real sem massa. Logo,

L+L, —Z¢E¢——G2+|m|¢¢+—[9+ }Géntéauaa"a%—ﬁ[@ua;w;qﬁ]. (2.5.7)

Ja

O elemento L[0,0;1;¢] contém os termos de interagéo provenientes de deri-
vadas do campo o. Eliminamos a contribuicido de 6 definindo (¢) = —0f, e
redefinindo o,

o= (o) +a, (2.5.8)
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onde (a) = 0. Por (o) ser uma constante, essa translagdo n&o afeta os demais

termos que dependem de derivadas do o. Assim,

Qs a

L+ Lo = itp Py + |mlapap — £G2+ S f

GG + %@a@“a + L[0,a;1;¢].  (2.5.9)

Utilizando a tab. 2 e sabendo que a é um campo pseudo-escalar, podemos
ver que nosso lagrangiano é invariante sob C'P, tanto no acoplamento com os
gluons,

CPlaGG] = (—a)(—GG) = aGG, (2.5.10)
guanto no acoplamento com os quarks,

60(—a)
2fa

CP {%J“} =

—9)(—a) - o a -
TR (O iy = Dy, 25.11)

(—7°7°y) + 2F) o,

Com isso, eliminamos a fonte de violagdo de C'P, mas inserimos um bdson de
Nambu-Goldstone a na teoria, o axion. Esse conjunto de transformacdées consti-
tuem a simetria U(1) pg introduzida por Roberto D. Peccei e Helen R. Quinn em
1977 (PECCEI; QUINN, 1977a), quando propuseram a solugéo para o problema
C'P que deu origem ao axion, quase nomeado higglet (WEINBERG, 1978) e
(WILCZEK, 1978)). Isso também responde a questdo do momento de dipolo do
néutron ser tdo pequeno, uma vez que o pardmetro § é removido da teoria, a
Gnica fonte de violacdo C'P é o termo aGG com (a) = 0, fazendo com que o
MDE do néutron seja efetivamente zero. Embora resolva o problema, este &xion
classico, também chamado de visivel, nunca foi observado e, dentro dos limites
estabelecidos pela teoria, foi descartado experimentalmente (PECCEI, 2008).
Modificagdes foram feitas desde entdo e os modelos mais atuais para o axion

partem de uma simetria SU(2). r x U(1), utilizando o0 mesmo mecanismo para
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remover o 6, mas com algumas diferencas. Faremos aqui uma abordagem breve
das modificacdes feitas.

Os dois modelos que servem de base para o axion sao o0s propostos por Kim-
Shifman-Vainshtein-Zakharov (KSVZ) e Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)

(CORTONA et al., 2016). A parte comum a essas teorias é

1 oua
L= Eauaﬁ at+20aqa + g(waFF + — qLMyqr + h.c., (2.5.12)

87 fa 2fa
onde g, é a constante de acoplamento axion-féton, F = Fw = kel I
o tensor dual eletromagnético, J., = §7*7°c)q é a corrente axial e ¢,c) e M,
sao respectivamente o dubleto de quarks da primeira geragao, a matriz com as

constantes de acoplamento da corrente axial e a matriz de massa dos quarks,

u 0 ¢, 0 my, 0
q g y Cq = y Mq = . (2.5.13)
d 0 0 myg

O valores das constantes g7, e ¢) dependem do modelo utilizado. Realiza-se a
transformacéao axial,

q— q/ = eiﬁQa'ﬁq7 Tr{Qa} =1 (2514)

onde @, € uma matriz que atua nos campos de quarks. Essa transformacao
remove GG através da anomalia, modificando as constantes de acoplamento,

9oy = Yay € C) — ¢4, € a Mmassa dos quarks, resultando em

1 1
L= 5@@8“@ + gavaFF + Ot — qrMyqr + h.c., (2.5.15)

4 fa

come, =c)—Q.e M, =¢ 2faQ“M ¢'z7a 9+ Algo que nao trataremos aqui, mas
precisamos pontuar € que o axion ganha uma massa m, a partir do vacuo dos

gluons, se considerarmos que o termo anémalo funciona como um potencial
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efetivo para o entdo pseudo boson de Nambu-Goldstone,

0V a; O ~
2 _ eff s
Ma = < da? > > fa Oa <GG>

Dada a variedade de modelos, o espectro da massa do axion € bastante amplo.

(2.5.16)

De acordo com (ADAMS et al., 2023), o valor mais preciso ja calculado para a

massa do axion é
me = 5,691 £ 0,051eV(102GeV/ f,). (2.5.17)

Outro fato é o acoplamento do axion com dois fétons aFF. Diferentemente do
caso nao-abeliano, o termo FF n&do contribui para a acdo no setor eletromag-
nético, mas isso muda quando o parametro que se acopla ao produto passa a
ser dinamico. A existéncia do axion tem impactos diretos no eletromagnetismo e
€ este acoplamento que permite a observacao indireta do axion, agora invisivel,

como veremos no capitulo seguinte.
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3 O AXION DA QCD NA ELETRODINAMICA

No capitulo anterior, vimos que o &xion se acopla aos campos de gluons e
também aos campos eletromagnéticos através do termo aFF. Neste capitulo,
vamos obter as equacdes de Maxwell modificadas por essa particula e o papel

dessa eletrodindmica axiénica (EDA) na hipétese da matéria escura axidnica.

3.1 ELETRODINAMICA AXIONICA

Antes de partir para a EDA, vamos tratar do produto «F'F' quando a é apenas
um pardmetro. Quando d,a = 0, diferentemente do caso n&do-abeliano, este
produto néo altera equacgdes as equacgdes de Maxwell, como veremos a seguir.

Seja S a acao dos campos eletromagnéticos (TONG, 2018b),

S = /d4x {L,+ L} = /d%{—iF2 — laeaaF’F}, (3.1.1)
4,u0 4

onde 1y é permeabilidade magnética do vacuo e a., = % = £, é a constante de
acoplamento (1 = ¢,'). As equagdes de movimento para £, sdo obtidas a partir

das eq. de Euler-Lagrange A.4.5",

Y KA __
G, = 0™ =0 (3.1.2)

o[ 9L ] _ oL
“|9(0.4))

Com a indexacao usual e sabendo que o tensor F' € o descrito na eq. A.4.12,

parai,j = 1,2,3, temos

v=0, O,F*=V.E,
9, F" =0 (3.1.3)

v=1i, F" +0;F"" = ~E+ V x B.

