

UFRRJ
INSTITUTO DE VETERINÁRIA
PROGRAMA DE PÓS-GRADUAÇÃO EM MEDICINA
VETERINÁRIA- PATOLOGIA E CIÊNCIAS CLÍNICAS

TESE

**SEASONAL VARIATION IN EQUINE FOLLICULAR
FLUID PROTEOME**

Gabriel Almeida Dutra

2020

**UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO
INSTITUTO DE VETERINÁRIA
PROGRAMA DE PÓS-GRADUAÇÃO EM MEDICINA VETERINÁRIA -
PATOLOGIA E CIÊNCIAS CLÍNICAS**

**SEASONAL VARIATION IN EQUINE FOLLICULAR FLUID
PROTEOME**

GABRIEL ALMEIDA DUTRA

*Sob Orientação do Professor
Júlio César Ferraz Jacob*

*E Coorientação dos Professores
Marco Roberto Bourg de Mello*

Tese submetida como requisito parcial
para obtenção do grau de **Doutor**, no
Programa de Pós-Graduação em
Medicina Veterinária - Patologia e
Ciências Clínicas, Área de Concentração
em Ciências Clínicas.

Seropédica, RJ
Fevereiro de 2020

Universidade Federal Rural do Rio de Janeiro
Biblioteca Central / Seção de Processamento Técnico

Ficha catalográfica elaborada
com os dados fornecidos pelo(a) autor(a)

D978s Dutra, Gabriel Almeida, 1988-
Seasonal variation in equine follicular fluid
proteome / Gabriel Almeida Dutra. - Volta Redonda,
2020.
30 f.: il.

Orientador: Júlio César Ferraz Jacob.
Coorientador: Marco Roberto Bourg de Mello.
Tese (Doutorado). -- Universidade Federal Rural do
Rio de Janeiro, Programa de Pós-Graduação em Medicina
veterinária - Patologia e Ciências Clínicas, 2020.

1. Ovarian follicle. 2. Seasonality. 3.
Proteomics. I. Jacob, Júlio César Ferraz, 1961-,
orient. II. Mello, Marco Roberto Bourg de, 1971-,
coorient. III Universidade Federal Rural do Rio de
Janeiro. Programa de Pós-Graduação em Medicina
veterinária - Patologia e Ciências Clínicas. IV. Título.

**UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO
INSTITUTO DE VETERINÁRIA
PROGRAMA DE PÓS-GRADUAÇÃO EM MEDICINA VETERINÁRIA**

GABRIEL ALMEIDA DUTRA

Tese submetida como requisito parcial para a obtenção do grau de **Doutor em Medicina Veterinária**, no Programa de Pós-graduação em Medicina Veterinária (Patologia e Ciências Clínicas), Área de Concentração em Ciências Clínicas.

TESE APROVADA EM 28/02/2020

Julio Cesar Ferraz Jacob. Dra. UFRRJ
(orientador)

Vera Lucia Teixeira de Jesus. Dra. UFRRJ

Carlos Luiz Massard. Dr. UFRRJ

Gustavo Mendes Gomes. Dr. UV

Cely Marinni Melo. Dra. UFMT

TERMO N° 541/2024 - PPGMV (12.28.01.00.00.00.00.51)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 15/07/2024 14:43)

CARLOS LUIZ MASSARD
PROFESSOR DO MAGISTERIO SUPERIOR
DeptPA (12.28.01.00.00.00.00.55)
Matricula: ####61#3

(Assinado digitalmente em 15/07/2024 14:43)

JULIO CESAR FERRAZ JACOB
PROFESSOR DO MAGISTERIO SUPERIOR
DeptRAA (12.28.01.00.00.00.00.64)
Matricula: ####023#9

(Assinado digitalmente em 12/07/2024 12:30)

VERA LUCIA TEIXEIRA DE JESUS
PROFESSOR DO MAGISTERIO SUPERIOR
DeptRAA (12.28.01.00.00.00.64)
Matricula: ####015#9

(Assinado digitalmente em 24/07/2024 08:56)

GUSTAVO MENDES GOMES
ASSINANTE EXTERNO
CPF: ####.###.937-##

(Assinado digitalmente em 12/07/2024 14:14)

CELY MARINI MELO E OÑA
ASSINANTE EXTERNO
CPF: ####.###.751-##

Visualize o documento original em <https://sipac.ufrrj.br/documentos/> informando seu número: 541, ano: 2024, tipo: TERMO, data de emissão: 12/07/2024 e o código de verificação: a741d55d74

DEDICATÓRIA

*Dedico esta tese ao meu filho Pietro,
pois só conhecemos o verdadeiro tamanho
do nosso coração e quanto amor cabe lá,
depois que temos filhos!*

AGRADECIMENTOS

Desafio tão grande quanto escrever esta Tese, foi utilizar somente duas páginas para agradecer as pessoas que fizeram parte desta minha trajetória.

É chegado ao fim de um ciclo de muitas risadas, felicidade, mas também de muita luta e frustrações, que no final me engrandeceu tanto pessoalmente quanto profissionalmente.

Inicio os agradecimentos por Deus pela força que colocou no meu coração para lutar até alcançar esta grande meta na minha vida.

À esta instituição tão imponente eu agradeço pelo ambiente propício à evolução e crescimento, bem como à todas as pessoas que a tornam assim tão especial para quem a conhece.

Ao longo de todo meu percurso eu tive o privilégio de trabalhar de perto com os melhores professores, educadores e orientadores. Sem eles não seria possível estar aqui hoje com o coração repleto de orgulho.

Em especial ao meu orientador e professor Dr. Júlio Jacob por todos os ensinamentos práticos e teóricos nestes últimos anos e pela confiança depositada em mim.

Ao professor Dr. Marco Mello por sempre me ajudar nos momentos de necessidade e por todo ensinamento sobre a reprodução bovina.

À professora Dra. Vera por toda ajuda, carinho e conselhos durante toda a minha jornada acadêmica.

Ao professor Ms. Trés por dividir suas experiências profissionais, assim como as agradáveis conversas nos intervalos de aula.

Ao Dr. Flamarion por ser um exemplo de professor, por toda ajuda na correção da minha dissertação e pelas palavras de carinho.

Ao Dr. Eduardo Gastal por me mostrar um outro lado da pesquisa que eu não conhecia.

Ao Dr. Jean Feugang pela confiança, ajuda e por tornar minha experiência na MSU muito mais agradável.

Ao meu amigo professor Dr. Ghassan por toda ajuda e aprendizado.

Aos funcionários da Área de Reprodução Animal: Zico, Zezinho, Reneu, Debaixo, Fofinho, Luíz, Peixeiro e aos funcionários do Setor de Equinos: Nori, Beto e Jorginho; por serem verdadeiros professores.

Aos amigos da reprodução por tornar os momentos de trabalho e estágio mais agradáveis e divertidos. Em especial: Marcus, Paulinha, Jonnatha, Marcela, Thereza, Dani, Cássia, Flavinha,

Thayse, Savinho, Sapo-Cego, Calabresa, Natália, Girino, Jader, Ananda, Mari, Diego e todos os outros pós graduandos e estagiários que passaram pelo setor.

Aos amigos da 2008-1 que foram um dos responsáveis pelo amor que sinto pela Rural. Em especial: Jorge, Daniel, DaniLove, Grillo, Thais e Paloma.

Aos amigos de Volta Redonda que de alguma forma também colaboraram para a minha formação e deixaram alguma lembrança.

À família Birigui que me ensinou a conviver em grupo. Em especial: Ane, Diogo, Pedro, Hugo e Janella.

Não poderia deixar de agradecer à minha família por serem meu pilar, por estarem ao meu lado e me fazer acreditar que tinha a força e as ferramentas necessárias para finalizar este trabalho.

Em especial;

Aos meus pais que amo incondicionalmente e que se entregaram por inteiro em minha criação, renunciando inúmeras vezes seus sonhos para a realização dos meus.

Ao meu irmão, “meu ídolo”, que sempre quando precisei estava ao meu lado.

À minha maninha que sempre protegerei e que amo tanto.

Aos meus avôs e avós que por diversas vezes iluminaram os meus caminhos com afeto e dedicação para que eu os trilhassem sem medo e cheio de esperança.

Aos meus tios e tias por me ajudarem nos momentos em que eu mais precisei.

À minha madrinha que guardo em um lugar especial em meu coração pois nunca se esqueceu de mim independente da distância.

Aos meus primos e primas que amo como irmãos.

À minha esposa, por abraçar meus sonhos e me ajudar nos momentos mais difíceis e acima de tudo, por ter me dado o presente mais lindo de todos, nosso tão amado Pietro. Te amo Alana!

À minha Tia Naná, que me pegou engatinhando na veterinária e me ensinou a andar sozinho para que eu me tornasse o profissional que sou hoje.

Por fim, gostaria de agradecer à Medicina Veterinária pois aquele sonho de infância se mostrou muito mais apaixonante do que eu poderia um dia ter imaginado.

Aooo Veterinária!!!! MUITO OBRIGADO!!!

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

RESUMO

DUTRA, Gabriel Almeida. **Variação Sazonal no Proteoma do Fluido Folicular Equino.** 2020. 30p. Tese (Doutorado em Medicina Veterinária). Instituto de Veterinária, Programa de Pós-Graduação em Medicina Veterinária - Patologia e Ciências Clínicas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.

A presente pesquisa investigou a influência sazonal no proteoma do fluido folicular (FF) em equinos, uma temática pouco explorada na pecuária. Utilizando a abordagem de proteômica em alta escala, foram coletados e analizados perfis proteômicos de FF de folículos dominantes durante a estação anovulatória de primavera (SAN), bem como nas estações ovulatórias de primavera (SOV), verão (SU) e outono (FO). O estudo visou identificar variações sazonais em proteínas relacionadas ao crescimento folicular e oocitário, bem como mapear redes regulatórias dependentes da estação e proteínas-chave associadas. Independentemente da estação, identificou-se um total de 90 proteínas no FF, distribuídas como 63, 72, 69 e 78 na SAN, SOV, SU e FO, respectivamente. Cinquenta e duas proteínas foram comuns a todas as estações, 13 foram exclusivas de uma estação específica, e 25 foram compartilhadas entre duas ou mais estações. A análise de interação proteína-proteína (PPI) indicou papéis críticos prováveis do plasminogênio na estação SAN, da combinação protrombina/plasminogênio na SU, e do plasminogênio/complemento C3 nas estações SOV e FO. A apolipoproteína A1 demonstrou ser crucial em todas as estações. Os resultados evidenciaram que o proteoma do FF na estação de verão (SU) difere das demais estações, caracterizando-se por uma maior fluidez (baixa viscosidade). Destaca-se que o equilíbrio entre os conteúdos de protrombina, plasminogênio e o fator XII da coagulação no FF, pode ser crucial durante o pico da estação ovulatória (SU) por favorecer a fluidez do FF, explicando a menor incidência reportada de folículos anovulatórios hemorrágicos durante essa estação.

Palavras-chave: Folículo ovariano, Sazonalidade, Proteômica.

ABSTRACT

DUTRA, Gabriel Almeida. **Seasonal variation in equine follicular fluid proteome.** 2020. 30p. Thesis (Doctorate in Veterinary Medicine). Instituto de Veterinária, Programa de Pós-Graduação em Medicina Veterinária - Patologia e Ciências Clínicas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.

Proteomic studies of follicular fluid (FF) exist for several species, including the horse; however, the seasonal influence on FF proteome has not been explored in livestock. The application of high-throughput proteomics of FF in horse has the potential to identify seasonal variations of proteins involved in follicle and oocyte growth. This study (i) profiles the proteomes of equine FF collected from dominant growing follicles during the spring anovulatory season (SAN), and spring (SOV), summer (SU), and fall (FO) ovulatory seasons; and (ii) identifies season-dependent regulatory networks and associated key proteins. Regardless of season, a total of 90 proteins were identified in FF, corresponding to 63, 72, 69, and 78 proteins detected in the SAN, SOV, SU, and FO seasons, respectively. Fifty-two proteins were common to all seasons, a total of 13 were unique to either season, and 25 were shared between two seasons or more. Protein-to-protein interaction (PPI) analysis indicated the likely critical roles of plasminogen in the SAN season, the prothrombin/plasminogen combination in SU, and plasminogen/complement C3 in both SOV and FO seasons. The apolipoprotein A1 appeared crucial in all seasons. The present findings show that FF proteome of SU differs from other seasons, with FF having high fluidity (low viscosity). Finally, the balance between the FF contents in prothrombin, plasminogen, and coagulation factor XII proteins favoring FF fluidity may be crucial at the peak of the ovulatory season (SU) and may explain the reported lower incidence of hemorrhagic anovulatory follicles during the SU season.

Keywords: Ovarian follicle, Seasonality, Proteomics.

SUMÁRIO

1	INTRODUCTION	1
2	LITERATURE REVIEW	2
2.1	Understanding The Advances In The Reproductive Physiology Of Mares ...	2
2.2	Seasonal Reproductive Activity In Mares	2
2.3	Folliculogenesis	3
2.4	Follicular Fluid	4
2.5	Proteomics	5
3	MATERIALS AND METHODS	6
3.1	Animals	6
3.2	Ultrasonographic Examination And Seasonal Groups	6
3.3	Follicular Fluid Collection	7
3.4	Electrophoresis Of Follicular-Fluid Proteins	7
3.5	Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis Of Follicular Fluid Proteins	7
3.6	Protein Identification And Bioinformatics Analyses	8
4	Results	8
4.1	Sample Preparation Prior To Proteomic Analysis	8
4.2	Total Proteins Identified	9
4.3	Functional Classification, Protein Enrichment, And Pathways Analyses	10
4.4	Comparison Between Reproductive Seasons	13
4.5	Protein-Protein Interaction (PPI) Network Analyses	14
5	Discussion	14
5.1	Follicular Fluid Proteins Isolation	14
5.2	Proteome Description	15
5.3	Proteins Specifics To Seasons	15
5.4	Functional Analyses	16
5.5	Protein And Pathway Enrichments	17
5.6	Protein-Protein Interaction (PPI) Network Analyses	17
6	CONCLUSION	19
7	REFERENCES	19

1 INTRODUCTION

Within the existing efforts to improve fertility in livestock and companion animals, a different knowledge is sought after to achieve a greater reproduction rate, especially for females. A lack of high-quality oocytes and reliable reproductive biomarkers (Revelli *et al.* 2009, Assidi *et al.* 2011) represents an obstacle toward the success. Meanwhile, the high dynamic in the composition of the follicular fluid (FF) during follicular growth (Fahiminiya & Gérard 2010, Ginther 2013) creates an opportunity for the identification of key molecules that are critical for oocyte developmental competence acquisition. Furthermore, the situation is even more challenging in horses, due to the obvious reproductive seasonality (Ginther 2013).

