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RESUMO GERAL

DO NASCIMENTO, Isis Paulo. O Problema do 1-Centro em Árvores: Variações e Apli-
cações. 2023. 44f. Dissertação (Mestrado em Modelagem Matemática e Computacional).
Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ,
2023.

Problemas de localização possuem aplicações em diversas áreas, incluindo o estudo do plane-
jamento de redes de distribuição de energia. No presente trabalho, apresentamos o problema do
1-centro modificado em árvores com aplicações ao estudo do redimensionamento de redes de
energia, bem como um algoritmo para a resolução do problema em tempo O(n), onde conside-
ramos pesos e distâncias positivas.

A pesquisa também inclui a apresentação de resultados computacionais para alguns dos méto-
dos apresentados, como os métodos de resolução em tempo O(n2), O(n log n) e O(n), assim
como novas estratégias para a aplicação de problemas de localização ao projeto de redes de
distribuição de energia.

Palavras-chave: Árvores, problemas de localização, 1-centro.



GENERAL ABSTRACT

DO NASCIMENTO, Isis Paulo. The Problem of 1-Center in Trees: Variations and Ap-
plications. 2023. 44p. Dissertation (Master in Mathematical and Computational Modeling).
Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ,
2023.

Location problems have applications in many areas, including the study of the planning of
power distribution systems. In the present work, we present the modified 1-center problem in
trees, with applications to the study of resizing of power distribution networks, as well as an
algorithm to solve the problem in O(n) time, considering positive weights and distances.

The research also includes the presentation of computational results for some of the methods
presented, such as the resolution methods in O(n2), O(n log n) and O(n) time, and new strate-
gies for the application of location problems to the design of power distribution networks.

Keywords: Trees, location problems, 1-center.
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1
Introdução

1.1 Motivação do Tema

A distribuicão de energia elétrica no Brasil possui regulamentacões e normas técnicas que de-
vem ser seguidas, objetivando-se excelência na prestação do serviço [ANEEL, 2022]. De acordo
com [GARCIA et al., 2003], o sistema de distribuicão de energia elétrica é a parte do sistema
de potência que abrange desde as subestacões rebaixadoras até os transformadores (sistema de
distribuicão primário) e destes até a entrada elétrica dos consumidores (sistema de distribuicão
secundário).

Considerando fatores impeditivos ao controle do Estado em planejar ou remanejar novas redes
de distribuição que atue em regiões menos favorecidas, em muitas vezes, uma porcentagem da
população toma a iniciativa na aquisição de serviços públicos, ainda que de maneira temporária.
No caso da eletricidade, por vezes, seu fornecimento se dá por meio de conexões não regulares,
o chamado popularmente de "gato", com o redirecionamento de energia do sistema elétrico
principal a casas e/ou empresas inicialmente não registradas.

Com o objetivo de atender de forma padrão a população em tais regiões e, por outro lado,
representando um benefício a concessionárias de energia elétrica, o estudo e a elaboração de
uma nova rede de energia tornaram-se imprescindíveis, assim como o estudo do problema do
redimensionamento de energia elétrica. Determinadas aplicações de algoritmos de particiona-
mento e de localização em grafos ao planejamento e redimensionamento de redes de energia
são apresentadas em [ASSIS; FRANCA; USBERTI, 2014], [GARCIA et al., 2003] e [SILVA;
FRANCA; SILVEIRA, 1996].

O problema de alocação de equipamentos envolve a decisão sobre como alocar de forma oti-
mizada recursos limitados de maneira a atender determinadas demandas, podendo incluir a
minimização do custo total, a maximização da eficiência ou o equilíbrio de ambos. As técnicas
utilizadas para a resolução deste tipo de problema podem incluir programação linear, algoritmos
genéticos e heurísticas [GARCIA et al., 2003].

Neste trabalho, apresentamos o problema do 1-centro modificado, aplicado ao redimensiona-
mento de uma rede de energia em árvores, assim como dois algoritmos, de tempos O(n log n) e
O(n), para sua solução, nos quais consideramos pesos e distâncias positivas. O trabalho inclui
a apresentação de resultados computacionais obtidos na implementação dos métodos.



1.2 Escopo da Dissertação

Na presente dissertação, apresentamos um estudo de métodos existentes para a resolução de
problemas de localização, dentre os quais, os métodos de [KARIV; HAKIMI, 1979a] e [ME-
GIDDO, 1983] para o problema do 1-centro.