! Esta derivagao é feita em detalhes no apéndice A.4.
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Para L,, realizando as devidas trocas de indices mudos, o produto aFF pode ser

reescrito como

~ 1
al'F = §a€uypa<aw4u - auAu)(apAU - aUAP)’

(3.1.4)
= 2a€e""?(0,A,0,A,).
A partir daqui podemos obter as equagdes de movimento para £,
aﬁa aﬁa - 1 RAPO PN _
O, [8(@%19} oA, zaea&i[a(e 0,A, + €""0,A,)] = 0. (3.1.5)
Como " = " podemos contrair essa soma substituindo v por po,
Oula(€™70,A, + M9, A,)] = 20,(ae™79,A,). (3.1.6)

Observando que 9,4, € uma matriz quadrada, podemos reescrevé-la utilizando
a decomposicao de Toeplitz, que nos diz que qualquer matriz quadrada pode ser

decomposta como a soma de suas partes simétrica e anti-simétrica,
1 1
0pAs = 5(8,)140 + 0,A,) + 5(8,JAG — 0,4,). (8.1.7)

Realizando o produto com tensor de Levi-Civita, vemos que a parte simétrica se
anula,

1 1
e'{/\paé(apflg + agAp) - §€m\pg(apf40 - 8;2‘40) =0, (3'1 '8)

e a parte anti-simétrica retorna o tensor dual F,
1 .
e“Af’ffﬁ(aﬂAg — 0,A,) = F™. (3.1.9)
Assim, as equacdes de movimento séo,

Qe (aF™) = 0. (3.1.10)
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Lembrando que d,a = 0, ficamos com a identidade de Bianchi,

) v=0,0;F7°=V.B,
0, F" = (3.1.11)
v=1i, F" +0;F"" = -B -V x E.

Outro fato relevante é que o produto F'£' é uma derivada total, i.e.,
e"17(0,AL0,A,) = Op(e"7 A, 0,A,) = 0, K", (3.1.12)

pois € A,0,0,A, = 0. A derivada J,K*, também chamada de termo topolé-
gico, depende apenas das condi¢cdes de contorno. Nas condi¢ées em que obte-
mos nossas equagoes, tomamos o potencial A, = 0 no infinito, logo esse termo
também n&o contribui para a acdo. Quando J,.a # 0, as equacdes de movimento

para a agédo passam a ser?

V-E= —loceaVa - B,

" = — 1500y (aF™) € (3.1.13)
VxB-E= foeq (@B + Va X E).

Essas equacgdes nos permitem descrever classicamente o fenébmeno magnetoe-
létrico presente, por exemplo, em materiais conhecidos como isolantes topoldgi-
cos (ITs), materiais cujo o interior se comporta como um isolante e as superficies
externas como condutores. Para nossa modelagem, fora desses materiais o pa-
rametro a = 0 e dentro dele a = 7, fazendo com que 0 Va # 0 em uma regiao il
ao redor das suas paredes.

Vamos partir da primeira equacdo em 3.1.13 e considerar um IT cilindrico
imerso em um campo magnético externo B, = B.z (Fig. 2). Como

Va-B, = V- (aB,), (3.1.14)

2 Por permanecerem inalteradas e somarem zero, as contribuicdes provenientes da identidade
de Bianchi foram ocultadas.
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podemos usar a lei de gauss para determinar 0 comportamento desses campos

na parede desse material com uma superficie S no intervalo ¢z,

4B, a=0

Figura 2 — llustragdo com um IT cilindrico imerso em um campo magnético uni-
forme.

1
]{E -da = Q = jl{ [——amaBei] -da
S €0 S €0

= / |:_ <lafora - 1adentro) aeaBeil - Zda (31 1 5)
A €0 €

1
= —a.B.A.
€

Logo, a densidade superficial de cargas ¢ = «a.B.. Na condicdo onde o vetor
deslocamento elétrico V - D = 0, as cargas induzidas na superficie do material
sao de polarizacdo ¢ = 0,. Em outras palavras, o campo magnético polariza
eletricamente o IT,

oy=P-%—P=aB,, (3.1.16)

que por sua vez da origem a um campo elétrico, pela condicdo de contorno
abaixo

(GOEfora - EEdentro) ‘7= Op = aeBe- (31 1 7)

Mantendo a mesma configuragéo, no caso seguinte, vamos trocar o campo

magnético externo por um campo elétrico, E, = E.z. Sabendo que a =0 e

totea(Va X E.) = V X (poaeqaEe), (3.1.18)
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com um circuito amperiano de altura [ no intervalo radial s na borda do IT, cuja
normal é tangente a superficie lateral do material (Fig. 3), podemos utilizar o
teorema de Stokes para estudar o que acontece a partir da segunda equacao

em 3.1.13,

Figura 3 — llustragdo com um IT cilindrico imerso em um campo elétrico uniforme.

$B-dl= ol = § (poaaaE) -
C C

= /[(adentro,u - aforaﬂO)aeaEez] - Zdz (31 1 9)
l

= paFl.
Similar ao caso anterior, 0 campo E. induz uma corrente superficial K, no IT, com
K, = a.E.. Novamente, se as condi¢cdes permitem H = 0, a corrente superficial

€ a corrente de magnetizacao superficial K, = K¢,
K, =M X 8= (wFE.2) x8—>M=q.E,, (3.1.20)
e a condicao de contorno para 0 campo magnético passa a ser
(0B fora — 1Bentro) - 2 = Ky = a E. (3.1.21)

Isolantes topoldgicos sao um tépico extenso e complexo. Aqui foi feita apenas

uma breve abordagem para demonstrar a importancia do termo topolégico na
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descricao desses fendmenos magnetoelétricos. Uma abordagem introdutéria
sobre o tema, envolvendo outros fenémenos, pode ser encontrada em (TONG,
2018b).

Agora vamos para o caso onde o parametro a é o axion da QCD. Isso significa
que a constante de acoplamento g¢,, € a massa m, dependem do modelo axiénico

utilizado no setor forte. Vamos partir do seguinte lagrangiano (SIKIVIE, 1983)

1 1 1 ~
L= =(0,a0"a —mia®) — A, J" — —F,,F" — ~g,.aF,, F", (3.1.22)
2 4,[1,0 4

onde A, = (V,—A) e J* = (p,J). As equagdes de movimento referentes aos dois
ultimos termos ja foram obtidas na secéo anterior, a diferenca agora é o termo

de interagdo A, J* ndo nulo. Logo

oL oL 1 -
’ | - =2 = | —F + gy (aFN | — I = 1.2
a [a(aHAA>1 aA)\ |:M0 + g 'Y(a ) J 07 (3 3)
que resulta em
O F™ = p1o[J” — gan O, (aFH)). (3.1.24)

Como a agora € um campo pseudo-escalar, ficamos com mais uma equagio®,

oeia)

1 .
P 9,0"a +mia + ZQCWF“”FW =0 (3.1.25)

Na notacéo de Lorentz-Heaviside, as equacdes de Maxwell modificadas séo

1

€0

V-E (p_ga'yva'B>,
V X B~ B = g[J + go, (aB + Va X E)], (3.1.26)

i —V?a+mia= g, E-B.