The ovarian activity of non-pregnant mares is continuously changing throughout the year, presenting periods of intense activity during summer, low activity during winter (deep anestrous phase), and irregular activity during spring and fall transitional seasons (Nagy *et al.* 2000, Ginther *et al.* 2004, Donadeu & Watson 2007). Results of previous studies have shown differences in preovulatory follicle diameter and blood flow (Ginther 1990, Gastal *et al.* 2007, Ishak *et al.* 2017), and hormonal concentrations among seasons (Gastal *et al.* 2007). Studying the effect of season on ovarian activity is important not only for better understanding of the follicular dynamics in mares but also for improving our knowledge regarding the follicular environment and biological processes associated with oocyte maturation and ovulation during different seasons of the year. Numerous reports have suggested the constant changes of the FF composition related to the physiological status of the growing follicle (Gastal *et al.* 1999, Bashir *et al.* 2016), the physiological and health conditions of the animal (Turco *et al.* 2013, Regiani *et al.* 2015, Zachut *et al.* 2016), and the reproductive seasonality variation (Yie *et al.* 1995, Ali *et al.* 2006). These changes can influence the quality of growing oocytes and their readiness for successful fertilization and subsequent embryo development (Brüssow *et al.* 2002, Algriany *et al.* 2004, Valckx *et al.* 2014). Moreover, investigating the seasonal variation of equine FF composition may help to better comprehend the mechanisms governing oocyte and follicle maturation, facilitating, therefore, assisted reproductive techniques.

High-throughput technologies (e.g., genomics, metabolomics, and proteomics) allow for in-depth investigations of complex samples such as FF, with potential for new biomarker discoveries, or strategies for intrafollicular treatment. Large-scale proteomics approaches (gel-based and gel-free) were applied to either profile or compare global proteomes of FF in cows (Fu *et al.* 2016, Ferrazza *et al.* 2017), humans (Chen *et al.* 2016, Oh *et al.* 2017), pigs (Bijtebier *et al.* 2009, Ducolomb *et al.* 2013), dogs (Fahiminiya *et al.* 2010), and horses (Fahiminiya *et al.* 2011). Currently, the knowledge regarding equine FF proteome is deficient, and its relationship with fertility in mares is still unknown. Furthermore, the relationship of the equine FF dynamics composition with the reproductive seasonality in horses remains to be determined (Ginther 2013).

The aims of the present study were to (i) use the shotgun (gel-free) approach to evaluate the proteome profiles of equine FF collected from ovarian follicles (30-34 mm in diameter) at different seasons of the year (spring anovulatory or SAN, spring ovulatory or SOV, summer or SU, and fall ovulatory or FO); and (ii) apply comparative bioinformatics analyses to identify potential regulatory network differences.

2 LITERATURE REVIEW

2.1 Understanding The Advances In The Reproductive Physiology Of Mares

Scientific interest in equine follicles began almost 100 years ago (Seaborne 1925), however, detailed studies on the follicular dynamics of mares did not begin until 50 years later, under the pioneering leadership of OJ Ginther at the University of Wisconsin (Ginther 1979). During the early 1980s, transrectal ultrasound became available for the study of equine reproduction (Palmer & Driancourt 1980). Transrectal ultrasound combined with systemic hormonal analyzes were used to understand the follicular dynamics of mares. Later (mid-1990s), with the beginning of ultrasound-guided transvaginal puncture technique, scientists were given unprecedented access to the equine ovary *in vivo*, which allowed the harvesting of follicular structures, follicular fluid, injection of substances and experimental manipulation of follicles (Gastal *et al.* 1997, Gerard & Monget 1998, Donadeu & Ginther 2001, Martoriat *et al.* 2003). Experimental use of these procedures has led to extraordinary advances in knowledge of equine ovarian physiology over the past 20 years (Beg & Ginther 2006, Donadeu & Watson 2007), providing a greater understanding of follicular physiology, not only in mares but in many others monovulatory species.

Lately, the mare has been considered a significant research model for follicle studies because of miscellaneous similarities with women in regard to hormonal changes and follicle dynamics during the interovulatory interval (Ginther *et al.* 2004) and the ultrasonographic changes of the preovulatory follicle before ovulation (Martinuk *et al.* 1992, Gastal *et al.* 2006). Consequently, this has provided encouragement for the use of the mare as a pertinent animal experimental model for the study of folliculogenesis and reproductive aging in women (Carnevale 2008, Ginther *et al.* 2008).

2.2 Seasonal Reproductive Activity In Mares

In mares the growth and continuous development of dominant follicles up to the preovulatory stage (POF) are influenced by seasonal variations. The annual reproductive cycle in horses is characterized by an anovulatory season (minimum follicular activity, winter) during short days and an ovulatory season (maximum follicular activity, summer) during long days (Turner *et al.* 1979) and a irregular activity during spring and fall transitional seasons (Nagy *et al.* 2000, Ginther *et al.* 2004, Donadeu & Watson 2007). Donadeu and Ginther (2002) determined two distinct periods of follicular activity during the second half of the anovulatory season: the mid-anovulatory and transitional periods. Follicular waves were observed during transitional and mid-anovulatory periods, demonstrating a higher follicular activity during the transitional period when compared to the average in the mid-anovulatory period.

Studies have shown that follicular waves during second half of the anovulatory season were stimulated by FSH surges. The characteristics of the FSH surges were similar between the middle and transitional periods of the anovulatory season, regardless of the greater follicular activity of the transition period. Ginther (1992) demonstrated that circulating FSH concentrations are regulated by an interaction of season and the ovaries. During the middle of the anovulatory season, circulating FSH concentrations are inhibited by the short photoperiod. While in the ovulatory season, FSH is stimulated by the long photoperiod and rhythmically inhibited by the ovaries. Seasonal effects on circulating

FSH are mediated by changes in GnRH secretion, and ovarian negative effects on FSH are mediated by the follicular products, oestradiol and inhibin. Follicular production of oestradiol is reduced during the anovulatory season and an increase in production and secretion of oestradiol does not occur until the late transition (Donadeu & Ginther 2002, Sharp *et al.* 1991, Peltier *et al.* 1998, Watson *et al.* 2002). Circulating concentrations of immunoreactive or total inhibin (Donadeu & Ginther 2002) and inhibin-A and free - subunit forms (Watson *et al.* 2002) are low during the middle of the anovulatory season and increase during the transitional period in association with an increase in follicular activity.

Regarding the variation in circulating LH concentrations during different seasons, low levels are already demonstrated during the second half of the anovulatory season and increase only for several days before the first ovulation (Ginther 1992). A mild increase in mean circulating LH concentrations (Donadeu & Ginther, 2002) and an increase in circulating LH pulse frequency (Fitzgerald *et al.* 1987, Alexander & Irvine 1991) happens throughout the second half of the anovulatory season. Circulating concentrations of LH are like to those ovariectomized and ovaryintact mares during the anovulatory season (Freedman *et al.* 1979). Sharp *et al.* (2001) concluded that large follicles at the end of the anovulatory season are involved in increasing circulating LH prior to the first ovulation of the year by increasing estradiol production.

Despite all the data mentioned above and many others studies that were conducted to understand the behavior of follicular dynamics, seasonal variations in ovarian function are not limited to the ones forementioned, but also include follicular environment. Nonetheless, there is still an absence of knowledge regarding the follicular environment during different seasons of the year. Numerous reports have suggested the constant changes of the FF composition related to the physiological status of the growing follicle (Gastal *et al.* 1999, Arashiro *et al.* 2013, Bashir *et al.* 2016), the physiological and health conditions of the animal (Regiani *et al.* 2015, Turco *et al.* 2013, Zachut *et al.* 2016), and the reproductive seasonality variation (Ali *et al.* 2006, Yie *et al.* 1995). These changes may influence the quality of growing oocytes and their readiness to successful fertilization following ovulation. Understanding equine FF composition in relation to the seasonal variation may help us better comprehend the mechanisms governing oocyte maturation and allow development of new technological approaches to control the reproductive function of females regarding the season.

2.3 Folliculogenesis

Folliculogenesis is a complex biological process which is laborious to analyse due to its dynamic nature, the involvement of different types of cells and their interactions (Bonnet *et al.* 2008). The development and growth of follicles requires a series of coordinated events that induce functional and morphological changes within the follicle, leading to cell differentiation and oocyte development. Follicle recruitment and selection processes are sequential and under endocrine and paracrine regulation, culminating in the development of several ovulatory follicles that are dependent on species and breed (Hunter *et al.* 2004). Furthermore, only a few number of follicles (less than 1%) will ovulate, while the majority undergoes a degenerative process known as atresia. The outcome of follicles during follicular growth is determined by the harmony between different processes (proliferation/differentiation/atresia). In this case, the challenge for researchers is to identify the variations associated to each of these processes and the modifications in the pathways that will determine the fate of follicles (Bonnet *et al.* 2008).

Through out their dynamics growth, the compartments of a follicle will evolve from the recruitment stage to reach an ovulatory follicle composed of three very distinct

compartments: granulosa cells, theca cells and the oocyte. Also, we can categorize sub cellular populations such as the internal and external theca cells and the cumulus granulosa and mural granulosa cells (Fortune *et al.* 1994). The follicular environment is also regulated by intra and extra-ovarian interactions, which adds another level of complexity to this system. The pituitary gonadotrophins, FSH and LH, contributes to primary mechanisms that regulate selection and dominance via feedbacks with the hypothalamo-pituitary unit. FSH is the major hormone controlling follicular growth in many species, meanwhile, its secretion is controlled via the main secretory products of a large dominant follicle(s), oestradiol and inhibin A (Hunter *et al.* 2004).

Within the ovary, cellular interactions between the compartments are essential on the one hand to control the proliferation and differentiation of the follicular cells, and on the other hand to allow oocyte growth and final differentiation. The synergy among theca and granulosa cells is necessary for oestrogen biosynthesis (Richards *et al.* 2002, Hunter *et al.* 2004). Under influence of FSH and LH, theca cells produce androgens that are used by the granulosa cells to synthesize oestrogens, which in turn protect the dominant follicle(s) from atresia. Intercellular communication between oocytes and granulosa cells occurs via paracrine signalling and gap junctional exchange of small regulatory molecules. The oocyte secretes soluble paracrine factors that act on its neighbouring granulosa cells, which in turn regulate oocyte development in a bi-directional communication axis (Gilchrist *et al.* 2004). Furthermore, interfollicular relationships affect the number of ovulatory follicles. (Hunter *et al.* 1992). As soon as the transcriptome from distinct compartments will be characterised, the regulation of genes coding for secreted proteins should be combined with proteomic analysis of the FF in order to provide a comprehensive data for the understanding of the interactions involved in folliculogenesis.

2.4 Follicular Fluid

The ovarian FF accumulates into the follicle antrum starting with the early stage of follicle development during folliculogenesis and contains a variety of proteins that play important roles in follicle development and oocyte maturation (Gosden *et al.* 1988). The FF results from the transfer of blood plasma components and the secretory activity of the oocyte, granulosa and theca cells. It contains hundreds of different proteins that reflect the degree of follicle maturation and the stage of oocyte development (Appasamy *et al.* 2008, Hanrieder *et al.* 2008, Von Wald *et al.* 2010). Various studies explained the presence of steroids and gonadotropins in the FF as biomarkers for oocyte maturation (Fahiminiya *et al.* 2010, Mason *et al.* 1994, Revelli *et al.* 2010). This microenvironment may be altered by many conditions and it has been previously shown that altered FF composition is associated with diminished reproductive capacity (Ito *et al.* 2010, Wu *et al.* 2012). Consequently, proteome analysis of FF might be helpful in evaluating oocyte quality and identifying predictive markers for follicle health, oocyte developmental potential prior to fertilization and the success in assisted reproductive technology (Iwase *et al.* 2013, Malizia *et al.* 2010, Von Wald *et al.* 2010).

Two-dimensional electrophoresis (2-DE) was used for the first time, to compare protein patterns of mature and immature human follicles (Spitzer *et al.* 2010). The first attempts to elucidate the FF proteome led to the detection of new proteins, including thioredoxin peroxidase 1 (TDPX1), transthyretin (TTR), retinol-binding protein (RBP) (Anahory *et al.* 2002), hormone sensitive lipase (HSL), unnamed protein product 1 (UPP1), unnamed protein product 2 (UPP2) and apolipoprotein A-IV precursor (Lee *et al.* 2002). Thereafter, Angelucci *et al.* (2006) identified many proteins, mainly acute

phase proteins and several proteins with antioxidant properties. Furthermore, authors used proteomic approach to study FF from women undergoing successful in vitro fertilization. They showed that proteins involved in the complement cascade may be associated with follicle/oocyte maturation (Jarkovska *et al.* 2010).

Proteomic analyses were also performed on FF of many domestic animals (bovine, porcine, canine, caprine, ovine and equine) (Fahiminiya *et al* 2010, Fahiminiya *et al.* 2011, Miao *et al.* 2016, Oh *et al.* 2017, Paula *et al* 2018, Zachut *et al.* 2016). The ovarian physiology of the mare, compared to other monovulatory species, exhibits some uncommon features (Irvine *et al.* 1994, Whitmore *et al.* 1973). Moreover, investigations on the protein content of equine FF may provide useful information about the mechanisms underlying oocyte maturation and follicular development, and may lead to improvements in culture conditions and eventual success of assisted reproduction in this species.

2.5 Proteomics

After genomics and transcriptomics, proteomics is the next step in the study of biological systems. Proteomics is one of the most significant methodology to comprehend the gene function and it is much more complex compared with genomic (Lander 2001). Genome is a constant feature of an organism, whereas proteomes varies with nature of the tissue, the state of development, health or disease and effect of drug treatment (Pandey & Mann 2000). The word proteome is actually a combination of protein and genome and was composed by Mark Wilkins in mid-1990s. To be specific, proteome is the entire database or complement or set of proteins produced by a living organism (Chandramouli & Qian 2009, Wilkins 1996).