O Capítulo 2 apresenta os conceitos, as definições principais em teoria dos grafos e as notações
utilizadas no trabalho. São também apresentadas as classes P, NP e NP-Completo, de problemas
de decisão e, por fim, é apresentado o problema do 1-centro modificado em árvores e suas
generalizações.

O Capítulo 3 apresenta definições de problemas de localização em grafos, como os problemas
da 1-mediana, da p-mediana, do 1-centro e do p-centro. No capítulo são também apresentados
resultados de NP-Completude referentes aos problemas estudados, e os algoritmos de Kariv e
Hakimi, e de Megiddo, para a obtenção do 1-centro em árvores.

No Capítulo 4, apresentamos algoritmos para a resolução do problema do 1-centro em árvo-
res. O primeiro algoritmo, de tempo O(n2), é apresentado em [NASCIMENTO, 2018]. Um
segundo método, de tempo O(n log n), é apresentado, e segue a estratégia do centróide para a
obtenção do 1-centro modificado. Os resultados que fundamentam tal método são igualmente
apresentados. O terceiro método requer tempo O(n) e utiliza propriedades da função a ser
minimizada para a redução do problema, de uma instância de tamanho n a uma instância de
tamanho n

2
+2. O capítulo também inclui a apresentação de resultados computacionais referen-

tes à implementação dos métodos e um estudo das recorrências em linguagem C++, indicando
um número menor de operações do método O(n), se comparado a algoritmos de localização de
grafos conhecidos. Por fim, são apresentados no capítulo variações de problemas de localiza-
ção em grafos relacionadas ao problema do 1-centro modificado em árvores e aos problemas de
localização abordados no estudo do redimensionamento de redes.

O Capítulo 5 é dedicado à apresentação das considerações finais e indicações de trabalhos futu-
ros.

1.3 Objetivo Geral

Este trabalho possui como objetivo reduzir a complexidade de tempo do algoritmo para obten-
ção do 1-centro modificado em árvores.

1.4 Objetivos Específicos

Como objetivos específicos, temos:

• A pesquisa de técnicas existentes para a resolução de problemas de localização em árvo-
res, tais como a aplicação de centróides (Método de Kariv e Hakimi) e procedimentos de
redução (Método de Megiddo).

• Implementar algoritmos existentes e os desenvolvidos, objetivando uma primeira análise
de performance dos métodos desenvolvidos.

• Apresentar problemas de localização abertos e outros correlatos ao problema do redimen-
sionamento de redes.

2



2
Conceitos Preliminares

Neste capítulo, são apresentados conceitos, definições principais e notações utilizadas em teoria
dos grafos, com o objetivo de mostrar a aplicação da teoria a um problema de alocação de equi-
pamentos, no contexto do problema do redimensionamento de redes. Além de tais definições,
são apresentadas de modo não formal as classes P, NP e NP-Completo, de problemas de deci-
são e exemplos de problemas dessas classes, assim como a definição do problema do 1-centro
modificado em árvores e suas generalizações.

2.1 Definições Principais

Um grafo é um par ordenado G = (V,E), onde V é um conjunto finito, não vazio, de elementos
denominados vértices e E é um conjunto de pares não ordenados distintos de elementos de V
denominados arestas. Se e = (u, v) é uma aresta de G, dizemos que u e v são adjacentes ou
vizinhos em G. Tais vértices são as extremidades da aresta e a aresta é incidente aos vértices u e
v. A ordem do grafo G é o número de vértices de V , denotado por |V |. O número de arestas de
E é denotado por |E|. Dado um grafo G qualquer, utilizamos |V | = n e |E| = m. A vizinhança
de um vértice v, denotada por Adj(v), é o conjunto de seus vizinhos. O grau d(v) de um vértice
v é o número de vizinhos que v contém, ou o número de arestas incidentes a ele ( [COGIS;
ROBERT, 2003], [CORMEN et al., 2009]).

Um grafo G′ = (V ′, E ′) é um subgrafo de G = (V,E) quando V ′ é um subconjunto de V e
E ′ é um subconjunto de E. Um subgrafo induzido de um grafo G = (V,E) é um subgrafo
G′ = (V ′, E ′) cujas arestas são todas as arestas de G cujas extremidades estão em V ′. Neste
caso, dizemos que G′ = G[V ′] é o subgrafo de G induzido por V ′. Um caminho de um vértice
s para um vértice t em um grafo G é uma sequência ⟨v1, . . . , vk⟩ de vértices, tal que s = v1,
t = vk e (vj, vj+1) ∈ E(G), para 1 ≤ j < k. O caminho é dito simples se todos os vértices
forem distintos. O comprimento do caminho é dado pelo seu número de arestas. Um ciclo é um
caminho no qual v1 = vk.