3 O célculo para obter essas equagdes esta descrito no apéndice A.3.
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As equacdes associadas a identidade de Bianchi continuam inalteradas,

V-B=0,VXE+B=0. (3.1.27)

A EDA é interessante no contexto das particulas tipo-axion (ALPs), pois essas
particulas/quasiparticulas nao precisam resolver o problema CP forte, ou seja,
as constantes de acoplamento e massa nao dependem dos parametros da QCD,
podendo ser modeladas de acordo com o objeto de estudo, mas mantendo todo
0 aparato de um campo pseudo-escalar que se acopla aos campos eletromag-
néticos.

Voltando ao caso dos ITs, por exemplo, a hipétese do polariton axiénico diz
que um material capaz de transmitir um feixe de luz, sob as condi¢des ideais,
pode refletir totalmente essa luz incidente quando exposto a um campo magneé-
tico externo paralelo ao campo elétrico desse feixe. Este fenbmeno sé é possivel
para um campo a dindmico, com potencial aplicacao em circuitos computacionais
(SEKINE; NOMURA, 2021).

Esse é um dos principais motivadores da pesquisa em axions e ALPs: pesqui-
sar materiais exéticos e desenvolver tecnologias mais sofisticadas de metrologia
guantica, a fim de encontrar novos meios de investigar fendmenos atrelados a
eventos de altas energias, especialmente em experimentos de pequena escala.
Nesse contexto, o axion da QCD aparece também como um possivel candidato
a matéria escura, com a sua busca experimental sendo a aplicacdo mais notavel

da EDA, como veremos na proxima sec¢ao.
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3.2 MATERIA ESCURA AXIONICA

Um dos grandes mistérios atualmente na fisica e cosmologia é a matéria
escura, que constitui cerca de 25% da densidade de energia do nosso universo
(ADAMS et al., 2023). Sua presenga € inegavel, confirmada indiretamente por
seus efeitos gravitacionais, como por exemplo na curva de rotagdo das galaxias.
De forma resumida, uma galaxia espiral como a nossa é constituida por um bojo
e um disco fino, com a maior parte da massa no bojo. Para uma estrela a uma

distancia r do centro galatico temos (PERKINS, 2000)

— = : (3.2.1)

onde a massa galatica M (r) « r* no bojo galatico e longe do bojo, no disco gala-
tico, a massa M se mantém aproximadamente constante dentro do raio r. Logo,
espera-se que no bojo v < r € no disco v r~2. Entretanto, o que foi observado
€ que a velocidade aumenta ou se mantém ao longo do disco (BROEILS, 1992).
Essa discrepancia é sanada se a galaxia estiver inserida em um halo esférico
de uma matéria escura, que, diferentemente da matéria luminosa, ndo interage
eletromagneticamente ou interage muito fracamente. No caso da nossa galaxia,
o halo de matéria escura corresponde a 89% da sua massa (PERKINS, 2000).
Dentro desse contexto de proporgdes, a matéria que estudamos até agora cor-
responde a 5% da densidade de energia do universo*. A natureza de 95% do
universo® ainda é uma questdo em aberto.

Voltando a matéria escura, existem varias hipoteses a respeito da natureza

4 Menos que isso. Afinal, neste trabalho, ndo demos énfase ao setor fraco do Modelo Padrao.
5 Dos quais 70% séo energia escura, outro grande mistério. Uma 6tima apresentagéo do tema
pode ser encontrada em (ARAUJO, 2021).
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da matéria escura. As duas principais abordagens para essa questao sao: a
matéria escura é uma particula (ou particulas) e a matéria escura ndo € uma
particula, mas sim um reflexo da limitacdo dos nossos modelos gravitacionais.
Esta ultima geralmente se baseia em modelos emergentes que nao consideram
a Relatividade Geral uma boa descricdao do universo. Aqui vamos nos ater a
primeira abordagem, pautada pelo modelo ACDM, também chamado de Modelo
Padrao da Cosmologia. Do inglés, a sigla CDM significa matéria escura fria, pois
este modelo determina que a velocidade dessas particulas sdo muito pequenas
em relacdo a da luz. Nesse regime, o axion da QCD aparece como um possivel
candidato a matéria escura®. O acoplamento com fétons, permite a sua busca
experimental impondo sob o0 axion as condi¢ées do halo de matéria escura da
nossa galaxia.

Aqui vamos abordar o haloscépio, que opera com a hipdtese de que a ma-
téria escura que compde o halo galatico sdo axions distribuidos de forma ho-
mogénea e frios. Para um campo a descrito pela parte real da onda plana
a(r,t) = age’™eT~wab) isto significa que a onda nio depende de r e se propaga
com baixas velocidade v da ordem de O(1073). Das equagdes de de Broglie,
obtemos a frequéncia angular w, = E = m, + sm,v* ~ m,. Logo, 0 campo a é
dado por a(t) = age”"™<*. O haloscépio em questdo’ é uma cavidade de onda
com um plasma nao-homogéneo onde o axion interage com um campo magné-

tico externo B. e, em ressonancia, interfere com os campos eletromagnéticos

6 Neste trabalho nossa énfase esta no axion. Caso leitor se interesse pelo tema, um resumo
didatico de outros candidatos para matéria escura e suas caracteristicas podem ser encontra-
dos em (BALTZ, 2004).