The improvement of proteomics has been fomented by the development of new technologies for peptide/protein separation, mass spectrometry analysis, isotope labeling quantification and bioinformatics data analysis. Mass spectrometry has emerged as a main tool for largescale protein analysis. In the last decade, there has been a fast progress in the sensitivity, resolution, mass accuracy and scan rate of mass spectrometers used to analyze proteins (Zhang *et al.* 2013). The main method to study the proteome of an organism, organ, tissue or cell is by separating the proteins on two dimensional polyacrylamide gel electroforesis (2D-GE) and identifying the separated proteins by mass spectrometry (Steel *et al.* 2005). Nevertheless, due to some considerable limitations, 2D-GE fails to obtain all proteins in a complex sample. A classic 2D-GE gel can visualise only 30-50% of the entire proteome, especially when samples presents proteins in extremely low concentrations or proteins that cannot be separated on a 2D-GE gel due to their physicochemical properties (Gygi *et al.* 2000). To overcome some of these challenges, several gel-free high throughput technologies for proteome analysis have been developed, such as shotgun (or bottom-up) proteomics techniques (Wu & Yates 2003), which combines the high separation efficiency of multidimensional chromatography with the powerfull peptide identification capacity of electrospray ionisation (ESI) tandem mass spectrometry (Washburn *et al.* 2001). Instead of using 2D-PAGE, these methods use multi-dimensional capillary liquid chromatography coupled to tandem mass spectrometry to separate and identify the peptides acquired from the enzymatic digest of an entire protein extract (Baggerman *et al.* 2005). Summarily, it is important to realize that in this method it is not the protein itself which is separated and identified. Instead, proteins are cleaved into peptides using proteolytic enzymes and subsequently, separated and subjected to tandem mass spectrometric analysis. Mass spectrometric identification of peptides allows the determination of the protein content of

the initial sample, since peptides can be easily separated by liquid chromatography (Baggerman *et al.* 2005).

In pursuit of comprehensive proteomic investigations, a multifaceted approach is imperative, involving three principal steps. The initial phase entails analytical protein separation, wherein techniques such as one-dimensional (1-D) and predominantly two-dimensional (2-D) electrophoresis are deployed for the resolution of protein mixtures. Notably, optimal results hinge upon judicious protein extraction procedures (Dowsey *et al.* 2003, O'Farrell 2008). Simultaneously, high-performance liquid chromatography (HPLC), affinity chromatography, and capillary electrophoresis, along with multidimensional techniques like MudPIT, emerge as pivotal tools in analytical proteomics (Schirmer *et al.* 2003). The subsequent step integrates mass spectrometry (MS), instrumental in identifying isolates predicated on isoelectric point (IP) and molecular mass. The MS instrumentation, with methods such as matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), has evolved into a robust tool for accurate mass measurements of proteins and peptides. The final phase of identification involves aligning MS spectra with specialized databases through software tools like MASCOT, SEQUEST, and X!Tandem (Craig & Beavis 2004, Perkins *et al.* 1999, Yates *et al.* 1995). This systematic approach, encompassing various methodologies, embraces both bottom-up and top-down proteomic techniques, thereby elucidating the intricacies of complex biological samples and advancing our understanding of protein interactions and functions (Cortezzi *et al.* 2011).

3 MATERIALS AND METHODS

3.1 Animals

Seventeen Quarter horse mares, 8 to 14 years old and weighing 400 to 600 kg, were housed on pasture in the northern hemisphere ($37^{\circ} 42' 37.53''$ N, $89^{\circ} 13' 9.50''$ W), under natural light conditions, with free access to fresh water and trace-mineralized salt. Animals were handled in accordance with the US Government Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training (<https://grants.nih.gov/grants/olaw/references/phspol.htm> #US GovPrinciples). This study was approved by the Institutional Animal Care and Use Committee (IACUC) of Southern Illinois University.

3.2 Ultrasonographic Examination And Seasonal Groups

Follicular fluids were collected from dominant growing follicles during March (SAN season), April and May (SOV season), June and July (SU season), and September (FO season) of the same year. In all seasons, follicles ≥ 6 mm in diameter were ablated, as previously described (Gastal *et al.* 1997), to induce a new follicular wave, allowing, therefore, proper tracking of growing/healthy follicles. During the SAN season, after follicle ablation, follicles of the new induced wave were daily tracked using an ultrasound machine (Aloka SSD-900; Aloka Co, Ltd, Wallingford, CT, USA) equipped with a multi-frequency 5-10 MHz linear array transducer (Aloka UST-5821-7.5). Samples of FF ($n = 6$ follicles) were collected when the follicles reached 30-34 mm in diameter. During SOV, SU, and FO, mares were monitored daily with ultrasonography until ovulation; thereafter, follicle ablation was performed on day 10-12 after ovulation (day 0 = ovulation) and follicle tracking of the new induced wave was performed daily to collect FF when a

dominant follicle reached 30-34 mm in diameter. Samples of FF were aspirated during SOV, SU, and FO seasons (n = 6, 6, and 12 follicles, respectively). In all seasons, the presence of uterine edema (estrus-like) and the absence of a corpus luteum detected through ultrasonography at the moment of FF collection did qualify the animal for the procedure.

3.3 Follicular Fluid Collection

Samples of FF were collected using transvaginal ultrasound-guided follicle aspiration as recently reported (Ishak *et al.* 2018). Samples were immediately centrifuged at 1600 x g (10 min at 4 °C), followed by a second centrifugation at 3200 x g (15 min at 4 °C) of resulting supernatants. Only clear FF samples, without any visible trace of blood contamination (presence of red blood cells) were stored at – 80 °C until analyses.

3.4 Electrophoresis Of Follicular-Fluid Proteins

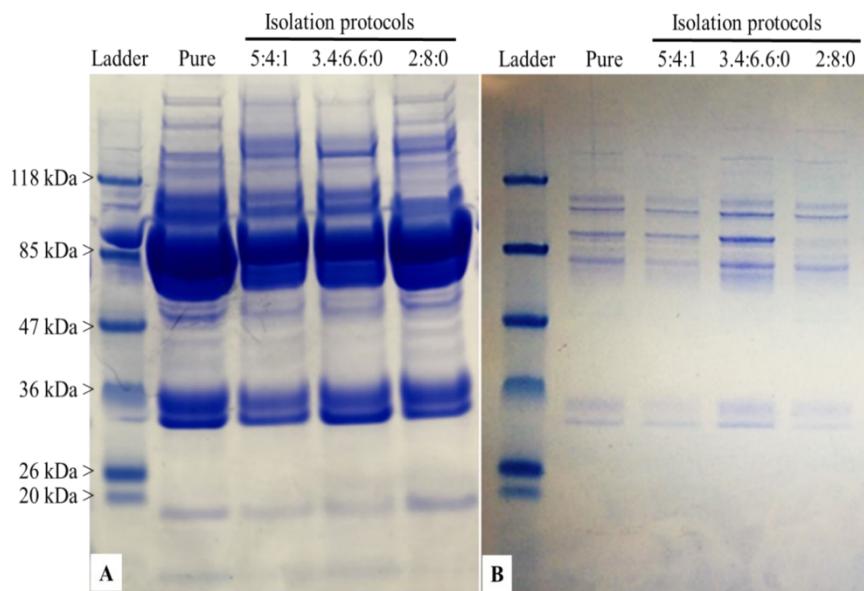
Optimal isolation of frozen-thawed equine FF proteins was tested through various equine FF:Acetone:Trichloroacetic Acid (TCA) mixture ratios (5:4:1, 1:4:0, and 1.7:3.3:0). Mixtures were incubated (overnight, –20°C), centrifuged (9,500 g, 10 min, 4°C), and supernatants were discarded. Cold acetone (1 ml, kept at –20°C) was added to each pellet and sample mixtures were vortexed (20 min), centrifuged (9,500 g, 10 min, 4°C), and resulting supernatants (acetone) were discarded. After three repetitions, pellets were dried under the fume hood and resuspended in the nanopure water. All protein samples were subjected to albumin depletion according to the manufacturer's instruction (ProteoExtract Albumin removal kit; Calbiochem EMD Biosciences, Darmstadt, Germany). Depleted protein samples were mixed with acetone in a 1:4 ratio (v/v - FF:Acetone), precipitated overnight at 4°C, and washed twice with acetone by successive centrifugations (9,500 g, 10 min, 4°C). Final protein samples were quantified (NanoDrop spectrophotometer; Thermo Scientific, Grand Island, NY, USA) and aliquots of each sample were mixed with sample buffer and loaded into wells of a 4-12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Gels were run as previously described (Feugang *et al.* 2011), followed by staining with Coomassie blue R-250 reagent to visualize the protein bands.

3.5 Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis Of Follicular-Fluid Proteins

Extracted FF proteins of each mare were determined (NanoDrop spectrophotometer, ThermoFisher Scientific) and equal amounts of proteins of two to four mares were pooled for each season (SAN, SOV, SU, and FO). For proteomic analyses, three independent pools (100 µg protein each) were constituted for each season. Pooled samples were precipitated overnight with 100% acetone (1:5 ratio), washed two times with 100% acetone, air-dried, and stored at –20°C. Prior to in-solution digestion, protein precipitates were dissolved in 100 µl of 100 mM ammonium/5% acetonitrile, reduced with 1/10 volume of 100 mM dithiothreitol (DTT) for 15 min at 65°C, and alkylated with 1/10 volume of 10 mM iodoacetamide (IAA) for 30 min at room temperature in dark. Digestion was carried out with Trypsin/Lys-C Mix (Promega, Madison, WI) at 37°C overnight. Samples were freeze-dried and protein tryptic digest was resuspended in 0.1% (v/v) formic acid, 2.0% (v/v) acetonitrile. Aliquots of peptides representing two micrograms of protein were subjected to LC-MS analysis as described previously (Takáč

et al. 2016). Briefly, peptides were separated using Ultimate 3000 HPLC system and reversed phase C18, 75 μ m x 150 mm column (both Thermo Fisher Scientific), via 170 min long, nonlinear, constant flow (0.3 μ l/ml) gradient of acetonitrile (in 0.1% formic acid) as follows: 2-55% for 125 min, 95% for 15 min, 2% for 30 min. Raw mass spectral data were collected by LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher Scientific) working in the result dependent acquisition (RDA) mode of 18 scan events: one MS scan (m/z range: 300-1700) followed by 17 MSMS scans for the 17 most intense ions detected in MS scan, with dynamics exclusion allowed.

3.6 Protein Identification And Bioinformatics Analyses


The raw files were searched using the SEQUEST algorithm of the Proteome Discoverer 1.1.0 software (Thermo Fisher Scientific) as described previously (Takáč *et al.* 2017). Variable modifications were considered as follows: cysteine carbamidomethylation (+57.021), methionine oxidation (+15.995), methionine dioxidation (+31.990). The spectral data were matched against target and decoy databases to allow for calculation of false discovery rates (FDR). The NCBI (www.ncbi.nlm.nih.gov) *Equus caballus* taxonomy referenced protein database (36,108 entries as of August 2017) served as the target database, while its reversed copy (created automatically by the software) served as a decoy database. The search results were filtered by FDR <1% for high-confidence protein identification. Proteins were functionally annotated (Gene ontology or GO, Enrichment, KEGG pathway, and protein-protein interactions) using the online tools of Agbase (www.agbase.msstate.edu), DAVID (Database for Annotation, Visualization and Integrated Discovery; DAVID Bioinformatics Resources 6.8; <https://david.ncifcrf.gov/>), and STRING (www.string-db.org) using the default settings.

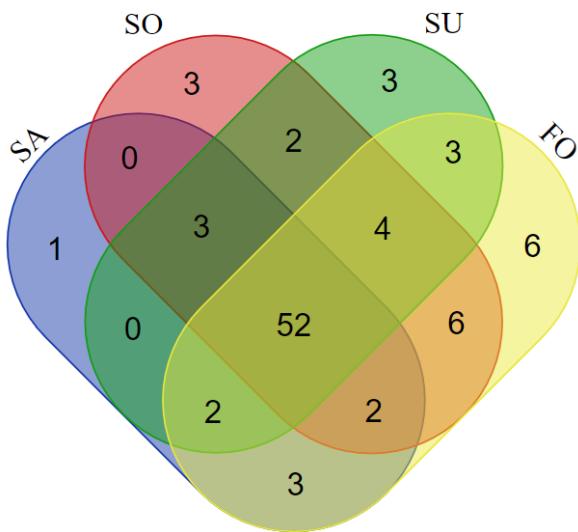
4 RESULTS

4.1 Sample Preparation Prior To Proteomic Analysis

The protein concentrations of pure FF derived from all seasons (SAN, SOV, SU, and FO) averaged 39.2 ± 0.4 , 38 ± 0.3 , 38.3 ± 0.4 , and 39 ± 0.4 μ g/ μ l, respectively. The use of pure FF samples (33.2 ± 0.4 μ g/ μ l) for protein precipitation tests (in 5:4:1, 1.7:3.3:0, and 1:4:0 solvent ratios) resulted in decreased protein concentrations (5.8 ± 0.1 , 7.9 ± 0.2 , and 22.8 ± 0.4 μ g/ μ l, respectively), while the additional albumin depletion procedure led to lesser protein concentrations in all tested FF groups (0.1 ± 0.01 , 0.14 ± 0.01 , and 0.41 ± 0.02 μ g/ μ l for 5:4:1, 1.7:3.3:0, and 1:4:0 solvent ratios, respectively). Representative electrophoresis gels of both precipitated (Figure 1A) and precipitated/depleted proteins (Figure 1B) indicate comparable protein profiles across samples.

Although the depletion of pure FF samples (33.2 ± 0.4 μ g/ μ l) produced lower protein concentrations (0.59 ± 0.2 μ g/ μ l), the recovery rate and gel electrophoresis protein profiles were satisfactory for further proteomic analysis.

Figure 1. Follicular fluid (FF) protein isolation through combined precipitation and depletion approach. Representative gel electrophoresis of equine FF submitted to four different Acetone-TCA-based protein precipitation protocols (A), followed by albumin depletion (B) are shown. Gels were stained with Coomassie blue to visualize the protein bands, showing decreased protein amounts following both precipitation and depletion. Utilization of pure FF revealed higher protein recovery following depletion. Extraction protocols (5:4:1, 3.4:6.6:0, and 2:8:0) corresponded to FF:Acetone:TCA, respectively.