Um grafo G = (V,E) é dito ser uma árvore se for acíclico (i.e. não possuir ciclos) e conexo (i.e.
existir um caminho entre qualquer par de vértices). Como um resultado clássico, em qualquer
grafo G = (V,E), a soma dos graus de todos os seus vértices é igual a duas vezes o seu número
de arestas, isto é,

∑
v∈V (G) d(v) = 2|E|. Adicionalmente, se T = (V,E) é uma árvore, então

m = n− 1.

Dizemos que um grafo G = (V,E) é ponderado em vértices quando cada vértice possui um



peso associado a ele. Denotaremos por w(v) o peso do vértice v ∈ V (G). Para um conjunto
de vértices V ′ ⊆ V , definimos o peso de V ′ por w(V ′) =

∑
v∈V ′ w(v). Sendo G′ = (V ′, E ′)

um subgrafo de G = (V,E), definimos o peso de G′ por w(G′) = w(V ′) =
∑

v′∈V ′ w(v′).
Dizemos que G é ponderado em arestas quando cada aresta possui um peso associado a ela, e
denotaremos por w(e) o peso da aresta e ∈ E(G), conforme a Figura 2.1 abaixo:

Figura 2.1 – Grafo G = (V,E); Árvore G′ = (V ′, E ′)
.

Dados dois vértices u e v em um grafo G(V,E), denominamos distância entre u e v o compri-
mento do menor caminho entre esses dois vértices. No caso da não existência de tal caminho,
consideramos a distância como infinita. Denotaremos por d(u, v) a distância entre os vértices u
e v (ver [CAMICIA; VICENTE, 2008]). Em um grafo conexo, distância é uma métrica, isto é,
para todo vértice u, v e x de G(V,E), temos:

i. d(u, v) ≥ 0 com d(u, v) = 0 se e somente se u = v;

ii. d(u, v) = d(v, u) ocorre apenas quando o grafo é não orientado;

iii. d(u, v) + d(v, x) ≥ d(u, x).

Uma árvore T na qual determinamos um de seus vértices como vértice raiz é dita árvore enrai-
zada. Como exemplo, na Figura 2.2 temos a representação de uma árvore T em uma implemen-
tação. Sendo v uma representação de um vértice v ∈ V (T ) na implementação, os campos para
cada vértice v incluem v.rotulo , v.peso e v.grau. O conjunto v.adj[1 .. v.grau] re-
presenta os vértices adjacentes a v na árvore T. Sendo k = grau(v) e T(v,v1), T(v,v2), . . . , T(v,vk)

as subárvores de T obtidas pela remoção de v em T , o conjunto v.peso_subarvore[1

.. v.grau] representa os pesos w(T(v,v1)), w(T(v,v2)), . . . , w(T(v,vk)) das subárvores T(v,v1),
T(v,v2), . . . , T(v,vk). Observamos que tal representação requer espaço O(n).

Figura 2.2 – Árvore T = (V,E); Representação de T .
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Para um dado vértice v ∈ V (G), a obtenção dos pesos das subárvores pode ser realizada como
segue. Se o vértice v é uma folha de T , então, para sua única subárvore T(v,v1), temos

w(T(v,v1)) = w(T − v) = w(T )− w(v). (2.1)

Se v não é uma folha de T , então, para cada subárvore T(v,vi) de T enraizada em vi, temos

w(T(v,vi)) = w(T )− w(v)−
∑

j=1,...,grau(v)
j ̸=i

w(T(v,vj)). (2.2)

Com as Equações 2.1 e 2.2, dado um vértice v de T, temos que o procedimento para o cálculo
de v.peso_subarvore[1..v.grau] inicia-se pelas folhas de T. Para cada folha v de T, o
cálculo de v.peso_subarvore[1] é imediato. As folhas v de T podem ser então suprimidas
de T, dando origem a novas folhas em T. Para cada nova folha v de T, podemos aplicar a Equa-
ção 2.2 para o cálculo de v.peso_subarvore[i]. O procedimento segue sucessivamente até
que não se tenha mais vértices em T. O tempo total requerido pelo procedimento é O(n). Ob-
servamos que os pesos de todas as subárvores de todos os vértices em T podem igualmente ser
obtidos em tempo linear pela aplicação de um algoritmo de busca em profundidade em T.