7 Todo o tratamento realizado aqui segue a idealizacdo desenvolvida pelos pesquisadores do
Axion Dark Matter Experiment (ADMX) (MILLAR et al., 2023).
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dentro da cavidade. Para vermos como isso acontece, vamos fazer algumas
consideracdes: a cavidade é cilindrica, de raio R, centrada no eixo z € com um
campo magnético B, = B.z em seu interior; é conveniente separar 0s campos e

operador derivada em componentes transversais e axial,

E=E +E% B=B,+B.2, V=V, + zaﬁ, (3.2.2)
y4

onde E e B oscilam com frequéncia w e a dependéncia em = de E;, e B; é
dada por ¢**+*; a resposta do plasma se da apenas na direcdo axial, assim
e;E; = eE, + €, E, (para clareza visual i = € = 1); apenas fontes campos oriun-
das do acoplamento féton-axion sao consideradas, ou seja, cargas e correntes
livres serao desconsideradas. Sob essas condi¢oes, a equagao que apresenta o

acoplamento com o axion passa a ser
.0 . .
V:+ za— X (B, + B,) + iw(E; + €,E,) = —im,g,,aB.. (3.2.3)
z

Em ressonéncia w = m,. O produto vetorial resultante das partes transversais

s6 pode ser axial, isso nos permite separar a equacao acima em duas,

VX B, +we. E, = —iwg,,aB. (3.2.4)
e
OB OB
ViB.X24+2X —=2X (= —V,B. | = —iwE,. (3.2.5)
0z 0z

Vemos na primeira equacao que o acoplamento aB. atua como uma corrente
oscilando uniformemente ao longo de todo o volume. Fazendo o mesmo para a
Lei de Faraday,
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Substituindo o E; da equacao 3.2.5 pela equacgao 3.2.4, vemos que as compo-

nentes transversais dos campos sé dependem das componentes axiais,

0z
B
— 7% {ﬁ 2 X (E _ Vthﬂ —|—inth}, (3.2.7)
0z 0z
. R 0’B, 0B, ,
=7z X {Z X (W -V, 92 ) +ZWVtEZ},
Pela relagdo z X (z X vi) = —vy, temos
’B B
szt:—a t"’Vta Z"’ZWZXVtEZ
022 0z (3.2.8)
B
= kB, + VtQ +iwz X V. E,
0z
Isolando B,,
1 oB, .
Bt = w2 — kz (Vt az —+ 1wz X Vth> . (329)

Uma vez que a dependéncia axial esta demonstrada, vamos substituir o resul-

tado acima na eq. 3.2.4,

0B,
V., X <Vt P ) +iwV, X (Z X Vth)] +iwe, B, = —iwg,,aB..

2 _ ]2
w? — k2

(3.2.10)
Se voltarmos a eq. 3.2.4 novamente, vemos que a componente B, do campo
magnético ndo se acopla ao axion, apenas as componentes B;. Isso significa
que B, resulta das dindmicas com o campo elétrico. Uma vez que estamos
interessados apenas no axion como fonte, vamos ignorar a contribuicdo de B,

para a equacao. Reescrevendo em coordenadas cilindricas e multiplicando por

1
w? — k2

(805 + ¢0,) X (80sE, — POLE,)| + €. E, = —gq,aBe,
(3.2.11)

(83 + 8;)Ez + /VEz = _elgavBeaa
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onde v = ¢, (w? — k?). Como a s6 possui dependéncia temporal, podemos rees-
crever E, utilizando separacdo de varidveis somada a uma fungdo que também
s6 depende de t, E, = S(s)®(¢)Z(z) + ¢(t), assim a equagao diferencial parcial
(EDP) passa ser

28  ®Z9S SZ P y
Yot s T 2 9 5 HSPZ +g(t)] = ;gavBea(t). (3.2.12)

Separado a eq. acima em duas equacdes, obtemos a solucao particular para a

parte temporal,

gt) = =0 ety i (3.2.13)

Y
€2
e ficamos com a seguinte EDP,

0?8 ®Z 05 SZ 0?P
O/ — + dZ = 0. 2.14
0s? s Os T2 8 75 0 3 )

Rearranjando essa equagéo,

s29*°S  s90S  10°0

S 5 Taagter =0
s20*S  s9S 10%°0
R AT R ¥ -t

vemos que o extremo esquerdo dessa igualdade € a equacao diferencial ordi-

(3.2.15)

naria (EDO) de Bessel e o centro é a EDO do oscilador harménico. O cap. 11

da referéncia (ARFKEN; WEBER, 2007) nos diz que a solugéo para essa EDO é

dada por®
S(s)®(p) = cydp(isd,)e™?, (3.2.16)
ondeid, = /7y comd, = \/e.(k? —w?) e J, € afungdo de Bessel de primeiro tipo,
_— (=1)" isd, >
Jy(isd,) = ; ST T\ 2 . (3.2.17)

8 Ainda existe uma solugdo harménica em z na referéncia, mas a EDP 3.2.15 ndo depende
explicitamente dessa variavel, logo este resultado é valido para todo z dentro do cilindro.
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Por continuidade, a solucao harmédnica deve ser periddica, o que significa que p
deve ser um numero inteiro e, dada a simetria da configuragao, a contribuicdo de

v é desprezivel, logo p = 0. Sendo assim, a solugédo para essa EDO € dada por
S(s) = cyJo(isd,) (3.2.18)

Ainda existe uma solu¢gdo com a funcéo de Bessel de segundo tipo Yy(—isd.).
Entretanto, essa solucdo é singular, diverge em s = 0, um resultado fisicamente

incongruente. Agora podemos escrever a solugao geral para nosso sistema,

Bo(s,) = — 99500 + ) o(isd.) (3.2.19)

€z
Para determinar a constante c; precisamos impor algumas condi¢gdes de con-
torno no nosso cilindro. A primeira condicdo é E. = 0 nas paredes, s = R, que
pode ser realizado com o exterior da cavidade sendo um condutor, e a segunda é
gue esperamos acoplamento maximo. Pela eq. 3.2.6, 0 acoplamento € maximo

quando E; =0 e k, = 0. Sendo assim

a e a Be
E(Rt) = 0= 99500y 4 e o (Buy) — ¢) = — 2P 14y (3.2.20)

€2 6Z']0<Rw\/€)
E, ficamos por fim com

Jo(sw4/€>)
Jo(Rwy/€z)

a Be
E.(s,t) = 22 {

€z

- 1]a(t). (3.2.21)

O campo magnético B; pode ser obtido diretamente da equacao 3.2.6

Gary Be J1(swy/€;)

Bi(s,t) = ==~ i (Rove)

a(t)@. (3.2.22)

Vemos que Jy(Rw,/€.) — oo quando R — oo, ou seja, proximo do centro de uma

cavidade muito grande, o campo magnético B, vai a zero assim como o segundo
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termo do campo elétrico E.. Logo, a solucao é o acoplamento do axion em um
plasma infinito

Bu(t) = — 9 Be gy, (3.2.23)

€2
Conhecendo as propriedades do plasma, com ¢, sendo descrito pelo modelo de
Drude, é possivel impor um regime de ressonancia fazendo Re(e,) = 0. No apa-
rato, uma antena captaria o sinal gerado que, posteriormente, seria amplificado.
Embora o fenbmeno esperado seja relativamente simples, a massa do axion &
muito pequena, fazendo com que o grande desafio dessa observacao resida no
aprimoramento de técnicas e pesquisa de materiais que possam mitigar o ruido

de fundo frente ao acoplamento.
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CONCLUSAO