4.2 Total Proteins Identified

All identified proteins are summarized (Table 1). The totals of 63, 72, 69, and 78 proteins were identified with high confidence (FDR <1%) in SAN, SOV, SU, and FO samples, respectively. Approximately 87% of proteins were annotated with the NCBI-non redundant database, and 13% with ENSEMBL.

Table 1. Seasonal variation of equine follicular fluid proteome.

Reproductive seasons	N	Number of detected proteins		
		NCBI annotated (%)		ENSEMBL annotated (%)
		Partially	Fully	
Spring anovulatory (SA)	63	42 (66.7)	12 (19.0)	9 (14.3)
Spring ovulatory (SO)	72	48 (66.7)	14 (19.4)	10 (13.9)
Summer (SU)	69	47 (68.1)	13 (18.8)	9 (13.0)
Fall ovulatory (FO)	78	49 (62.8)	18 (23.1)	11 (14.1)

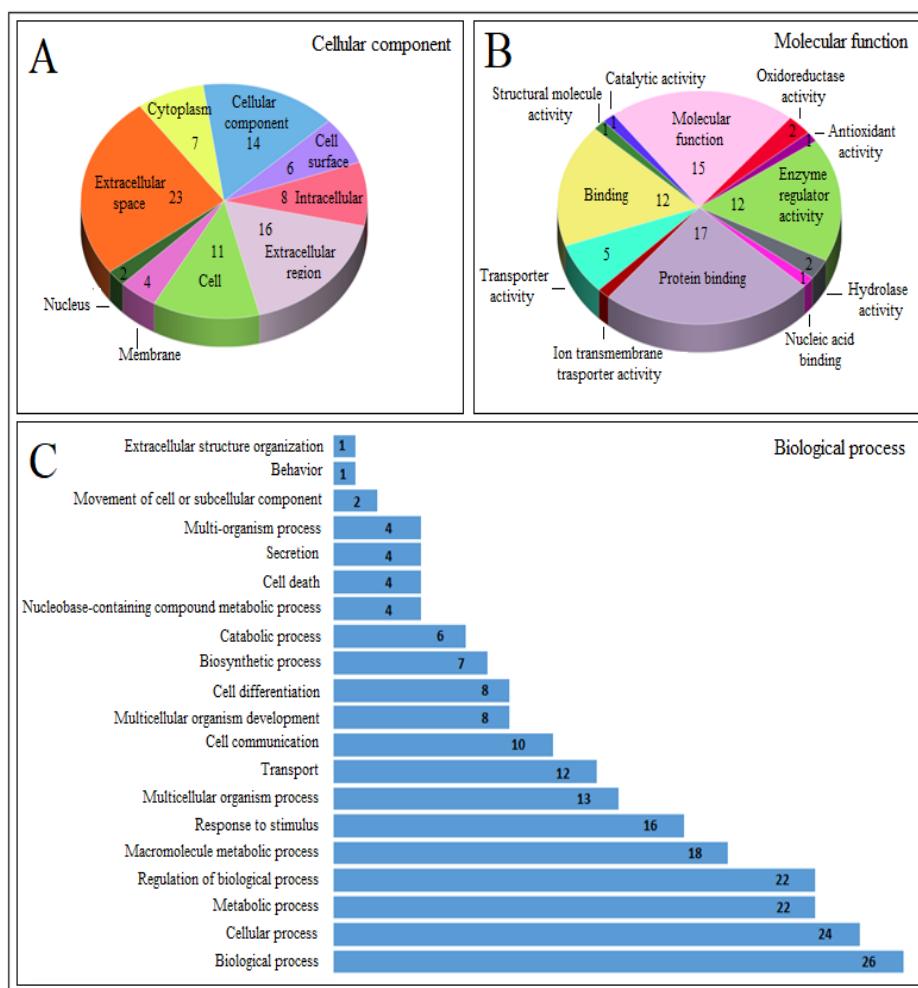
The Venn diagram (<http://bioinformatics.psb.ugent.be/webtools/Venn/>) indicates 52 proteins shared across all seasons, 25 proteins detected in two or three different seasons, and 13 unique proteins identified in a specific season (one for SAN, three for SOV, three for SU, and six for FO; Figure 2). Overall, a total of 90 proteins were detected in the FF samples across all seasons. Proteins found in each intersection of the Venn diagram are listed in a textual output (Table 2).

Figure 2. Venn diagram representation of proteins identified in equine follicular fluid of spring anovulatory (SA), spring ovulatory (SO), summer (SU) and fall ovulatory (FO) seasons.

Table 2. Equine follicular fluid proteins distribution across four reproductive seasons.

Reproductive seasons	Nº of unique proteins	NCBI/ENSEMBL accession Nº
SA/SO/SU/FO	52	ENSECAP0000007499 XP_001498388 XP_001489154 XP_003365492 XP_001504386 XP_014588282 XP_001502426 NP_001075422 XP_014596181 XP_003363176 XP_001500552 NP_001075379 XP_005605480 XP_005601929 XP_005602671 XP_001499389 XP_005611649 XP_005612174 NP_001304178 ENSECAP00000010483 XP_014594947 XP_001488384 XP_014593946 XP_005600608 XP_001497860 NP_001075415 XP_001916967 XP_001492943 NP_001075972 XP_001499173 XP_001502503 XP_001496277 XP_001492602 ENSECAP00000017379 NP_001075413 ENSECAP00000012479 ENSECAP00000014609 ENSECAP00000012399 XP_001915589 XP_001489797 XP_001503846 XP_003364583 XP_001490892 ENSECAP00000013972 XP_001914833 XP_014585351 XP_001492576 XP_001489400 XP_001495232 XP_014593950 ENSECAP00000009723 XP_001504173
SA/SO/SU	3	NP_001333128 XP_001488181 XP_001488234
SA/SO/FO	2	NP_001075419 NP_001093235
SA/SU/FO	2	XP_005607860 XP_014593981
SO/SU/FO	4	ENSECAP00000018005 NP_001137426 NP_001075389 XP_001501882
SA/FO	3	NP_001333146 NP_001333133 ENSECAP00000017139
SO/SU	2	NP_001333066 XP_005605484
SO/FO	6	XP_014591249 NP_001075249 XP_005601424 XP_001491754 XP_001493453 NP_001075420
SU/FO	3	NP_001075378 XP_001496318 NP_001108005
AS	1	NP_001333005
SO	3	XP_001504484 XP_001504447 ENSECAP00000013036
SU	3	XP_005599640 XP_005605481 NP_001271464 XP_001917127
FO	6	ENSECAP00000012950 NP_001157490 XP_001499312 NP_001108630 XP_01492582 XP_014592983

There were no shared proteins among the following groups: SA/SO and SA/SU. SA = spring anovulatory; SO = spring ovulatory; SU = summer; FO = fall ovulatory.


4.3 Functional Classification, Protein Enrichment, And Pathways Analyses

For functional classification, GO annotation was available for 88.5 to 91.7% of identified proteins across the season datasets. Proteins were classified into three GO

categories as cellular components (CC), molecular functions (MF), and biological processes (BP). Regardless of season, proteins were distributed within 9-10, 12, and 20 GO terms associated with CC, MF, and BP, respectively. The functional categorization of shared proteins and the observed quantitative variations in GO terms constituting each functional category are shown (Figure 3).

Irrespective of the season, GO terms associated with extracellular components (space, region, cell surface, membrane, and proteinaceous) represented approximately 54% of the total annotations within the CC category (Table 3). These specific GO terms were 6x to 9x enriched ($P<10^{-5}$, FDR <0.01). Other GO names such as “blood microparticle” and “fibrinogen complex” were significantly enriched ($>104x$; $P<10^{-4}$, FDR <0.01) in our datasets.

Similarly, the GO terms associated with binding (binding, protein, and nucleic acid) were highly represented (~49%) within the MF category (Table 4), and only the “serine-type endopeptidase inhibitor activity” GO term revealed significant enrichment across all seasons (46-63x; $P<10^{-16}$, FDR <0.01). Nonetheless, several GO terms associated with binding (e.g., heparin, cholesterol, phosphatidylcholine, and copper ion) and enzymatic activity (e.g., cholesterol transporter, phosphatidylcholine-sterol O-acyltransferase activator, structural molecule, cysteine-type endopeptidase inhibitor) were significantly enriched ($>6x$; $P<0.05$), but with higher FDR (>0.01).

Figure 3. Functional annotation of FF proteome. The distribution of total protein per gene ontology (GO) terms in the Cellular component (A), Molecular function (B), and Biological process (C) categories.

As for the BP category across seasons, approximately 70, 8, 5, and 4% of total annotations were respectively associated with “processes”, “response to stimulus”, “transport”, and “cell communication” (Table 5). Meanwhile, the “acute-phase response”, “fibrinolysis”, and “positive regulation of cholesterol esterification” GO terms were significantly enriched in all seasonal samples ($>62x$; $P<10^{-3}$, FDR <0.01) and the “blood coagulation” GO term was substantially enriched in the SU samples only ($36x$; $P<10^{-3}$; FDR <0.01).

Table 3. Cellular component of equine follicular fluid proteins across four different reproductive seasons.

GO terms / GO names	Reproductive seasons				
	SA n (%)	SO n (%)	SU n (%)	FO n (%)	Shared n (%)
GO:0005615 / Extracellular space	25 (24.0)	29 (23.8)	29 (26.9)	32 (25.4)	23 (25.3)
GO:0005575 / Cellular component	17 (16.3)	21 (17.2)	18 (16.7)	22 (17.5)	14 (15.4)
GO:0005576 / Extracellular region	17 (16.3)	19 (15.6)	19 (17.6)	21 (16.7)	16 (17.6)
GO:0005623 / Cell	14 (13.5)	17 (13.9)	13 (12.0)	16 (12.7)	11 (12.1)
GO:0005622 / Intracellular	9 (8.7)	12 (9.8)	10 (9.3)	11 (8.7)	8 (8.8)
GO:0005737 / Cytoplasm	7 (6.7)	8 (6.6)	7 (6.5)	8 (6.3)	7 (7.7)
GO:0009986 / Cell surface	6 (5.8)	6 (4.9)	6 (5.6)	6 (4.8)	6 (6.6)
GO:0016020 / Membrane	6 (5.8)	6 (4.9)	4 (3.7)	6 (4.8)	4 (4.4)
GO:0005634 / Nucleus	3 (2.9)	3 (2.5)	2 (1.9)	3 (2.4)	2 (2.2)
GO:0005578 / Proteinaceous extracellular matrix	-----	1 (0.8)	-----	1 (0.8)	-----
Total annotations	104 (100)	122 (100)	108 (100)	126 (100)	91 (100)

SA = spring anovulatory; SO = spring ovulatory; SU = summer; FO = fall ovulatory.

Table 4. Molecular function of equine follicular fluid proteins across four different reproductive seasons.

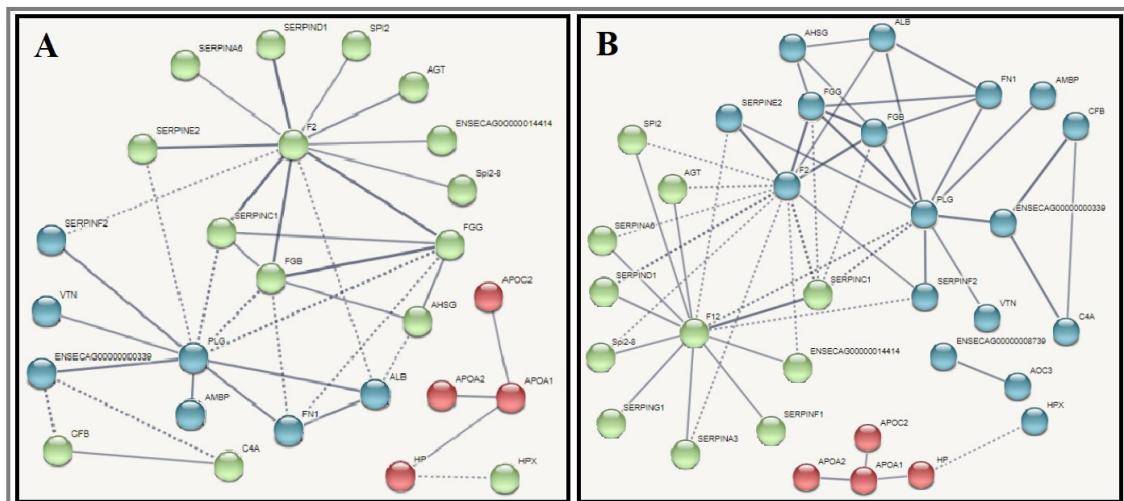
GO terms / GO names	Reproductive seasons				
	SA n (%)	SO n (%)	SU n (%)	FO n (%)	Shared n (%)
GO:0005488 / Binding	22 (26.2)	25 (27.2)	25 (27.2)	29 (27.9)	21 (27.6)
GO:0005515 / Protein binding	18 (19.6)	18 (19.6)	19 (20.7)	20 (19.2)	17 (19.0)
GO:0003674 / Molecular function	16 (19.6)	16 (17.4)	17 (18.5)	20 (19.2)	15 (18.1)
GO:0030234 / Enzyme regulator activity	12 (14.3)	12 (13.0)	13 (14.1)	13 (12.5)	12 (11.2)
GO:0005215 / Transporter activity	5 (6.0)	6 (6.5)	5 (5.4)	6 (5.8)	5 (5.2)
GO:0016787 / Hydrolase activity	2 (2.4)	4 (4.3)	2 (2.2)	4 (3.8)	2 (3.4)
GO:0005198 / Structural molecule activity	2 (2.4)	4 (4.3)	3 (3.3)	3 (2.9)	1 (4.3)
GO:0016491 / Oxidoreductase activity	2 (2.4)	2 (2.2)	3 (3.3)	3 (2.9)	2 (1.7)
GO:0003676 / Nucleic acid binding	2 (2.4)	1 (1.1)	2 (2.2)	2 (1.9)	1 (3.4)
GO:0003824 / Catalytic activity	1 (1.2)	2 (2.2)	1 (1.1)	2 (1.9)	1 (2.6)
GO:0015075 / Ion transmembrane transporter activity	1 (1.2)	1 (1.1)	1 (1.1)	1 (1.0)	1 (0.9)
GO:0016209 / Antioxidant activity	1 (1.2)	1 (1.1)	1 (1.1)	1 (1.0)	1 (0.9)
Total annotations	84 (100)	92 (100)	92 (100)	104 (100)	79 (100)

SA = spring anovulatory; SO = spring ovulatory; SU = summer; FO = fall ovulatory.