Diversos conceitos em teoria dos grafos são apresentados por [COGIS; ROBERT, 2003] e
[CORMEN et al., 2009]. Em [CORMEN et al., 2009], temos as definições das classes de pro-
blemas P, NP e NP-Completo, assim como diversos resultados de NP-Completude. Em algumas
demonstrações de NP-Completude de problemas de localização em grafos, temos a utilização
de reduções em tempo poliomial de problemas como o problema da cobertura de vértices e o
problema do conjunto dominante (ver [KARIV; HAKIMI, 1979a], [KARIV; HAKIMI, 1979b]
e [GAREY; JOHNSON, 1979].

Para a apresentação dos problemas, considerando-se um grafo G = (V,E), uma cobertura de
vértices de G é um subconjunto V ′ ⊆ V (G) tal que se (u, v) ∈ E(G), então ou u ∈ V ′, ou
v ∈ V ′, ou u, v ∈ V ′. Ou seja, cada vértice cobre suas arestas incidentes, e uma cobertura
de vértices para G é um conjunto de vértices que cobre todas as arestas em E(G). O tamanho
de uma cobertura de vértices é dado pelo número de vértices nela. No problema da cobertura
de vértices, devemos encontrar uma cobertura de vértices de tamanho mínimo para um dado
grafo. Podemos enunciar este problema de otimização como um problema de decisão: dado
um grafo G = (V,E) e um tamanho k, o grafo G possui uma cobertura de vértices de tamanho
k. Como um exemplo, o grafo G da Figura 2.3 possui o conjunto {v2, v3, v4, v5} como uma de
suas coberturas de vértices, a qual não é a de menor tamanho.

Dado um grafo G = (V,E), um conjunto dominante de G é um subconjunto V ′ ⊆ V (G) tal
que, para todo u ∈ V (G), ou u ∈ V ′, ou um vizinho v ∈ V ′. Ou seja, cada vértice está em V ′

ou possui um vizinho em V ′. O tamanho de um conjunto dominante é dado pelo seu número
de vértices. O número de dominação γ(G) de G é o número de vértices no menor conjunto
dominante para G. Na versão de decisão do problema do conjunto dominante, para um dado
grafo G = (V,E) e um tamanho k, devemos decidir se o grafo possui um conjunto dominante de
tamanho no máximo k. Como problema de otimização, dado um grafo G = (V,E), devemos
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Figura 2.3 – Cobertura de vértices de G = (V,E).

determinar γ(G). Como um exemplo, o grafo G da Figura 2.4 possui o conjunto dominante
{v1, v2}, o qual não é uma cobertura de vértices.

Figura 2.4 – Conjunto dominante de G = (V,E).

2.2 NP-Completude

Segundo [CORMEN et al., 2009], problemas podem ser classificados como tratáveis se pu-
derem ser solucionados em tempo polinomial, e como intratáveis se requererem tempo super-
polinomial para a obtenção de uma solução. O status da classe dos problemas NP-Completos
é desconhecido. Não são conhecidos algoritmos de tempo polinomiais para a solução de um
problema NP-Completo. Por outro lado, não existe uma prova de limite inferior de tempo
super-polinomial para qualquer problema desta classe.

A classe P, informalmente, consiste dos problemas que podem ser resolvidos em tempo polino-
mial. Especificamente, por [CORMEN et al., 2009], são problemas que podem ser soluciona-
dos em tempo O(nk), para alguma constante k, onde n é o tamanho da entrada para o problema.
A classe NP consiste dos problemas que são “verificáveis” em tempo polinomial. Isto é, se pos-
suimos um “certificado” de uma solução, então podemos verificar que o certificado está correto
em tempo polinomial no tamanho da entrada do problema. Um problema em P está também em
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NP, pelo fato de que se o problema está em P então ele pode ser resolvido em tempo polinomial
sem ser fornecido um certificado. Isto é, temos P ⊆ NP. Contudo, a questão P = NP permanece
em aberto. De modo não formal, um problema é NP-Completo se está em NP e é ao menos tão
“difícil” quanto qualquer problema em NP. Por [CORMEN et al., 2009], se algum problema
NP-Completo puder ser solucionado em tempo polinomial, então todo problema em NP possui
um algoritmo de tempo polinomial. Uma demonstração de que um problema é NP-Completo
pode representar uma boa evidência de sua intratabilidade. Neste caso, em lugar de buscar-
mos um algoritmo eficiente para a solução exata de um problema, podemos buscar desenvolver
um algoritmo de aproximação ou ainda resolver um caso especial tratável. (Determinados pro-
blemas NP-Difíceis para a classe geral de grafos podem ser resolvidos eficientemente quando
restritos a árvores. Como exemplo, pode ser mostrado que se T é uma árvore com n ≥ 2 vérti-
ces, então seu número cromático é dado por χ(T ) = 2. Contudo, para a classe geral de grafos,
a determinação de χ(G) é um problema NP-Difícil [NASCIMENTO, 2018].)