Ao longo deste trabalho, vimos uma breve introducdo de como o axion, uma
particula inicialmente proposta para resolver um problema especifico da cromo-
dindmica quantica, impacta a fisica que conhecemos. Em especial na eletrodina-
mica, uma vez que o acoplamento axion-féton pode oferecer uma nova janela no
estudo de eventos de altas energia com experimentos de pequena escala, com
a possibilidade de ser a chave para um dos grandes mistérios na cosmologia: a
matéria escura (SIKIVIE, 1983). Alguns autores afirmam que, hoje, a busca por
matéria escura axidnica esta na sua "era dourada", com um crescente niumero
de experimentos simultaneos, muitos de pequena escala, motivando a pesquisa
e o desenvolvimento constante de tecnologias de metrologia quéntica ultra sen-
siveis. Esses, por sua vez, que sao aproveitadas em outras areas de pesquisa
além da fisica (ADAMS et al., 2023). E, ainda que nao se verifique a existéncia
do axion da QCD, o aparato das ALPs se mostrou relevante no estudo de materi-
ais e fendbmenos exoticos. Esses progressos experimentais e tedricos ressonam
na fisica como um todo, impactando outras areas de pesquisa além da fisica de

particulas.
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APENDICE A — CAMPOS CLASSICOS RELATIVISTICOS

A.1 TRANSICAO PARA O CONTINUO

Diferentemente da formulagdo lagrangiana com coordenadas generalizadas
q:i(t), i = 1,...,n, que trata de sistemas discretos, a formulagéo lagrangiana para
campos utiliza fungdes que variam continuamente no espaco-tempo. Para ilus-
trar a necessidade dessa nova formulacdo, vamos considerar o sistema infinito
(Fig.4) de massas m acopladas por molas de comprimento a, constante elas-
tica k e sujeitas a deslocamentos ¢; em relacao a posicao de repouso da massa,
onde : € o indice que localiza as massas nesse sistema, que se estende ao longo

do eixo x.

(l (1L

—t
-

1 Pi Pit1

S

Figura 4 — sistema massa-mola infinito (GOLDSTEIN et al., 2002)

A energia cinética e a energia potencial desse sistema sao, respectivamente,

1 dei ) 1
NI CA NS DEHE (A1.1)

(2

Logo, o lagrangiano é

L= %Z [m(ddii) — k(pit1 — <Pz‘>2] (A.1.2)
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o : u
multiplicando esse lagrangiano por ¢,

L= %az [%(ddii) - k%%) ] =" aL,. (A1.3)

%

Da equacao de Euler-Lagrange

oL 0 oL
— = |—| =0, A.1.4
dp; Ot [8(—%‘;7‘) ( )
temos
m dQ%‘ Yi+1 — Pi WYi — Pi—1
Sl SN Rt T, = ") =0. A1
T ka( 2 ) + ka( " ) 0 (A.1.5)

No limite onde a — 0, as massa ficam infinitesimalmente préximas e faz mais
sentido indexa-las com uma variavel continua do que uma discreta. Por conve-
niéncia, usarei a variavel z, ja que essas massas estao dispostas ao longo do
eixo x. Sob esse limite, > = 1 passa a ser a massa por unidade de comprimento
do sistema e ka, considerando que as molas obedecem a lei de Hooke, pode
ser entendido como 0 médulo de Young Y que descreve a tensao elastica nesse

meio continuo. Assim,

MdQso(I) 3 hm{K@(fEﬂLa) - 90(17)> B (90(9«“) - w(flf—a)>] —0  (A16)

d¢? a—0 @ a a

Os termos em parénteses séo derivadas de ¢ em relagao a z

d?p . Y [[/dy dy
“W‘lﬂ%z[(a); (a)z_a] =0 (A.1.7)

e o limite restante, a sua segunda derivada. Logo,

d?¢ d?p

€ a equacao de movimento para esse sistema, a equacao de onda. Voltando ao

lagrangiano A.1.3 e aplicando o mesmo limite onde a — 0, 0 somatério passa a
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ser uma integral,

L— X tim a{u<d_¢)2_y[90(x+a)_90@)}2}. (A.1.9)

2 a—0

e fasu(3) - (8)] (A1.10)
L= /d E(i{f j“o) (A1.11)

Podemos entender £ como uma densidade do lagrangiano L. Com isso a acao

:/&L:/&/M& (A1.12)
Sz//oodtd c(ff ji). (A.1.13)

Seguindo o Principio de Hamilton, a minimizacdo da acao € feita de maneira

€ dada por,

similar ao caso discreto,

oo dp de
0_55_//_ dt dx 5£(dt < )
[ e[ 25 () 1 2 (%)
- (%) \ dt 9(d2) "\ dx

Como as variaveis sao independentes, a ordem com que as derivadas e integrais

(A.1.14)

sao realizadas é arbitraria. Sendo assim,

8£ d oL d
0= 55 = // e |5 309+ i 4 (5@] (A1.15)
Usando a regra do produto, o primeiro termo pode ser reescrito como,
oL d oL d| oc
— = — bo)| — — ) A.1.16

€ 0 segundo,

OL d s _ %[ﬁ)w)l - %[ oL ] (59). (A1.17)

o) de
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Substituindo na agéo e organizando os termos, ficamos com trés integrais,
© faloc . ]
0S=[d dt ¢ —|——(6 +
/ x/_oo {dt _a((;—f)( ‘0)_ }
< df oc ]

_ _ oL
@] } (6p) = 0.

_ //_mdtdx{%[% d :

+ -
Pela condicao de extremos fixos, dp € zero quando avaliado nos limites de in-

dx

tegracdo. Logo, a primeira e a segunda integral também sao zero. Da terceira

integral, temos as equagdes de Euler-Lagrange para esse sistema,

d| oL d| ocC
Da qual obtemos a seguinte equacéao de movimento
e e

Como esperado, esta € exatamente a solugdo que encontramos a partir da equa-
cao A.1.5, depois de leva-la para o limite continuo. Outro fator a se notar é que
© € a coordenada generalizada e a coordenada x atua apenas como um indice.
Se o sistema se estendesse nas direcées y e z, as coordenadas y e »z também
atuariam como indices e todas seriam independentes entre si, 0 que veremos na

generalizagao a seguir.