Table 5. Biological process of equine follicular fluid proteins across four different reproductive seasons.

GO terms / GO names	Reproductive seasons				
	SA n (%)	SO n (%)	SU n (%)	FO n (%)	Shared n (%)
GO:0008150 / Biological process	31 (13.2)	35 (13.8)	32 (12.7)	40 (13.7)	26 (12.3)
GO:0009987 / Cellular process	26 (11.1)	29 (11.5)	28 (11.2)	32 (11.0)	24 (11.3)
GO:0050789 / Regulation of biological process	25 (10.7)	28 (11.1)	27 (10.8)	30 (10.3)	22 (10.4)
GO:0008152 / Metabolic process	24 (10.3)	25 (9.9)	26 (10.4)	30 (10.3)	22 (10.4)
GO:0043170 / Macromolecule metabolic process	20 (8.5)	20 (7.9)	20 (8.0)	24 (8.2)	18 (8.5)
GO:0050896 / Response to stimulus	19 (8.1)	20 (7.9)	19 (7.6)	25 (8.6)	16 (7.5)
GO:0032501 / Multicellular organism process	14 (6.0)	17 (6.7)	16 (6.4)	18 (6.2)	13 (6.1)
GO:0006810 / Transport	12 (5.1)	14 (5.5)	13 (5.2)	16 (5.5)	12 (5.7)
GO:0007154 / Cell communication	10 (4.3)	10 (4.0)	11 (4.4)	11 (3.8)	10 (4.7)
GO:0007275 / Multicellular organism development	9 (3.8)	10 (4.0)	10 (4.0)	11 (3.8)	8 (3.8)
GO:0030154 / Cell differentiation	9 (3.8)	9 (3.6)	10 (4.0)	11 (3.8)	8 (2.8)
GO:0009058 / Biosynthetic process	8 (3.4)	7 (2.8)	8 (3.2)	9 (3.1)	7 (3.3)
GO:0009056 / Catabolic process	6 (2.6)	7 (2.8)	6 (2.4)	8 (2.7)	6 (2.8)
GO:0006139 / Nucleobase-containing compound metabolic process	5 (2.1)	4 (1.6)	5 (2.0)	6 (2.1)	4 (1.9)
GO:0008219 / Cell Death	4 (1.7)	4 (1.6)	5 (2.0)	5 (1.7)	4 (1.9)
GO:0046903 / Secretion	4 (1.7)	4 (1.6)	5 (2.0)	5 (1.7)	4 (1.9)
GO:0051704 / Multi-organism process	4 (1.7)	4 (1.6)	6 (2.4)	5 (1.7)	4 (1.9)
GO:0006928 / Movement of cell or subcellular components	2 (0.9)	3 (1.2)	2 (0.8)	2 (0.7)	2 (0.9)
GO:0043062 / Extracellular structure organization	1 (0.4)	1 (0.4)	1 (0.4)	2 (0.7)	1 (0.5)
GO:0007610 / Behavior	1 (0.4)	1 (0.4)	1 (0.4)	1 (0.3)	1 (0.5)
Total annotations	234 (100)	253 (100)	251 (100)	291 (100)	212 (100)

SA = spring anovulatory; SO = spring ovulatory; SU = summer; FO = fall ovulatory.


Finally, the “complement and coagulation cascades” KEGG pathway was significantly enriched (50-54x; P<10-3; FDR <0.01), regardless of the reproductive season.

4.4 Comparison Between Reproductive Seasons

Qualitative and quantitative differences in GO terms constituting each functional category were found across seasons (Tables 3-5). GO terms associated with “extracellular space” (in CC category) and “protein binding” (in MF category) increased in SU compared to other seasonal groups. In contrast, GO terms associated with “membrane” and “nucleus” (in CC category), “transporter activity” (in MF category), and “response to stimulus” (in BP category) were decreased in SU. Moreover, the proportions of annotations associated with “transporter activity” in MF and “response to stimulus” in BP were higher in SOV and FO, respectively, compared to other seasons. Finally, GO terms associated with “intracellular” (in CC category), “binding”, “hydrolase activity”, and “structural molecule activity” (in MF category), and “biological process”, and “multicellular organism process” (in BP category) were lower in SAN compared to SOV.

4.5 Protein-Protein Interaction (PPI) Network Analyses

The PPI analysis was performed for each season, including the shared protein dataset. For each dataset, three major PPI K-means clustering were obtained with high confidence interaction score (>0.7) and significant PPI enrichment ($P<10^{-16}$). A representative PPI network generated from shared dataset is shown (Figure 4). The three main clusters (circles) and related key proteins having higher numbers of interactions are indicated. Cluster 1 (Green in Figure 4) revealed F2 protein (or prothrombin) with the greatest interactions in SAN ($n = 12$), SOV ($n = 14$), FO ($n = 13$), and shared ($n = 12$) protein datasets, while the combination of F2 ($n = 13$) with PLG (plasminogen, $n = 11$) appeared as the main players in the SU dataset. In cluster 2 (Blue in Figure 4), plasminogen had the highest number of interactions in SAN and shared datasets ($n = 10$), while the combination of both plasminogen ($n = 10$) and ENSECAG000000000339 (complement C3) with four and five interactions may have important roles during SOV and FO seasons, respectively. Contrarily in the SU dataset, the F12 (coagulation factor XII) protein appeared as the main player with 12 interactions. Finally, the cluster 3 (Red in Figure 4) revealed APOA1 (apolipoprotein 1) protein as the key player in all seasons.

Figure 4. Protein-to-Protein interaction network of proteins shared across all seasons.

5 DISCUSSION

The current study uses a gel-free technique to provide unique proteomic datasets of equine FF of dominant growing follicles (30-34 mm in diameter) during the SAN, SOV, SU, and FO seasons. The existence of seasonal proteins in a similar follicle class, reported herein for the first time, suggests potential critical roles of FF proteins during the folliculogenesis and maybe oogenesis in the equine species. Likewise, various biological functions, protein enrichment, and protein interaction networks are reported to have been influenced by the seasonal variations.

5.1 Follicular Fluid Proteins Isolation

Combination of procedures, such as protein precipitation and depletion of high-abundant proteins, are routinely used to enhance the quality of starting samples for proteomic analyses (Jiang et al. 2004, Fahiminiya et al. 2011, Feist & Hummon 2015). In

this study, all tested precipitation protocols (FF:Acetone:TCA ratio of 5:4:1, 1:4:0, and 1.7:3.3:0) resulted in expected lower protein concentrations (30 to 82% losses) that were exacerbated by a further depletion of high-abundance serum protein (about 99% losses). Interestingly, the electrophoretic profiles of protein samples were generally comparable, regardless of the procedure. Crude equine FF samples maintained the highest protein concentrations following depletion, with only 30% loss, from $33.2 \pm 0.4 \mu\text{g}/\mu\text{l}$ to $22.8 \pm 0.4 \mu\text{g}/\mu\text{l}$. Thereafter, the 1:4:0 precipitation ratio appeared the most suitable with lesser protein loss, which was consistent with a previous report (Santa et al. 2016).

5.2 Proteome Description

The gel-free LC-MS proteomics has been successfully used in previous studies of FF of stock animals (Ducolomb et al. 2013, Chen et al. 2016, Ferrazza et al. 2017). The present study applied strict filters (FDR <1%, and the minimum of two unique peptides per protein) to obtain proteins with high confidence identification, which may explain the slightly lower number of detected proteins (90 vs. 113) when compared to available FF mare proteome (Fahiminiya et al. 2011). In addition, the proteome dataset of the current study contains fewer proteins in comparison to other monovular species such as humans (158 to 1,079; Ambekar et al. 2013, Bianchi et al. 2016, Lewandowska et al. 2017, Oh et al. 2017, Shen et al. 2017), and dairy cattle (113 to 219; Zachut et al. 2016, Ferrazza et al. 2017). Nonetheless, the aforementioned proteomic studies were generally performed with FF samples obtained from follicles of different sizes and unknown physiological statuses (i.e., growing and regressing follicles), under different technical approaches (e.g., gel-based or gel-free) and protein call stringencies (e.g., false discovery rate and peptides). The full annotation (87% with NCBI and 13% with ENSEMBL) of all detected proteins offers opportunities for in-depth investigations, such as the dynamic composition of the equine FF proteome and the relationship with oocyte quality. To the best of our knowledge, this is the first study providing essential clues of the FF proteome variations to enable a further understanding of the impact of different seasons on fertility of the mare, and maybe of other livestock.

5.3 Proteins Specifics To Seasons

Among the 90 proteins, a core set of 52 was detected across all seasons. It is expected that these proteins may have essential roles during folliculogenesis (Ambekar et al. 2013) and oogenesis (Revelli et al. 2009) processes, as previously reported in humans. In contrast, the examined seasons were characterized by subsets of proteins that may serve as potential biomarkers of seasonal fertility in mares. For instance, the BPI (Bactericidal/Permeability-Increasing) fold-contains Family A member 2 (BPIFA2) precursor was found only in SOV, SU, and FO (ovulatory seasons). The BPI is an endogenous antibiotic protein that belongs to the family of mammalian lipopolysaccharide (LPS)-binding and lipid transport protein. The BPIFA2 is known to have a role in the innate immune responses and was reported to inhibit the formation of biofilm by pathogenic gram-negative bacteria in the respiratory tract (Gakhar et al. 2010). In this regard, although the function for BPI in FF is still unknown, the presence of BPIFA2 during the ovulatory seasons may be important to protect the female genital tract (e.g., oviduct). Also, few reports have found that BPI is expressed in the testis and epididymis of mice and appears to take part in the process of gamete interactions (Li et al. 2013, Mou & Xie 2017).

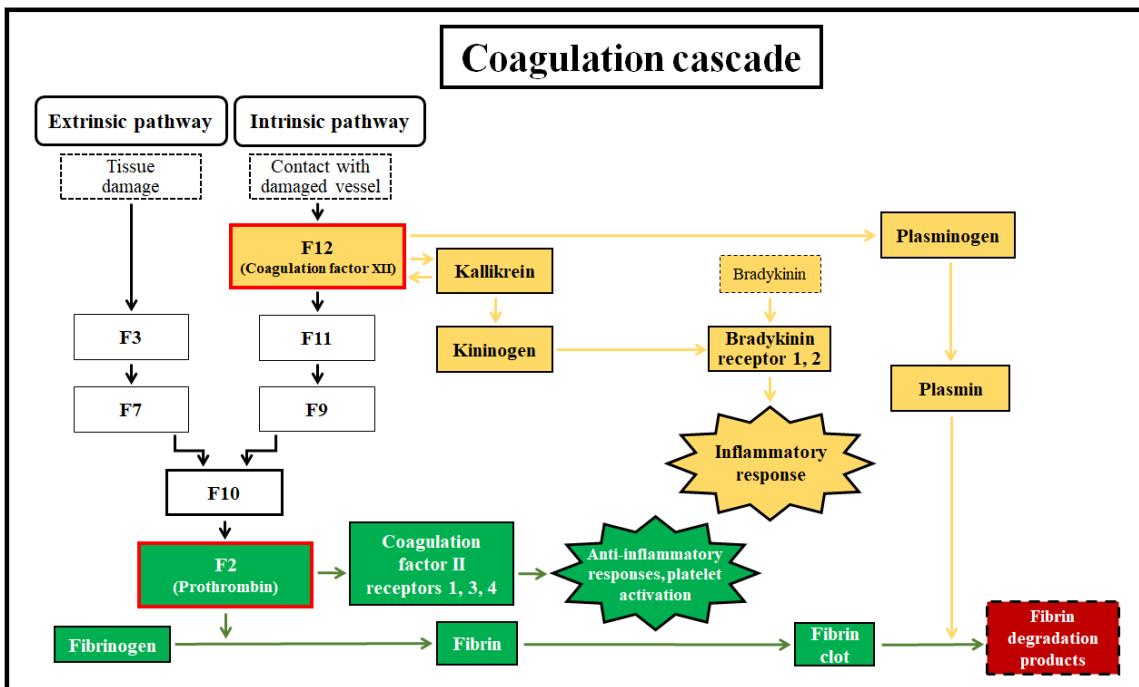
In contrast, keratin-10 was detected in SAN samples only and may, therefore, be associated with the non-ovulatory seasons. Although keratin is considered a common contaminant in proteomic studies, the keratin-10 family member has been reported as a negative modulator of cell cycle progression throughout the Phospho-Inositol 3 kinase (PI3 kinase) signal transduction pathway (Paramio et al. 2001). Numerous studies have reported the participation of PI3 kinase in the follicle-stimulating hormone or progesterone-induced meiotic oocyte maturation in *Xenopus* (Muslin et al. 1993, Bagowski et al. 2001) and mouse (Hoshino et al. 2004, Makker et al. 2017). In the present study, eight keratin-like family members were present in different intersections of the Venn diagram, and their specific roles in the acquisition of the oocyte developmental competence remain to be unfolded.

5.4 Functional Analyses

In this study, the interpretation of bioinformatics analyses focused only on proteins exhibiting thresholds of significance that were lower than 1% in both Benjamini-Hochberg and FDR analyses. About half of the protein annotations belonged to the Extracellular GO term, and only 10% of the total annotations were attributed to Intracellular localization, regardless of the proteome dataset. This distribution is expected, given the composition of the FF, known to contain secretions of follicle cells and blood plasma exudates. Thus, proteins attributed to Intracellular regions may be residues of the various catabolic processes and/or cell breakdown (apoptosis) of follicle cells (granulosa cells) that occur throughout the follicle growth (Markstrom et al. 2002, Rodgers et al. 2003, Ambekar et al. 2013). Protein distributions within the present FF datasets are in agreement with previous reports in other species (Zamah et al. 2015, Oh et al. 2017, Paula et al. 2018), but differ from the uniquely available report in horses (Fahiminiya et al. 2011), indicating 83% of protein annotations within the Extracellular region and 17% Intracellular. This difference may be due to either the mare breeds (Welsh pony vs. Quarter horse in the current study) or their proteome dataset generated from the combination of distinct follicle physiological stages.