Em um problema de otimização, cada solução viável possui um valor associado, e buscamos
encontrar uma solução viável com o melhor valor. A NP-Completude aplica-se diretamente a
problemas de decisão, para os quais a resposta é “sim” ou “não”. Apesar deste fato, podemos
fazer uso da relação entre problemas de decisão e problemas de otimização. Como um exemplo
de problema de decisão e seu problema de otimização correlato, temos o problema de deci-
dirmos se existe uma coloração válida dos vértices de um dado grafo G = (V,E) que utilize
no máximo k cores (sendo k um número de cores dado), e o problema de encontrarmos χ(G).
Podemos resolver este problema de decisão encontrando o valor de χ(G), e então comparando
χ(G) com o parâmetro k do problema de decisão. Por [CORMEN et al., 2009], o problema
de decisão é em um sentido mais fácil, ou pelo menos não mais difícil do que o problema de
otimização. Expressando este fato de forma relevante à NP-Completude, se podemos fornecer
evidência de que um problema de decisão é difícil, também fornecemos evidência de que seu
problema de otimização relacionado é difícil [CORMEN et al., 2009].

A noção de que um problema não é mais fácil ou mais difícil do que outro pode ser aplicada
quando ambos os problemas são problemas de decisão, e pode ser utilizada em quase todas
as provas de NP-Completude. Seja A um problema de decisão, que desejamos solucionar em
tempo polinomial. Seja B um problema de decisão que já saibamos como resolver em tempo
polinomial. Um algoritmo de redução é um procedimento de tempo polinomial que transforma
qualquer instância α do problema de decisão A em uma instância β do problema de decisão
B, de forma que suas respostas sejam iguais. Isto é, a resposta para α é “sim” se e somente
se a resposta para β for “sim”. Desta forma, para resolvermos o problema A em tempo po-
linomial, dada uma instância α do problema A, utilizamos o algoritmo de redução em tempo
polinomial para transforma-la em uma instância β do problema B. Em seguida, executamos
o algoritmo de decisão em tempo polinomial para B, tendo como entrada a instância β. Por
fim, utilizamos a resposta para β como resposta para α. Por outro lado, poderíamos utilizar a
técnica para mostrarmos a inexistência de algoritmo de tempo polinomial para um problema
B. Primeiramente, podemos supor um problema de decisão A para o qual não possa existir ne-
nhum algoritmo de tempo polinomial. Supomos, além disso, que temos uma redução em tempo
polinomial que transforma instâncias de A em instâncias de B. Podemos utilizar, então, uma
prova por contradição para mostrar que nenhum algoritmo de tempo polinomial pode existir
para B. (Se houvesse um algoritmo de tempo polinomial para B, poderíamos utilizar a redução
em tempo polinomial para transformar uma instância α de A em uma instância β de B, obtendo
uma resposta para α também em tempo polinomial.) Como apresentado por [CORMEN et al.,
2009], em uma demonstração de NP-Completude, não assumimos a inexistência de um algo-
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ritmo de tempo polinomial para o problema A. Temos a demonstração de que o problema B é
NP-Completo com a suposição de que o problema A também seja NP-Completo.

2.3 O Problema do 1-Centro Modificado

Conforme [RABUSKE, 1992], a teoria dos grafos proporciona ferramentas simples e poderosas
para a construção de modelos e resolução de problemas em matemática discreta. Baseada na
simples idéia de pontos interligados por linhas, a teoria dos grafos combina estes elementos em
um rico sortimento de formas e dota estas propriedades com características flexíveis, tornando-
se uma ferramenta útil no estudo de diversos tipos de sistemas.