A.2 EQUAGCAO DE EULER-LAGRANGE PARA CAMPOS

Seja ¢, (x*) um campo que varia com as componentes do quadrivetor posi¢cao

z¢,comn=1,...Ne Neu=0,1,2,3.

L = Llon(a"), Oupn(ah)]. (A.2.1)



A.2. EQUACAO DE EULER-LAGRANGE PARA CAMPOS 65

Com isso o Lagrangiano fica

L:/ d*z L]on(2"), Oupn(h)], (A.2.2)
L:/ d3z L. (A.2.3)

e o funcional da acéo
S:/ d*z L. (A.2.4)

Aqui, 0 processo de minimizacdo da acao segue 0s passos da secao anterior

(pn(zH) = ¢ para clareza visual),

9S :/ d*x 6L[p, dup] =0
> or or (A.2.5)

- /_oo Az {%&p + a((?—mé(aw)} =0,

o0

utilizando regra do produto, o segundo termo pode ser reescrito como

5S = /_ Z d*z {%590 + 9, {ag—ip)a(gp)} -0, {%f@)} 5¢}: 0, (A.2.6)

separando as duas integrais

5S = /: d*z {% -0, {%ﬁp)} }&p + /_Z d*z 0, [a(gf@d(@)} =0. (A2.7)

Sob a condicao de extremos fixos, a segunda integral € igual a zero. Da primeira

integral obtemos a equacéao de Euler-Lagrange para campos

oL oL ] - (A.2.8)

/= _9 |—=
dpn " {8@%)
Resultado bem similar ao da equacao A.1.19, a diferenca aqui é que esta den-
sidade de lagrangiano depende explicitamente de ¢, fazendo com que o pri-

meiro termo n&o seja zero. Agora, utilizando a equacgéo A.2.8 e os lagrangianos'
;

A menos que a distingao seja necessaria, chamarei a densidade de lagrangiano apenas de
lagrangiano.
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oferecidos pela literatura (GRIFFITHS, 2008), podemos obter as equagdes dos

campos de spin 0, 1 e 1.

A.3 CAMPO ESCALAR (SPIN-0)

Seja L, o lagrangiano para um campo escalar livre massivo sem carga
1 L 1 242
5025 M¢8’¢+§m¢ , (A.3.1)

onde ¢ é um campo escalar real e m é a massa desse campo. O primeiro termo,
chamado de termo cinético. Embora aceita, a terminologia néo é precisa, pois
existe um gradiente do campo no termo. Considerando a aproximagdo massa-
mola que fizemos no inicio desse apéndice, uma variacao cinética em ponto do
campo resultaria em uma variacao potencial elastica na vizinhanga desse ponto.
Entdo, também podemos entendé-lo com um termo de dinadmica do campo. Esse
termo é quadratico em derivadas do campo e pode ser reescrito em funcao da

matriz n*

L= %nﬂ”amayeb + %m%f? = %(8@)2 - %(qu)“’ + %m%b?. (A3.2)

Agora, basta substituir £, na equacéao A.2.8 para obter as equacdes de campo,

oLy

a‘CO _a'f a ¢ auqb) _aﬁ (8u¢ V6V¢>
o, = O (GChug 4 g, = % (Caug 4o
[8@@} 2(&@ PH0096) =2 \0” T 05) s

a‘f K QW WV SK aﬁ K K K
= 5 (000 + 0u0m™8) = T(0"0 + Duom™) = 0,0

Trocando « por u, ficamos com

0,0"¢ — mp = 0, (A.3.5)
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gue nada mais é do que a famosa equacao de Klein-Gordon, em homenagem
a Oskar Klein (1894-1977) e Walter Gordon (1893-1940). Com alguns ajustes e
considerando os operadores energia € momento da mecéanica quantica, € possi-
vel notar a semelhanga com outra famosa equacgéo E? = p? 4+ m?, fato que nao
€ mera coincidéncia (GRIFFITHS, 2008). Embora a equacao de Klein-Gordon
tenha sido inicialmente proposta para descrever elétrons relativisticos, ela sé
descreve particulas de spin-0, i.e., particulas escalares e pseudo-escalares. As

solucdes de onda plana para essa equagao sao,
oF = aeFrn" (A.3.6)

onde a amplitude a € uma constante real. Para um campo ¢ complexo, o lagran-
giano fica alterado em

Lo = 0,00"6 + m2po, (A.3.7)

A equacao de movimento para esse lagrangiano continua sendo A.3.5.

A.4 CAMPO VETORIAL (SPIN-1)

Seja L., o lagrangiano para uma campo vetorial livre e sem massa

1
= - Hy

£y == FwF", (A.4.1)

F,, =0,A, — 0,A,, (A.4.2)

onde o quadrivetor A, € o campo vetorial. Existem algumas manipulagbes de in-
dices que precisam ser feitas no lagrangiano para que possamos obter as equa-
¢Oes de campo. Abrindo o produto entre os tensores F,, F*”, tem-se

1
£’Y - _16_7T<8MAV8MAV o 8MAV8VAM - aVA,uaMAV + &’AMaVAM)v (A43)
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uma vez que esses indices sdo mudos (ndo sao livres nesse somatério), pode-

mos trocar v <+ . Fazendo isso no terceiro e no quarto termo,

L 0,A4,0047 — 9,4, A"). (A.4.4)

Ly = 87

Para evitar uma confusdo com indices iguais nos passos seguintes, farei algumas

modificacdes na equacao A.2.8

dL, { dL,
Y

—1 = =0,....3. A.4.5
o m@mﬂ 0, pro—0, .. (A.4.5)

Como £, n&o depende explicitamente de A,,,

oL,
= _ . A4,
o = (A.4.6)
Logo,
oL, 1 0(0,A,0"AY — 0,,A,0" A")
= — = 0. A47
a”[a@A(,)} 87 f’{ 20,4, 0 (A4.7)
Resolvendo para o primeiro termo:
(0 AVE)WA”)] {8(8 A,) (a“A”)]
O, —2 2| =9 2ZoRAY + 0,A, ,
”[ 9(9pAs) "10(9,45) 9(0,45)
— 8(6MAV) 0w AV LK I/)\a(a AA)
‘@b@A»8A+8A”77maA>’
(A.4.8)

0, [60670" A" + 8, A 06085,
= 8, [88050" A” + 9 A*0053]
= 20,(87A%).