Regarding protein functions, approximately 49% of the total annotations belonged to binding (protein binding and nucleic acid binding GO terms), and 32% corresponded to other cellular and molecular activities. This specific distribution is in agreement with previous studies in humans (Zamah et al. 2015, Oh et al. 2017), and reflects the participation of FF proteins in a variety of physiological functions associated with follicle and oocyte growth. In this study, several proteins belonging to the serine-type endopeptidase inhibitor activity, binding (heparin, cholesterol, and copper ion), and enzyme transporter (cholesterol) were significantly enriched across all seasons; those proteins have also been detected in other mono-ovulatory species (Fahiminiya et al. 2011, Paula et al. 2018).

Proteins associated with inflammatory responses (immune system, coagulation, acute phase response signaling), a FF signature across studies and species such as humans (Jarkovska et al. 2010), goats (Paula et al. 2018), cattle (Ferrazza et al. 2017), and horses (Fahiminiya et al. 2011), were significantly enriched in our datasets. These proteins may participate in cascades of immune and coagulation formation (fibrin) /inhibition (anti-thrombin) responses having vital roles in follicle growth and oocyte transfer to the oviduct following ovulation. The anticoagulation function of the FF has been revealed to be essential during follicle growth and rupture (de Agostini et al. 2008); moreover, in all of our datasets (SAN, SOV, SU and FO), a significant enrichment in proteins associated with the coagulation cascade was noticed.


The functional categorization indicated a higher proportion of proteins associated with the “Extracellular space” GO name during the SU season. The increase in FF protein content found in our study during the SU season may have been due to an increase in ovarian vascularization/blood flow (Watson & Al-Ziabi 2002, Acosta et al. 2004, Gastal et al. 2007), likely favoring the entry of additional plasma proteins into the follicle. Interestingly, the SAN dataset exhibited lower numbers of proteins associated with “Intracellular” (in CC); “Hydrolase activity”, “Structural molecule activity”, and “Binding” (in MF); and “Biological process” and “Multicellular organism process” (in BP) than that of the SOV dataset. These differences may lead to further understanding of the differences in FF environment of dominant anovulatory versus ovulatory follicles during the SAN and SOV seasons, respectively.

5.5 Protein And Pathway Enrichments

Proteins associated with the “complement and coagulation cascades” pathway were significantly enriched in all seasons: 25.4% in SAN, 23.6% SOV, 23.2% SU, and 25.6% FO. Indeed, the complement system and inflammatory processes regulate follicle development and ovulation (Anahory et al. 2002, Ebisch et al. 2008, Hanrieder et al. 2009). Numerous proteins are known to play essential roles during major events of the ovarian follicle (Curry Jr & Osteen 2003). These events involve a variety of proteolytic and metabolic processes that are mediated by several enzymes found in our datasets. Furthermore, the synthesis of some proteins may have been favored by the high number of protease inhibitors found in our study, such as fetuin-B, plasma protease C1 inhibitor, protein Z-dependent protease inhibitor, alpha-1-antiproteinase 2, alpha-1-antichymotrypsin, GDN peptidase inhibitor 7, inter-alpha-trypsin inhibitor heavy chain H1, H2 and H4, and SERPIN for serine-protease inhibitors. Among them, the SERPIN, a superfamily of protease inhibitors (Silverman et al. 2001), are involved in follicle development and may regulate the follicular extracellular matrix remodeling (Fu et al. 2016). On the other hand, many other proteins were associated with coagulation cascades. The presence of proteins such as antithrombin-III, alpha macroglobulin, plasminogen, alpha-2-antiplasmin, and fibrinogen indicates their participation in the controlling, modeling, and regulation of the coagulation pathway leading to healthy follicle growth.

5.6 Protein-Protein Interaction (PPI) Networks

The PPI network information is one of the major fields in systems biology allowing for complex network analyses (Szklarczyk et al. 2015). The PPI permitted the consolidation of the “coagulation cascade” (Figure 5) as a main signature of the equine FF, as seen in all datasets (SAN, SOV, SU, FO, and shared proteins) and previous reports in various species (Jarkovska et al. 2010, Fahiminiya et al. 2011, Paula et al. 2018). Clustering analyses allowed the prediction of the combination of F12 (coagulation factor XII), F2 (prothrombin), and PLG (plasminogen) as the signature of equine FF proteins during SU, while the F2-PLG-ENSECAG00000000339 (complement C3) combination had higher interactions in both the SOV and FO seasons. In contrast, both F2 and PLG were mainly found during the SAN season. These observations are significant given the functions of the implicated proteins.

Figure 5. Pathway of coagulation cascade adapted from KEGG Pathway Database of “Coagulation and Complement Cascade” (map04610; <http://www.genome.jp/kegg/pathway.html>). This diagram shows the roles of F12 (Coagulation factor XII; yellow color) and F2 (Prothrombin; green color) proteins in the coagulation cascade.

Firstly, prothrombin or F2 is a glycoprotein and an essential component of the blood-clotting mechanism exerting effects through its mature form, thrombin, by interacting with specific receptors (or protease-activated receptors or ThRs) on the granulosa cell membrane (Goldsack et al. 1998, Roach et al. 2002). However, its contribution as an anti-inflammatory compound prone to induce hemorrhagic anovulatory follicles during the transitional reproductive seasons remains to be explored. Secondly, the coagulation factor XII or F12, however, is a pro-inflammatory protein interacting with prekallikrein to initiate a cascade of events leading to the release of bradykinin (Hofman et al. 2016), which in turn increases the action of LH, contributes to follicular wall contraction (Hellberg et al. 1991), and favors ovulation (Yoshimura et al. 1988, Brännström & Hellberg 1989, Hellberg et al. 1991). These observations are supportive of the increased protein-protein interactions of the coagulation factor XII during SU, having possible roles in the ovulation outcome in mares. Thirdly, the proteolytic factor plasminogen is capable of dissolving fibrin of blood clots and performs essential functions during reproductive processes such as extracellular matrix remodeling, modulating follicular development, corpus luteum formation, and weakening the follicle wall to promote ovulation (Beers 1975, Cao et al. 2006, Jarkovska et al. 2010, Ambekar et al. 2013, Bianchi et al. 2013). Lastly, the high level of apolipoprotein-1 (APOA1) participates in the cholesterol and triglyceride transportation, having positive mitogenic and angiogenic effects (von Otte et al. 2006), which is beneficial to follicle development.

6 CONCLUSION

In summary, this study describes, for the first time, the proteome profile of the equine FF collected during anovulatory (SAN) and ovulatory (SOV, SU, and FO) seasons. Functional analyses revealed differences that may be essential to better characterization of reproductive seasonality in mares. The findings show that SU FF proteome of dominant follicles (30-34 mm) differs from other seasons and appears to be characterized by a higher fluidity. This former characteristic may allow a more efficient natural flux of biological factors to the oocyte, influencing its maturation, ovulation, and safe transport to the oviduct. While the “coagulation and complement” cascades were confirmed as the prime signatures of the FF proteome, the balance between prothrombin, plasminogen, and coagulation factor XII proteins seemed crucial for the fluidity of the FF at the peak moment of the ovulatory season.

7 REFERENCES

ACOSTA, T. J.; BEG, M. A; GINTHER, O. J. Aberrant blood flow area and plasma gonadotropin concentrations during the development of dominant-sized transitional anovulatory follicles in mares. **Biology of reproduction**, v. 71, p. 637-642, 2004.

ALEXANDER, S. L.; IRVINE, C. H. G. Control of onset of the breeding season in the mare and its artificial regulation by progesterone treatment. **Journal of Reproduction and Fertility Supplement**, v. 44, p. 307-318, 1991.

ALGRIANY, O.; BEVERS, M.; SCHOEVERS, E.; COLENBRANDER, B.; DIELEMAN, S. Follicle size-dependent effects of sow follicular fluid on in vitro cumulus expansion, nuclear maturation and blastocyst formation of sow cumulus oocytes complexes. **Theriogenology**, v. 62, p. 1483-1497, 2004.

ALI, A.; DERAR, R.; HUSSEIN, H. Seasonal variation of the ovarian follicular dynamics and luteal functions of sheep in the subtropics. **Theriogenology**, v. 66, p. 463-469, 2006.

AMBEKAR, A.S.; NIRUJOGI, R. S.; SRIKANTH, S.M.; CHAVAN, S.; KELKAR, D.S.; HINDUJA, I.; ZAVERI, K.; PRASAD, T. K.; HARSHA, H.C.; PANDEY, A.; *et al.* Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis. **Journal of Proteomics**, v. 87, p. 68-77, 2013.

ANAHORY, T.; DECHAUD, H.; BENNES, R.; MARIN, P.; LAMB, N. J.; LAOUDJ, D. Identification of new proteins in follicular fluid of mature human follicles. **Electrophoresis**, v. 23, p. 1197-1202, 2002.

ANGELUCCI, S.; CIAVARDELLI, D.; DI GIUSEPPE, F.; ELEUTERIO, E.; SULPIZIO, M.; TIBONI, G. M.; GIAMPIETRO, F.; PALUMBO, P.; DI ILIO, C. Proteome analysis of human follicular fluid. **Biochim Biophys Acta**, v. 1764, p. 1775-1785, 2006.

APPASAMY, M.; JAUNIAUX, E.; SERHAL, P.; AL-QAHTANI, A.; GROOME, N. P.; MUTTUKRISHNA, S. Evaluation of the relationship between follicular fluid oxidative

stress, ovarian hormones, and response to gonadotropin stimulation. **Fertility and sterility**, v. 89 p. 912-921, 2008.

ARASHIRO, E. K.; PALHAO, M. P.; WOHLRES-VIANA, S.; SIQUEIRA, L. G.; CAMARGO, L.; HENRY, M.; VIANA, J. H. In vivo collection of follicular fluid and granulosa cells from individual follicles of different diameters in cattle by an adapted ovum pick-up system. **Reproductive Biology and Endocrinology**, v. 11, p. 73, 2013.

ASSIDI, M.; MONTAG, M.; VAN DER VEN, K.; SIRARD, M. A. Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. **Journal of Assisted Reproduction and Genetics**, v. 28, p. 173-188, 2011.

BAGGERMAN, G.; VIERSTRAETE, E.; DE LOOF, A.; SCHOOFS, L.; Gel-based versus gel-free proteomics: a review. **Combinatorial chemistry & high throughput screening**, v. 8 p. 669-677, 2005.

BAGOWSKI, C. P.; MYERS, J. W.; FERRELL, J. E. The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in *Xenopus* oocytes. **Journal of Biological Chemistry**, v. 276, p. 37708-37714, 2001.

BASHIR, S. T.; ISHAK, G. M.; GASTAL, M. O.; ROSER, J. F.; GASTAL, E. L. Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. **Theriogenology**, v. 85, p. 1491-1498, 2016.

BEERS, W. H. Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicle wall. **Cell**, v. 6, p. 379-386, 1975.

BEG, M. A.; GINTHER, O. J. Follicle selection in cattle and horses: role of intrafollicular factors. **Reproduction**, v. 132, p. 365–377, 2006.

BIANCHI, L.; GAGLIARDI, A.; CAMPANELLA, G.; LANDI, C.; CAPALDO, A.; CARLEO, A.; ARMINI, A.; DE LEO, V.; PIOMBONI, P.; FOCARELLI, R.; *et al.* A methodological and functional proteomic approach of human follicular fluid en route for oocyte quality evaluation. **Journal of Proteomics**, v. 90, p. 61-76, 2013.

BIANCHI, L.; GAGLIARDI, A.; LANDI, C.; FOCARELLI, R.; DE LEO, V.; LUDDI, A.; BINI, L.; PIOMBONI, P. Protein pathways working in human follicular fluid: the future for tailored IVF? **Expert Reviews in Molecular Medicine**, v.18, p. e9, 2016.

BIJTEBIER, J.; TILLEMAN, K.; DHAENENS, M.; DEFORCE, D.; VAN SOOM, A.; MAES, D. Comparative proteome analysis of porcine follicular fluid and serum reveals that excessive α 2-macroglobulin in serum hampers successful expansion of cumulus-oocyte complexes. **Proteomics**, v.9, p. 4554-4565, 2009.

BONNET, A.; DALBIES-TRAN, R.; SIRARD, M. A. Focus on Mammalian Embryogenomics Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals. **Reproduction**, v. 135, p. 119-128, 2008.

BRÄNNSTRÖM, M.; HELLBERG, P. Bradykinin potentiates LH-induced follicular rupture in the rat ovary perfused in vitro. **Human Reproduction**, v. 4, p. 475-481, 1989.

BRÜSSOW, K. P.; RÁTKY, J.; TORNER, H.; EGERSZEGI, I.; SCHNEIDER, F.; SOLTI, L.; TUCHSCHERER, A. Follicular and oocyte development in gilts of different age. **Acta Veterinaria Hungarica**, v. 50, p. 101-110, 2002.

CAO, M.; NICOLA, E.; PORTELA, V. M.; PRICE, C. A. Regulation of serine protease inhibitor-E2 and plasminogen activator expression and secretion by follicle stimulating hormone and growth factors in non-luteinizing bovine granulosa cells in vitro. **Matrix Biology**, v. 25, p. 342-354, 2006.

CARNEVALE, E. M. The mare model for follicular maturation and reproductive aging in the woman. **Theriogenology**, v. 69, p. 23-30, 2008.

CHANDRAMOULI, K.; QIAN, P. Y. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. **Human genomics and proteomics**, v. 1, p. 1-22, 2009.

CHEN, F.; SPIESSENS, C.; D'HOOGHE, T.; PEERAER, K.; CARPENTIER, S. Follicular fluid biomarkers for human in vitro fertilization outcome: Proof of principle. **Proteome Science**, v. 14, p. 17, 2016.

CORTEZZI, S. S.; GARCIA, J. S.; FERREIRA, C.R.; BRAGA, D. P.; FIGUEIRA, R. C.; IACONELLI, A.; SOUZA, G. H.; BORGES, E.; EBERLIN, M. N. Secretome of the preimplantation human embryo by bottom-up label-free proteomics. **Analytical and bioanalytical chemistry**, v. 401, p. 1331–1339, 2011.

CRAIG, R.; BEAVIS, R. C. TANDEM: matching proteins with tandem mass spectra. **Bioinformatics**, v. 20, p. 1466–1467, 2004.

CURRY, T. E.; OSTEEN, K. G. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. **Endocrine Reviews**, v. 24, p. 428-465, 2003.

DE AGOSTINI, A. I.; DONG, J-C.; DE VANTÉRY ARRIGHI, C.; RAMUS, M-A.; DENTAND-QUADRI, I.; THALMANN, S.; VENTURA, P.; IBECHOLE, V.; MONGE, F.; FISCHER, A. M.; *et al.* Human follicular fluid heparan sulfate contains abundant 3-O-sulfated chains with anticoagulant activity. **Journal of Biological Chemistry**, v. 283, p. 28115-28124, 2008.