No estudo do problema do redimensionamento de redes, temos a aplicação de conceitos e al-
goritmos de localização em grafos em etapas que incluem, por exemplo, a obtenção de solu-
ções iniciais para a posterior aplicação de outras técnicas (ver [GARCIA et al., 2003], [NAS-
CIMENTO, 2018]). Para a definição do problema do 1-centro modificado, apresentado por
[NASCIMENTO, 2018], consideramos primeiramente mapas de localização de área das comu-
nidades ou o mapa de rotas. Após a definição da área de estudo, temos sua representação por
um mapa de estudo, ver Figura 2.5, em desenho técnico (incluindo cabeamento, postes, trans-
formadores, distância entre os postes, quantidade de consumo (kVA) em cada poste pertencente
às vias da comunidade estudada, etc.).

Figura 2.5 – Mapa de estudo.

Conforme a Figura 2.6 podemos observar uma rede de distribuição em árvore com n vértices e
n− 1 arestas, os vértices da árvore representam os postes e as arestas o cabeamento.
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Figura 2.6 – Representação da rede de distribuição.

Seja T = (V,E) uma árvore ponderada, com uma função peso k(vi) associando a cada vértice
vi ∈ V um real positivo, e uma função distância d(ek) associando a cada aresta ek ∈ E um real
positivo. Sendo ek = (vi, vj), denotaremos por d(ek) = d(vi, vj) a distância entre vi e vj .

Seja V ′ ⊆ V . A função peso k pode ser estendida ao conjunto de vértices V ′ como a soma dos
pesos dos vértices em V ′. Isto é, temos

k(V ′) =
∑
vi∈V ′

k(vi). (2.3)

Seja T ′ = (V ′, E ′) uma subárvore de T = (V,E). Denotamos por k(T ′) = k(V ′) o peso
da subárvore T ′. Para uma aresta (vi, vj) de T = (V,E), seja T (vi) a árvore T enraizada
em vi e seja T (vi, vj) a subárvore de T (vi) enraizada em vj . Para tal subárvore, a notação
T(vi,vj) = T (vi, vj) será igualmente utilizada.

No estudo do problema do 1-centro modificado, consideramos uma rede secundária de energia,
dada por uma árvore ponderada T = (V,E). Por [NASCIMENTO, 2018], consideramos uma
fonte fixa de energia t a ser implantada em um vértice da árvore, denominada transformador. No
problema, devemos definir a localização de um transformador, que minimize a queda de tensão
máxima na rede. Por [NASCIMENTO, 2018], quanto maior for o comprimento do condutor de
energia, maior será a queda de tensão, consequente do aumento de resistência elétrica.

Para a árvore T = (V,E), caso o transformador seja instalado em um vértice vi ∈ V (T ),
devemos calcular a queda de tensão total para cada vértice vj ∈ T , com vj ̸= vi. A queda
de tensão total de vi para um vértice vj é definida como sendo a soma das quedas de tensão
ocorridas em cada uma das arestas do único caminho de vi a vj em T .

Para a definição da queda de tensão em uma aresta (vj, vk) ∈ E(T ), consideraremos o peso
k(vi) como a demanda de energia no vértice vi ∈ T . Assim, definimos a queda de tensão em
uma aresta (vj, vk) ∈ E(T ), denotada por q(vj, vk), por

q(vj, vk) =
d(vj, vk) ∗ k(T (vj, vk)) ∗ µ(vj, vk)

100
. (2.4)

onde
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• d(vj, vk) é a distância de vj a vk,

• k(T (vj, vk)) é o peso da subárvore T (vj, vk), ou demanda acumulada de T (vj, vk), e

• µ(vj, vk) é a constante do material condutor utilizado no trecho entre vj e vk.

Conforme apresentado na Figura 2.7 abaixo:

Figura 2.7 – Definição do cálculo de queda de tensão. (a) Distância entre os vértices vj e vk.
(b) Demanda acumulada em uma subárvore T (vj, vk). (c) Constante do material utilizado no
trecho (vj, vk).

Observamos que, para uma aresta (vj, vk) ∈ E(T ), temos d(vj, vk) = d(vk, vj) e µ(vj, vk) =
µ(vk, vj). Contudo, não necessariamente temos k(T (vj, vk)) = k(T (vk, vj)). Seja P (vi, vj) =
⟨vi, u1, u2, . . . , up, vj⟩ o caminho em T do vértice vi em que se localiza o transformador a um
vértice vj qualquer de T . Definimos a queda de tensão total entre vi e vj por

Q(vi, vj) = q(vi, u1) + q(u1, u2) + · · ·+ q(up, vj) =
∑

(vk,vl)∈P (vi,vj)

q(vk, vl). (2.5)