No segundo termo o processo € 0 mesmo, exceto que os indices da parte con-

travariante ficam trocados,

{a(aﬂAyaVAu)
g,| R L)

504 ] = 20,(0° A). (A.4.9)
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Substituindo esses termos na equacao A.4.7, temos

oL, —i o o
a”{a(apAo)] = 10,0747 — 07 A7) (A.4.10)

Reescrevendo com a indexagdo mais usual,

0, (0" A — ¥ AP) = 9, F" = 0. (A.4.11)

Essa equacao so6 € valida para particulas de spin 1 sem massa, como € 0 caso
dos fétons. Nesse cendrio, o tensor eletromagnético F** € dado por

0 —-Ey —FEy —Ej

» o Ey 0 —Bs Bs
FH =ty F,, = (A.4.12)
Ey  Bs 0 —-bB

Es —By, DB 0

e a equacao retorna as equagdes de Maxwell para campos longe da fonte,
V-E=0,VxB=E. (A.4.13)
E, pela identidade de Bianchi,
0,F*" 4+ 0,F"" + 0,F™ = 0, (A.4.14)
obtemos as demais equacgdes de Maxwell,

V-B=0,VXE=-B. (A.4.15)

A.5 CAMPO SPINOR (SPIN-1/2)

Seja L o lagrangiano para um campo spinor livre massivo

Lp = 1", — my) (A5.1)
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onde o spinor ¢ € uma matriz coluna com quatro componentes complexas e o
spinor adjunto ¢» = —iy+". Embora o spinor tenha oito variaveis independentes,
as equacgdes de campo resultam em uma combinacao linear de ¢». O mesmo vale

para ¢). Entdo, vamos escrever a equagao A.2.8 em fungdo dos spinores. Para

Y, tem-se
oLp . i oLp
=2 _ — —= | = Ab5.2
o "y 8“{6(%)} . A52)
Portanto,
ivto, ) —map = 0. (A.5.3)
E, para ¢
oLp - { oLp } -
_ = — 781,— =1 /'L, A54
A FC] (A5
Resultando em
10,07 + myp = 0. (A.5.5)

A.5.3 e A.5.5 sao, respectivamente, a equagédo de Dirac e sua forma adjunta.
Esta é equacgao responsavel por descrever os férmions, particulas de spin % E
foram as suas solugdes que permitiram que Paul Dirac previsse a existéncia das

antiparticulas. As solugdes de onda plana para as particulas sao,

1 0
A 0 1
Y = ae" P (12 com u(V = ,eu =N , (A.5.6)
2 p—
E'Ijkm E+m
P+ —P=z
E+m E+m
e, para as antiparticulas,
b= Pz
E+m E+m
—P=z b+
Y = aeP 12 comoM = N | FTm e @ =N | FT L (A.5.7)
0 1
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onde N = vVE+mepy =p, £ip,.



72

APENDICE B — TRANSFORMAGOES DE GAUGE

Seja a matriz 1 x 1 unitaria U um elemento do grupo U(1) sob a forma
U = elaete) (B.0.1)

onde ¢ é uma constante real e « € uma funcao de z*. Vamos aplicar essa trans-
formacao aos campos dos lagrangianos estudados no apéndice anterior, come-
cando pelo caso onde « € constante.

Para o lagrangiano de Klein-Gordon A.3.7 com ¢ complexo
¢ = =Ug, ¢ =ge " =¢U' (B.0.2)
E o lagrangiano £, — £,

Ly =0,§0"¢ +m*¢'¢/

(B.0.3)
= 0,(eUNO"(U¢) + m*oUTU ¢.
Por serem constantes, U e U podem ser retirados da derivada
Ly = 0,0UU"¢ +m*oUTU¢
= 0,00" ) + m* g (B.0.4)

- [,0.
Vemos entdo que o lagrangiano de Klein-Grodon é invariante sob essa transfor-
magao. O mesmo acontece com o lagrangiano de Dirac
‘C/D = i@zIVM ;ﬂ#' - m@E’@D',
= iU 0,Ush) — mpUTUp,
(B.0.5)
- “E’Y“a;ﬂﬁ - m&d’y

— L)
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Em ambos os casos dizemos que os lagrangianos apresentam simetria global,
pois 0s lagrangianos permaneceram invariantes apés as transformacgées. Esse
resultado era esperado, uma vez que nao houve alteracdo na magnitude dos
componentes do lagrangiano, apenas uma rotagao sob um angulo fixo.

Agora faremos uma transformacgao de gauge local. Isto significa que podemos
ter rotacOes diferentes para cada ponto x#. Em esséncia, 0 processo € o0 mesmo
que no caso global, mas «(z*) ndo é mais uma constante.

Comecando por L., a transformag&o de gauge é feita no quadrivetor A,,,
Ay — A, = A, + Opafa). (B.0.6)

Reescrevendo L., (para clareza visual a(z#) = «),

1
L] = == [0u(A, + 0,0) = 0,(Ay + ,Q)|[0M(A” + &) = 0 (A" + 0 a)]

1
= — o= B+ 00,0 = 0,0,0 [P + 9 0a = 90"l

(B.0.7)

Onde assumimos a analiticidade de « e que os operadores derivada sao simétri-
cos: 9,0, = 0,0,. O mesmo vale para a parte contravariante. Logo, os termos
em fungéo de o somam zero e £, permanece invariante sob transformacdes

locais de gauge,

1
I uy
£ =~ FuF*. (B.0.8)

Para o lagrangiano do campo spinor, temos

L = zﬂ’fy“@uw’ + ma'y’
(B.0.9)
= i@e’iqa(““)’y“ﬁu [eiqa(x“)¢] + map.

O termo cinético se modifica, enquanto o termo v fica inalterado. Teremos

0, [e7)p] = iqd, ()Y’ + €1 G, 9p. (B.0.10)
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Este gradiente d,«, que se acopla aos spinores, faz com que o lagrangiano n&o

seja invariante localmente,
= Lp — qpy"pd,a(z™). (B.0.11)

Para que o lagrangiano do campo spinor seja localmente invariante é preciso
que ele contenha um elemento, que sob uma transformacao de gauge, se anule
com o gradiente. A partir da equacédo B.0.6, podemos escrever o gradiente como

O = A; — A,. Assim,

Lp — qy"p(A, — A,) = L,
(B.0.12)
Lp+ qpy" YA, = L + gy A,
Do lado direito da equagéao estédo os termos sob a transformagéo local de gauge.