DONADEU, F. X.; GINTHER, O. J. Effect of number and diameter of follicles on plasma concentrations of inhibin and FSH in mares. **Reproduction**, v. 121, p. 897–903, 2001.

DONADEU, F. X.; GINTHER, O. J. Follicular waves and circulating concentrations of gonadotrophins, inhibin and oestradiol during the anovulatory season in mares. **Reproduction**, v. 124, p. 875–885, 2002.

DONADEU, F. X.; WATSON, E. D. Seasonal changes in ovarian activity: lessons learnt from the horse. **Animal Reproduction Science**, v. 100, p. 225-242, 2007.

DOWSEY, A. W.; DUNN, M. J.; YANG, G. The role of bioinformatics in two-dimensional gel electrophoresis. **Proteomics**, v. 3, p. 1567–1596, 2003.

DUCOLOMB, Y.; GONZÁLEZ-MÁRQUEZ, H.; FIERRO, R.; JIMÉNEZ, I.; CASAS, E.; FLORES, D.; BONILLA, E.; SALAZAR, Z.; BETANCOURT, M. Effect of porcine follicular fluid proteins and peptides on oocyte maturation and their subsequent effect on in vitro fertilization. **Theriogenology**, v. 79, p. 896-904, 2013.

EBISCH, I. M.; THOMAS, C. M.; WETZELS, A. M.; WILLEMSSEN, W. N.; SWEEP, F. C.; STEEGERS-THEUNISSEN, R. P. Review of the role of the plasminogen activator system and vascular endothelial growth factor in subfertility. **Fertility and Sterility**, v. 90, p. 2340-2350, 2008.

FAHIMINIYA, S.; GÉRARD, N. Le liquide folliculaire chez les mammifères. **Gynécologie Obstétrique & Fertilité**, v. 38, p. 402-404, 2010.

FAHIMINIYA, S.; LABAS, V.; ROCHE, S.; DACHEUX, J. L.; GÉRARD, N. Proteomic analysis of mare follicular fluid during late follicle development. **Proteome Science**, v. 9, p. 54, 2011.

FAHIMINIYA, S.; REYNAUD, K.; LABAS, V.; BATARD, S.; CHASTANT-MAILLARD, S.; GÉRARD, N. Steroid hormones content and proteomic analysis of canine follicular fluid during the preovulatory period. **Reproductive Biology and Endocrinology**, v. 8, p. 132, 2010.

FEIST, P.; HUMMON, A. B. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. **International Journal of Molecular Sciences**, v. 16, p. 3537-3563, 2015.

FERRAZZA, R. D. A.; GARCIA, H. D. M.; SCHMIDT, E. M. D. S.; MIHM CARMICHAEL, M.; SOUZA, F. F. D.; BURCHMORE, R.; SARTORI, R.; ECKERSALL, P. D.; FERREIRA, J. C. P. Quantitative proteomic profiling of bovine follicular fluid during follicle development. **Biology of Reproduction**, v. 97, p. 835-849, 2017.

FEUGANG, J. M.; RODRIGUEZ-MUNOZ, J. C.; WILLARD, S. T.; BATHGATE, R. A.; RYAN, P. L. Examination of relaxin and its receptors expression in pig gametes and embryos. **Reproduction Biology Endocrinology**, v. 9, p. 10, 2011.

FITZGERALD, B. P.; AFFLECK, K. J.; BARROWS, S. P.; MURDOCH, W. L.; BARKER, K. B.; LOY, R. G. Changes in LH pulse frequency and amplitude in intact mares during the transition into the breeding season. **Journal of Reproduction and Fertility**, v. 79, p. 485-493, 1987.

FORTUNE, J. E. Ovarian follicular growth and development in mammals. **Biology of reproduction**, v. 50, p. 225-232, 1994.

FREEDMAN, L. J.; GARCIA, M. C.; GINTHER, O. J. Influence of photoperiod and ovaries on seasonal reproductive activity in mares. **Biology of Reproduction**, v. 20, p. 567-574, 1979.

FU, Q.; HUANG, Y.; WANG, Z.; CHEN, F.; HUANG, D.; LU, Y.; LIANG, X.; ZHANG, M. Proteome profile and quantitative proteomic analysis of buffalo (*Bubalus bubalis*) follicular fluid during follicle development. **International Journal of Molecular Sciences**, v. 17, p. 618, 2016.

GAKHAR, L.; BARTLETT, J. A.; PENTERMAN, J.; MIZRACHI, D.; SINGH, P. K.; MALLAMPALLI, R. K.; RAMASWAMY, S.; MCCRAY, P. B. PLUNC is a novel airway surfactant protein with anti-biofilm activity. **PloS One**, v. 5, p. e9098, 2010.

GASTAL, E. L.; GASTAL, M. O.; BERGFELT, D. R.; GINTHER, O. J. Role of diameter differences among follicles in selection of a future dominant follicle in mares. **Biology of Reproduction**, v. 57, p. 1320-1327, 1997.

GASTAL, E. L.; GASTAL, M. O.; DONADEU, F. X.; ACOSTA, T. J.; BEG, M. A.; GINTHER, O. J. Temporal relationships among LH, estradiol, and follicle vascularization preceding the first compared with later ovulations during the year in mares. **Animal Reproduction Science**, v. 102, p. 314-321, 2007.

GASTAL, E. L.; GASTAL, M. O.; GINTHER, O. J. Relationships of changes in B-mode echotexture and colour-Doppler signals in the wall of the preovulatory follicle to changes in systemic oestradiol concentrations and the effects of human chorionic gonadotrophin in mares. **Reproduction**, v. 131, p. 699-709, 2006.

GASTAL, E. L.; GASTAL, M. O.; WILTBANK, M. C.; GINTHER, O. J. Follicle deviation and intrafollicular and systemic estradiol concentrations in mare. **Biology of Reproduction**, v. 61, p. 31-39, 1999.

GERARD, N.; MONGET, P. Intrafollicular insulin-like growth factor-binding protein levels in equine ovarian follicles during preovulatory maturation and regression. **Biology of reproduction**, v. 58, p. 1508–1514, 1998.

GILCHRIST, R. B.; RITTER, L. J.; ARMSTRONG, D. T. Oocyte–somatic cell interactions during follicle development in mammals. **Animal reproduction science**, v. 82, p. 431-446, 2004.

GINTHER, O. J. Folliculogenesis during the transitional period and early ovulatory season in mares. **Journal of Reproduction and Fertility**, v. 90, p. 311-320, 1990.

GINTHER, O. J. Pitfalls in animal reproduction research: how the animal guards nature's secrets. **Theriogenology**, v. 80, p. 169-175, 2013.

GINTHER, O. J. Reproductive Biology of the Mare: Basic and Applied Aspects. **Equiservices Cross Plains**, WI, USA, 1979.

GINTHER, O. J. Reproductive Biology of the Mare: Basic and Applied Aspects. **Equiservices Cross Plains**, WI, USA, 1992.

GINTHER, O. J.; GASTAL, E. L.; GASTAL, M. O.; BEG, M. A. Seasonal influence on equine follicle dynamics. **Animal Reproduction**, v.1, p. 31-44, 2004.

GINTHER, O. J.; GASTAL, M. O.; GASTAL, E. L.; JACOB, J. C.; BEG, M. A. Age-related dynamics of follicles and hormones during an induced ovulatory follicular wave in mares. **Theriogenology**, v. 71, p. 780-788, 2008.

GOLDSACK, N. R.; CHAMBERS, R. C.; DABBAGH, K.; LAURENT, G. J. Molecules in focus Thrombin. **The International Journal of Biochemistry & Cell Biology**, v. 30, p. 641-646, 1998.

GOSDEN, R. G.; HUNTER, R. H.; TELFER, E.; TORRANCE, C.; BROWN, N. Physiological factors underlying the formation of ovarian follicular fluid. **Reproduction**, v. 82, p. 813-825, 1988.

GYGI, S. P.; CORTHALS, G. L.; ZHANG, Y.; ROCHON, Y.; AEBERSOLD, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. **Proceedings of the National Academy of Sciences**, v. 97, p. 9390-9395, 2000.

HANRIEDER, J.; NYAKAS, A.; NAESEN, T.; BERGQUIST, J. Proteomic analysis of human follicular fluid using an alternative bottom-up approach. **Journal of Proteome Research**, v. 7, p. 443-449, 2008.

HANRIEDER, J.; ZUBEROVIC, A.; BERGQUIST, J. Surface modified capillary electrophoresis combined with in solution isoelectric focusing and MALDI-TOF/TOF MS: A gel-free multidimensional electrophoresis approach for proteomic profiling—Exemplified on human follicular fluid. **Journal of Chromatography**, v. 1216, p. 3621-3628, 2009.

HELLBERG, P.; LARSON, L.; OLOFSSON, J.; HEDIN, L.; BRÄNNSTRÖM, M. Stimulatory effects of bradykinin on the ovulatory process in the in vitro-perfused rat ovary. **Biology of Reproduction**, v. 44, p. 269-274, 1991.

HOFMAN, Z.; DE MAAT, S.; HACK, C. E.; MAAS, C. Bradykinin: inflammatory product of the coagulation system. **Clinical Reviews in Allergy & Immunology**, v. 51, p. 152-161, 2016.

HOSHINO, T.; SHIMIZU, K.; HONDA, T.; KAWAKATSU, T.; FUKUYAMA, T.; NAKAMURA, T.; MATSUDA, M.; TAKAI, Y. A novel role of nectins in inhibition of the e-cadherin-induced activation of Rac and formation of cell-cell adherens junctions. **Molecular Biology of the Cell**, v. 15, p. 1077-1088, 2004.

HUNTER, M. G.; BIGGS, C.; FAILLACE, L. S.; PICTON, H. M. Current concepts of folliculogenesis in monovular and polyovular farm species. **Journal of Reproduction and Fertility**, v. 45, p. 21-38, 1992.

HUNTER, M. G.; ROBINSON, R. S.; MANN, G. E.; WEBB, R. Endocrine and paracrine control of follicular development and ovulation rate in farm species. **Animal Reproduction Science**, v. 82, p. 461-477, 2004.

IRVINE, C. H.; ALEXANDER, S. L. The dynamics of gonadotrophin-releasing hormone, LH and FSH secretion during the spontaneous ovulatory surge of the mare as revealed by intensive sampling of pituitary venous blood. **Journal of endocrinology**, v. 140, p. 283-295, 1994.

ISHAK, G. M.; BASHIR, S. T.; DUTRA, G. A.; GASTAL, G. D. A.; GASTAL, M. O.; CAVINDER, C. A.; FEUGANG, J. M.; GASTAL, E. L. In vivo antral follicle wall biopsy: a new research technique to study ovarian function at the cellular and molecular levels. **Reproductive Biology and Endocrinology**, v. 16, p. 71, 2018.

ISHAK, G. M.; BASHIR, S. T.; GASTAL, M. O.; GASTAL, E. L. Pre-ovulatory follicle affects corpus luteum diameter, blood flow, and progesterone production in mares. **Animal Reproduction Science**, v. 187, p. 1-12, 2017.

ITO, M.; MIYADO, K.; NAKAGAWA, K.; MURAKI, M.; IMAI, M.; YAMAKAWA, N.; QIN, J.; HOSOI, Y.; SAITO, H.; TAKAHASHI, Y. Age-associated changes in the subcellular localization of phosphorylated p38 MAPK in human granulosa cells. **Molecular human reproduction**, v. 16, p. 928-937, 2010.

IWASE, A.; KOBAYASHI, H.; GOTO, M.; NAKAHARA, T.; NAKAMURA, T.; KONDO, M.; NAGATOMO, Y.; KOTANI, T.; KIKKAWA, F. A proteomic analysis of human follicular fluid: Comparison between fertilized oocytes and non-fertilized oocytes in the same patient. **Journal of Assisted Reproduction and Genetics**, v. 30, p. 1231-1238, 2013.

JARKOVSKA, K.; MARTINKOVA, J.; LISKOVA, L.; HALADA, P.; MOOS, J.; REZABEK, K.; GADHER, S. J.; KOVAROVA, H. Proteome mining of human follicular fluid reveals a crucial role of complement cascade and key biological pathways in women undergoing in vitro fertilization. **Journal of Proteome Research**, v. 9, p. 1289-1301, 2010.

JIANG, L.; HE, L.; FOUNTOULAKIS, M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. **Journal of Chromatography A**, v. 1023, p. 317-320, 2004.

LANDER, E. S.; LINTON, L. M.; BIRREN, B.; NUSBAUM, C.; ZODY, M. C.; BALDWIN, J.; *et al.* Erratum: Initial sequencing and analysis of the human genome: International Human Genome Sequencing Consortium. **Nature**, v. 412, p. 565-566, 2001.

LEE, H. C.; LEE, S. W.; LEE, K. W.; CHA, K. Y.; KIM, K. H.; LEE, S. Identification of new proteins in follicular fluid from mature human follicles by direct sample rehydration method of two-dimensional polyacrylamide gel electrophoresis. **Journal of Korean medical science**, v. 20, p. 456-460, 2002.

LEWANDOWSKA, A. E.; MACUR, K.; CZAPLEWSKA, P.; LISS, J.; ŁUKASZUK, K.; OŁDZIEJ, S. Qualitative and quantitative analysis of proteome and peptidome of

human follicular fluid using multiple samples from single donor with LC-MS and SWATH methodology. **Journal of Proteome Research**, v. 16, p. 3053-3067, 2017.

LI, K.; LIU, Y.; XIA, X.; WANG, L.; LU, M.; HU, Y.; XU, C. Bactericidal/permeability-increasing protein in the reproductive system of male mice may be involved in the sperm-oocyte fusion. **Reproduction**, v. 146, p. 135-144, 2013.

MAKKER, A.; GOEL, M. M.; NIGAM, D.; MAHDI, A. A.; DAS, V.; AGARWAL, A.; PANDEY, A.; GAUTAM, A. Aberrant Akt activation during implantation window in infertile women with intramural uterine fibroids. **Reproductive Sciences**, v. 25, p. 1243-1253, 2017.

MALIZIA, B. A.; WOOK, Y. S.; PENZIAS, A. S.; USHEVA, A. The human ovarian follicular fluid level of interleukin-8 is associated with follicular size and patient age. **Fertility and sterility**, v. 93, p. 537-543, 2010.