Isto é, Q(vi, vj) é a soma das quedas de tensão ocorridas nos trechos ao longo do caminho
P (vi, vj). Se Q(vi, vj) representa uma queda máxima em alguma subárvore de T (vi), o caminho
⟨vi, u1, u2, . . . , up, vj⟩, é dito caminho de queda máxima. Para vi ∈ V (T ), seja

Φ(vi) = max
vk∈V (G)

{Q(vi, vk)} (2.6)

a queda de tensão total máxima a partir de vi, isto é, a queda de tensão total máxima consideran-
do-se um transformador em vi. O 1-centro modificado de T é um vértice v∗ ∈ V (T ) que
minimize esta queda de tensão total máxima, isto é, um vértice tal que

Φ(v∗) = min
v∈V (T )

{Φ(v)}. (2.7)

Como exemplos de algoritmos de localização em árvores, estão o algoritmo de Kariv e Hakimi,
e o algoritmo de Megiddo, para a obtenção do 1-centro (clássico) em árvores. No Capítulo
3, temos a descrição dos métodos, e de suas complexidades, como um estudo das técnicas
existentes em árvores.

No Capítulo 4, apresentamos métodos para a obtenção do 1-centro modificado em árvores. Es-
pecificamente, apresentamos um algoritmo de tempo O(n) com o menor número de operações,
se comparado a algoritmos clássicos para o problema do 1-centro em árvores.
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3
Problemas de Localização

Em [NASCIMENTO, 2018], foram estudados problemas de localização correlatos ao problema
do redimensionamento de redes, abordado no presente trabalho. Tais problemas, pesquisados
por [KARIV; HAKIMI, 1979a], [HAKIMI; SCHMEICHEL; PIERCE, 1978] e [KARIV; HA-
KIMI, 1979b], contextualizaram o presente trabalho, e representaram abordagens iniciais para
a obtenção de novos métodos para problemas de localização. Neste capítulo, apresentamos as
definições dos problemas de localização clássicos, os principais resultados de NP-Completude
em problemas de localização, assim como os métodos de [KARIV; HAKIMI, 1979b], e de
[MEGIDDO, 1983], para a resolução do problema do 1-centro em árvores.

3.1 Definições de Problemas

As definições de problemas como o da 1-mediana, p-mediana, 1-centro, p-centro e conjuntos
dominantes de raio r em redes, nos permitem avaliar suas possíveis aplicações ao problema do
redimensionamento de energia, podendo incluir grafos ponderados e não ponderados, e proble-
mas em vértices ou absolutos.

No problema da 1-mediana (ou 1-median problem) em um grafo, devemos encontrar um vértice
que minimiza a soma das distâncias de caminhos mínimos ponderadas do próprio vértice a
todos os outros vértices, cada um associado a um peso positivo, como representado na Figura
3.1 abaixo:

Figura 3.1 – Problema da 1-mediana em grafos.



Por [BURKARD; KRARUP, 1998], para problemas NP-Difíceis definidos sobre um grafo, ca-
sos especiais bem resolvidos podem ocorrer se, por exemplo, o grafo possui certas propriedades.
Como um dos casos especiais bem resolvidos, o problema da 1-mediana em uma árvore foi con-
siderado primeiramente por [HUA, 1961]. Em [GOLDMAN, 1962] um algoritmo simples foi
desenvolvido para este problema. Como uma observação, se uma aresta (u, v) é removida na
árvore, obtemos duas árvores T1 e T2. Seja Wi o peso de todos os vértices na árvore Ti, para
i = 1, 2. Então a localização ótima se situa na árvore com o maior peso acumulado. Esta obser-
vação baseia o algoritmo apresentado em [GOLDMAN, 1962] e faz uso do fato de que todos
os pesos são não negativos, mas não é válida se pesos de vértices negativos são permitidos.

Conforme a Figura 3.2, o problema da p-mediana (ou p-median problem) é o problema de iden-
tificarmos um subconjunto Xp de p vértices que minimizam a soma das distancias de caminhos
mínimos ponderadas de cada outro vértice no grafo ao vértice mais próximo em Xp.

Figura 3.2 – Problema da p-mediana em grafos.