Abrindo esses termos,

Lp + gy A, = Lp — gy Yda(et) + gy [A, + da(ah)],
(B.0.13)
Lp + qpy" A, = Lp + qpy" A,
Encontramos o elemento que deixa o lagrangiano invariante, o campo A, aco-
plado ao termo qyy*¢). Podemos entender A,, como um campo que faz a conexao
entre rotagdes independentes «(z*). Sé que esse campo € estatico, precisamos

adicionar o termo cinético para esse novo campo vetorial, que nada mais € do

que L, (que como ja vimos também ¢é invariante localmente), entdo
L=Lp+q"VA,+ L. (B.0.14)

Acontece que este campo vetorial de gauge é exatamente o potencial eletromag-

nético. Este é um resultado notavel: ao impor que o lagrangiano de Dirac deve
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ser invariante sob transformagdes locais do grupo U(1), construimos um lagran-
giano que descreve a interacao entre os férmions carregados eletricamente e os

fétons. Ou seja, L é o lagrangiano da eletrodinamica quantica

. - 1 ,
Loep = [Zw’y“alﬂ/} — mwzﬂ + quyHp A, — 16—7TFM,,F“ . (B.0.15)

Esse é o processo que da origem as intera¢des fundamentais do modelo padrao.
No caso da interagao forte, por exemplo, o lagrangiano que descreve a interacao
¢ invariante sob transformagoes locais do grupo SU(3).

Lorp também pode ser escrito como

- . 1 ,
Loep = [y Db — mpp] — 7o Fuw F™, (B.0.16)

onde D, = 0, —igA, € o operador derivada covariante. E, pela definigéo, o
comutador entre D, e D, retorna os tensor eletromagnético £, que compde o
termo cinético
[Dy, D] = (0 — iqAL) (0, — igAy) — (0y — 1qAL) (O — 1qAy),
= —iqd, A, +iqd,A,, (B.0.17)
= —1qF),.
A situacao é bastante parecida para £,. Localmente também surgem gradi-
entes de a acoplados a ¢, deixando o lagrangiano invariante. A solucao aqui é a

mesma do caso anterior, resultando em
- - 1
L= D,¢pD"p +m?*p¢p — FFWFW. (B.0.18)
T

Chamada de eletrodindmica quéntica escalar, descreve a interagcao entre parti-

culas escalares carregadas e fétons.
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APENDICE C — GRUPO SU(3) E BASE DE GELL-MANN
O grupo das matrizes unitérias 3 x 3 de determinante 1 é o grupo SU(3).
Sendo imprescindivel para o estudo da QCD, neste apéndice serado obtidas as
matrizes geradoras do grupo, a base de Gell-Mann e algumas das suas repre-
sentacoes.

Seja ¢ uma matriz coluna complexa 3 x 1, com ¢' = (¢*)T e:
¢'q=1q)*=C (C.0.1)
onde C € R. Realiza-se uma transformacao do tipo:
q— ¢ = Rq (C.0.2)

Nessa transformagéo, R € uma matriz complexa 3 x 3. Assim:

(q/)Tq/ — ‘q/|2
(C.0.3)
= ¢'R'Rq
Para que |¢|?> = |¢|>, R'R = I, ou seja, Rt = R~!. Isso implica que R é uma

matriz unitaria, podendo ser reescrita como:
R =" (C.0.4)

onde X é uma matriz hermitiana 3 x 3, pois:
RIR = e7X'eiX = X=X — . (C.0.5)

O det(R) = 1 quando Tr(X) = 0. Essa relacao fica clara quando diagonalizamos
a matriz X,

X =VDV! (C.0.6)
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onde D é uma matriz diagonal. Assim,

det(R) = det(e"*) = det (eiVDV_l) = det

n!
(C.0.7)
= det (V) det (elD) det (V_l) = det (eZD) = H eiPii — iTr(D) _q
j=1
Portanto, Tr(D) = 0 = Tr(X) = 0. Sob essas condigoes,

el e +ied et +ied
X=1e—ie €8 48 | = XT, (C.0.8)

et —ie® € —ie® —et— €8

com oito parametros reais independentes ¢*,a = 1, ..., 8. Reescrevendo X como
a combinacao linear ¢*x, e possivel observar que X = 0 < ¢ = 0, i.e., as
matrizes y, constituem uma base para o conjunto de matrizes hermitianas 3 x
3 de traco nulo. Nao s6 isso, as condicoes para a matriz X sdao as mesmas
das matrizes do grupo SU(3), pois 0 numero de parametros livres € dado por
(n?* — 1) e com oito parametros livres, n = 3. Também é possivel observar que
qualquer combinacdo linear dessas matrizes resulta em uma matriz hermitiana

de traco nulo. Utilizando essas propriedades, vamos compor a base de Gell-
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Mann fazendo as seguintes alteracoes:

010 0 — 0
AM=x2=1[1 0 0f;2=—-x3=1|i 0 0];
0 00 0 0 0
001 00 —
A=xa= [0 0 0]:A==xs=10 0 0 |;
100 1 0 0
(C.0.9)
0 00 0 0 O
M=x7=10 0 1[;M==—xs=[0 0 —i];
010 0 7 0
1 0 0 . ' 10 0
AM=x1—Xx6=]0 —1 0 ;)\SIXI\/gX(j:ﬁ 01 0
0 0 0 00 —2

A matriz \g fica com essa fator de normalizacao \/Lg para atender a propriedade
Tr (AaXs) = 20am, a,b = 1,...,8. As matrizes de Gell-Mann obedecem a lei de

composicao

M Ml A
[?75] _Zfab02

ou (C.0.10)

Aa
[taa tb] = Z'fabctm ty = —

2 )
a constante de estrutura f,,. € um tensor totalmente antissimétrico que assume

os valores
f123 - 17

1
f147 - f246 = f257 - f345 - 57
(C.0.11)

| =

f156 - f367 -

)

l\D|§|w

f458 = f678 =
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Todas as outras combinagcdes comutam. Na convencdo das matrizes t,,

Sup

Tr(tatb) = 9 (0012)

A representacéo obtida com a matriz t, é chamada de representacao fundamen-

tal. Outra representacao € a antifundamental
[t:J,a gb] == ifabcﬂ; t:l - _ta*- (0013)

Na verdade, existem infinitas representagdes para o grupo SU(3), inclusive com
matrizes que ndo sao 3 x 3, uma vez que elas atendam a lei de composicéo
C.0.10. Uma dessas representacdes € a adjunta, formada por oito matrizes I,

8 x 8, dadas pela relagdo abaixo
I, = (=i fabe)be- (C.0.14)

Logo vemos que essas matrizes possuem trago nulo. Por exemplo, para a matriz

1, usando os valores em C.0.11, temos

o O

[

~
o O o O
o o O

I

(C.0.15)

o O O o o O
o O O o O

[ I

o O O O O o o O
o O O O O =

o O O O o O

(e STEN

S O O wls

o O O O

o O O O o o o o
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