MARKSTROM, E.; SVENSSON, E.; SHAO, R.; SVANBERG, B.; BILLIG, H. Survival factors regulating ovarian apoptosis--dependence on follicle differentiation. **Reproduction**, v. 123, p. 23-30, 2002.

MARTINUK, S. D.; CHIZEN, D. R.; PIERSON, R. A. Ultrasonographic morphology of the human preovulatory follicle wall prior to ovulation. **The Official Journal of the American Association of Clinical Anatomists and the British Association of Clinical Anatomists**, v. 5, p. 339-352, 1992.

MARTORIATI, A.; DUCHAMP, G.; GERARD, N. In vivo effect of epidermal growth factor, interleukin-1 β , and interleukin-1RA on equine preovulatory follicles. **Biology of reproduction**, v. 68, p. 1748-1754, 2003.

MASON, H. D.; WILLIS, D. S.; BEARD, R. W.; WINSTON, R. M.; MARGARA, R.; FRANKS, S. Estradiol production by granulosa cells of normal and polycystic ovaries: Relationship to menstrual cycle history and concentrations of gonadotropins and sex steroids in follicular fluid. **The Journal of Clinical Endocrinology & Metabolism**, v. 79, p. 1355-1360, 1994.

MIAO, X.; LUO, Q.; ZHAO, H.; QIN, X. Ovarian proteomic study reveals the possible molecular mechanism for hyperprolificacy of Small Tail Han sheep. **Scientific reports**, v.6, p. 1-10, 2016.

MOU, L.; XIE, N. Male infertility-related molecules involved in sperm-oocyte fusion. **Journal of Reproduction and Development**, v. 63, p. 1-7, 2017.

MUSLIN, A. J.; KLIPPEL, A.; WILLIAMS, L. T. Phosphatidylinositol 3-kinase activity is important for progesterone-induced *Xenopus* oocyte maturation. **Molecular and Cellular Biology**, v. 13, p. 6661-6666, 1993.

NAGY, P.; GUILLAUME, D.; DAELS, P. Seasonality in mares. **Animal Reproduction Science**, v. 60, p. 245-262, 2000.

OH, J. W.; KIM, S. K.; CHO, K. C.; KIM, M. S.; SUH, C. S.; LEE, J. R.; KIM, K. P. Proteomic analysis of human follicular fluid in poor ovarian responders during in vitro fertilization. **Proteomics**, v. 17, p. 1600333, 2017.

O'FARRELL, P. H. The pre-omics era: the early days of two-dimensional gels. **Proteomics**, v. 8, p. 4842-4852, 2008.

PALMER, E.; DRIANCOURT, M. A. Use of ultrasonic echography in equine gynecology. **Theriogenology**, v. 13, p. 203-216, 1980.

PANDEY, A.; MANN, M. Proteomics to study genes and genomes. **Nature**, v. 405, p. 837-846, 2000.

PARAMIO, J. M.; SEGRELLES, C.; RUIZ, S.; JORCANO, J. L. Inhibition of protein kinase B (PKB) and PKC ζ mediates keratin K10-induced cell cycle arrest. **Molecular and Cellular Biology**, v. 21, p. 7449-7459, 2001.

PAULA, A. R. J.; VAN TIBURG, M. F.; LOBO, M. D. P.; MONTEIRO-MOREIRA, A. C. O.; MOREIRA, R. A.; MELO, C. H. S.; SOUZA-FABJAN, J. M. G.; ARAÚJO, A. A.; MELO, L. M.; TEIXEIRA, D. I. A.; *et al.* Proteomic analysis of follicular fluid from tropically-adapted goats. **Animal Reproduction Science**, v. 188, p. 35-44, 2018.

PELTIER, M. R.; ROBINSON, G.; SHARP, D. C. Effects of melatonin implants in pony mares. 2. Long-term effects. **Theriogenology**, v. 49, p. 1125-1142, 1998.

PERKINS, D. N.; PAPPIN, D. J.; CREASY, D. M.; COTTRELL, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. **Electrophoresis**, v. 20, p. 3551-3567, 1999.

REGIANI, T.; CORDEIRO, F. B.; DA COSTA, L. D. V. T.; SALGUEIRO, J.; CARDozo, K.; CARVALHO, V. M.; PERKEL, K. J.; ZYLBERSZTEJN, D. S.; CEDENHO, A. P.; LO TURCO, E. G. Follicular fluid alterations in endometriosis: label-free proteomics by MSE as a functional tool for endometriosis. **Systems Biology in Reproductive Medicine**, v. 61, p. 263-276, 2015.

REVELLI, A.; DELLE PIANE, L.; CASANO, S.; MOLINARI, E.; MASSOBRI, M.; RINAUDO, P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. **Reproductive Biology and Endocrinology**, v. 7, p. 40, 2009.

RICHARDS, J. S.; RUSSEL, D. L.; OCHSNER, S.; HSIEH, M.; DOYLE, K. H.; FALENDER, A. E.; *et al.* "Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization." **Recent progress in hormone research**, v. 57, p. 195-220, 2002.

ROACH, L. E.; PETRIK, J. J.; PLANTE, L.; LAMARRE, J.; GENTRY, P. A. Thrombin generation and presence of thrombin receptor in ovarian follicles. **Biology of Reproduction**, v. 66, p. 1350-1358, 2002.

RODGERS, R. J.; IRVING-RODGERS, H. F.; RUSSELL, D. L. Extracellular matrix of the developing ovarian follicle. **Reproduction**, v. 126, p. 415-424, 2003.

SANTA, C.; ANJO, S. I.; MANADAS, B. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach. **Proteomics**, v. 16, p. 1847-1851, 2016.

SCHIRMER, E. C.; YATES 3rd J. R.; GERACE, L. MudPIT: A powerful proteomics tool for discovery. **Discovery medicine**, v. 18, p. 38-39, 2003.

SEABORNE, E. The oestrous cycle of the mare and some associated phenomena. **The Anatomical Record**, v. 30, p. 277-287, 1925.

SHARP, D. C.; GRUBAUGH, W. R.; WEITHENAUER, J.; DAVIS, S. D.; WILCOX, C. J. Effects of steroid administration on pituitary luteinizing hormone and follicle-stimulating hormone in ovariectomized pony mares in the early spring; pituitary responsiveness to gonadotropin-releasing hormone and pituitary gonadotropin content. **Biology of Reproduction**, v. 44, p. 982-990, 1991.

SHARP, D. C.; WOLFE, M. W.; CLEAVER, B. D.; NILSON, J. Effects of estradiol17 administration on steady-state messenger ribonucleic acid (mRNA) encoding equine and LH/CG subunits in pituitary esovaricectomized pony mares. **Theriogenology**, v. 55, p. 1083-1093, 2001.

SHEN, X.; LIU, X.; ZHU, P.; ZHANG, Y.; WANG, J.; WANG, Y.; WANG, W.; LIU, J.; LI, N.; LIU, F. Proteomic analysis of human follicular fluid associated with successful in vitro fertilization. **Reproductive Biology and Endocrinology**, v. 15, p. 58, 2017.

SILVERMAN, G. A.; BIRD, P. I.; CARRELL, R. W.; CHURCH, F. C.; COUGHLIN, P. B.; GETTINS, P. G. W.; IRVING, J. A. I.; LOMAS, D. A.; LUKE, C. J.; MOYER, R. W.; *et al.* The serpins are an expanding superfamily of structurally similar but functionally diverse proteins: evolution, mechanism of inhibition, novel functions, and a revised nomenclature. **Journal of Biological Chemistry**, v. 276, p. 33293-33296, 2001.

SPITZER, D.; MURACH, K. F.; LOTTSPEICH, F.; STAUDACH, A.; ILLMENSEE, K. Different protein patterns derived from follicular fluid of mature and immature human follicles. **Human reproduction**, v. 11, p. 798-807, 1996.

STEEL L. F.; BRIAN, B.; SAMIR, M. Methods of comparative proteomic profiling for disease diagnostics. **Journal of Chromatography**, v. 815, p. 275-284, 2005.

SZKLARCZYK, D.; FRANCESCHINI, A.; WYDER, S.; FORSLUND, K.; HELLER, D.; HUERTA-CEPAS, J.; SIMONOVIC, M.; ROTH, A.; SANTOS, A.; TSAFOU, K. P.; *et al.* STRING v10: protein–protein interaction networks, integrated over the tree of life. **Nucleic Acids Research**, v. 43, p. D447-D452, 2015.

TAKÁČ, T.; ŠAMAJOVÁ, O.; PECHAN, T.; LUPTOVČIAK, I.; ŠAMAJ, J. Feedback microtubule control and microtubule-actin cross-talk in *Arabidopsis* revealed by integrative proteomic and cell biology analysis of KATANIN 1 mutants. **Molecular & Cellular Proteomics**, v. 16, p. 1591-1609, 2017.

TAKÁČ, T.; VADOVIČ, P.; PECHAN, T.; LUPTOVČIAK, I.; ŠAMAJOVÁ, O.; ŠAMAJ, J. Comparative proteomic study of *Arabidopsis* mutants *mpk4* and *mpk6*. **Scientific Reports**, v.6, p. 28306, 2016.

LO TURCO, E. G.; CORDEIRO, F. B.; DE CARVALHO L.; P. H. D. C.; GOZZO F. C.; PILAU, E. J.; SOLER, T. B.; DA SILVA, B. F.; DEL GIUDICE, P. T.; BERTOLLA, R. P.; FRAIETTA R.; *et al.* Proteomic analysis of follicular fluid from women with and without endometriosis: new therapeutic targets and biomarkers. **Molecular Reproduction and Development**, v. 80, p. 441-450, 2013.

TURNER, D. D.; GARCIA, M. C.; GINTHER O. J. Follicular and gonadotropic changes throughout the year in pony mares. **Journal of Veterinary Research**, v. 40, p. 1694–1700, 1979.

VALCKX, S. D. M.; ARIAS-ALVAREZ, M.; DE PAUW, I.; FIEVEZ, V.; VLAEMINCK, B.; FRANSEN, E.; BOLS, P. E. J.; LEROY, J. L. M. R. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. **Reproductive Biology and Endocrinology**, v. 12, p. 1-11, 2014.

VON OTTE, S.; PALETTA, J. R. J.; BECKER, S.; KÖNIG, S.; FOBKER, M.; GREB, R. R.; KIESEL L.; ASSMANN, G.; DIEDRICH, K.; NOFER, J. R. Follicular fluid high density lipoprotein-associated sphingosine 1-phosphate is a novel mediator of ovarian angiogenesis. **Journal of Biological Chemistry**, v. 281 p. 5398-5405, 2006.

VON WALD, T.; MONISOVA, Y.; HACKER, M. R.; YOO, S. W.; PENZIAS, A. S.; REINDOLLAR, R. R.; USHEVA, A. Age-related variations in follicular apolipoproteins may influence human oocyte maturation and fertility potential. **Fertility and sterility**, v. 93, p. 2354-2361, 2002.

WASHBURN, M. P.; WOLTERS, D.; YATES, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. **Nature biotechnology**, v.19, p. 242-247, 2001.

WATSON, E. D.; AL-ZI'ABI, M. O. Characterization of morphology and angiogenesis in follicles of mares during spring transition and the breeding season. **Reproduction**, v. 124, p. 227-234, 2002.

WATSON, E. D.; HEALD, M.; TSIGOS, A.; LEASK, R.; STEELE, M.; GROOME, N.; PANDRILEY, S. C. Plasma FSH, inhibin A and inhibin isoforms containing pro- and -C during winter anoestrus, spring transition and the breeding season in mares. **Reproduction**, v. 123, p. 535–542, 2002.

WHITMORE, H. L.; WENTWORTH, B. C.; GINTHER, O. J. Circulating concentrations of luteinizing hormone during estrous cycle of mares as determined by radioimmunoassay. **American Journal of Veterinary Research**, v. 34, p. 631-636, 1973.

WILKINS, M. R.; SANCHEZ, J. C.; GOOLEY, A. A.; APPEL, R. D.; HUMPHERY-SMITH, I.; HOCHSTRASSER, D. F.; WILLIAMS, K. L. Progress with proteome

projects: why all proteins expressed by a genome should be identified and how to do it. **Biotechnology and genetic engineering review**, v. 13, p. 19-50, 1996.

WU, C. C.; YATES, J. R. The application of mass spectrometry to membrane proteomics. **Nature biotechnology**, v. 21, p. 262-267, 2003.

WU, Y. T.; WANG, T. T.; CHEN, X. J.; ZHU, X. M.; DONG, M. Y.; SHENG, J. Z.; *et al.* Bone morphogenetic protein-15 in follicle fluid combined with age may differentiate between successful and unsuccessful poor ovarian responders. **Reproductive Biology and Endocrinology**, v. 10, p. 116, 2012.

YATES 3rd, J. R.; ENG, J. K.; MCCORMACK, A. L.; SCHIELTZ, D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. **Analytical chemistry**, v. 67, p. 1426-1436, 1995.

YIE, S. M.; BROWN, G. M.; LIU, G. Y.; COLLINS, J. A.; DAYA, S.; HUGHES, E. G.; FOSTER, W. G.; YOUNGLAI, E. V.; Melatonin and steroids in human pre-ovulatory follicular fluid: seasonal variations and granulosa cell steroid production. **Human Reproduction**, v. 10, p. 50-55, 1995.

YOSHIMURA, Y.; ESPEY, L.; HOSOI, Y.; ADACHI, T.; ATLAS, S. J.; GHODGAONKAR, R. B.; DUBIN, N. H.; WALLACH, E. E. The effects of bradykinin on ovulation and prostaglandin production by the perfused rabbit ovary. **Endocrinology**, v. 122, p. 2540-2546, 1988.

ZACHUT, M.; SOOD, P.; LEVIN, Y.; MOALLEM, U. Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows. **Journal of Proteomics**, v. 139, p. 122-129, 2016.

ZAMAH, A. M.; HASSIS, M. E.; ALBERTOLLE, M. E.; WILLIAMS, K. E. Proteomic analysis of human follicular fluid from fertile women. **Clinical Proteomics**, v. 12, p. 5, 2015.

ZHANG, Y.; FONSLOW, B. R.; SHAN, B.; BAEK, M. C.; YATES, J. R. Protein analysis by shotgun/bottom-up proteomics. **Chemical reviews**, v. 113, p. 2343-2394, 2013.