Por [KARIV; HAKIMI, 1979b], o problema da p-mediana em um grafo é NP-Difícil. O pro-
blema permanece NP-Difícil mesmo quando a rede possui uma estrutura simples, como por
exemplo um grafo planar com o grau de vértice máximo igual a 3 [KARIV; HAKIMI, 1979b].
Contudo, os autores apresentaram resultados que conduziram a algoritmos eficientes quando
a rede é uma árvore. Em particular, [KARIV; HAKIMI, 1979b] mostraram que a 1-mediana
de uma árvore é idêntica a seu w-centróide. O trabalho também apresentou um algoritmo que
encontra a p-mediana de uma árvore (para p > 1) em tempo O(n2p2). Em [TAMIR, 1996] foi
apresentado um algoritmo em tempo O(pn2) para o problema. Em [DASKIN; MAASS, 2015]
são apresentados alguns resultados existentes na literatura para o problema clássico.

O problema do 1-centro (ou 1-center problem), representado na Figura 3.3, pode ser definido
como segue: dado um conjunto de n pontos de demanda, um espaço de localizações viáveis
para um serviço (ou uma instalação) e uma função para calcular o custo de transporte entre um
serviço (ou instalação) e qualquer ponto de demanda, encontrar um posicionamento ótimo do
serviço que minimize o custo máximo de transporte do serviço ao ponto de demanda.
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Figura 3.3 – Problema do 1-centro em grafos.

Na Figura 3.4 podemos observar que dado um conjunto Xp = x1, ..., xp de p pontos em um grafo
G = (V,E), a distância d(Xp, vj) entre Xp e um nó vj é computada como mini=1,...,p d(xi, vj).

Seja

F (Xp) = max
v∈V (G)

{w(v)d(Xp, v)}. (3.1)

Seja X∗
p tal que

F (X∗
p ) = min

Xp∈V (G)
{F (Xp)}. (3.2)

Então Xp é chamado p-centro de G e F (X∗
p ) é chamado p-raio de G, sendo denotado por rp(G).

Isto é, no problema do p-centro (ou p-center problem), devemos encontrar um conjunto Xp de
p pontos em G tal que maxj=1,...,n w(vj).d(vj, Xp) seja minimizado.

Figura 3.4 – Problema do p-centro em grafos.

O problema do 1-centro absoluto ponderado foi definido e resolvido por [HAKIMI, 1965]
(ver [TANSEL; FRANCIS; LOWE, 1983a]). Para o problema do 1-centro absoluto, é viável que
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sua solução esteja em um vértice do grafo ou em um ponto no interior de uma aresta (que não
seja a extremidade de tal aresta). Em [HAKIMI; SCHMEICHEL; PIERCE, 1978] mostraram
que o método de Hakimi pode ser implementado em tempo O(|E|n2 log n). Refinamentos
posteriores do procedimento foram obtidos por [KARIV; HAKIMI, 1979b], resultando em um
algoritmo O(|E|n log n) para o caso ponderado e O(|E|n) para o caso não ponderado.

O problema do p-centro foi formulado por [HAKIMI, 1965]. Em [KARIV; HAKIMI, 1979a]
mostraram que o problema em uma rede geral é NP-Difícil. Em [HANDLER; MIRCHAN-
DANI, 1979] foram considerados os problemas do p-centro absoluto e em vértice em uma
árvore para o caso especial de p = 2, e foram obtidos dois algoritmos O(n) similares. Em
[KARIV; HAKIMI, 1979a] descreveram um algoritmo de tempo O(n2 log n) para a obtenção
do p-centro absoluto para uma árvore vértice ponderada. Em [TANSEL; FRANCIS; LOWE,
1983b] apresentaram um survey sobre os problemas da p-mediana e do p-centro.

3.2 NP-Completude do Problema de Determinar os p-Centros

Em [KARIV; HAKIMI, 1979a], é mostrado que a NP-Completude do problema do conjunto
dominante implica que os problemas de encontrarmos p-centros (absolutos ou em vértices) são
NP-Difíceis, mesmo quando a rede é um grafo planar com grau máximo de vértices igual a 3.
Isto implica que é altamente improvável que existam algoritmos de tempo polinomial para os
problemas de p-centros.

Um problema pode ser NP-Completo apenas se ele pertence ao conjunto NP. Isto é, apenas
se ele é um problema de decisão para o qual um certificado pode ser verificado em tempo
polinomial. Desta forma, o problema do p-centro, como um problema de otimização, não pode
ser classificado como um problema NP-Completo. Contudo, Kariv e Hakimi mostram que o
problema do p-centro é NP-Difícil, isto é, mostram que o problema do conjunto dominante,
como um problema NP-Completo, pode ser reduzido em tempo polinomial ao problema do p-
centro. Desta forma, existe um algoritmo de tempo polinominal para o problema do p-centro se
e somente se P = NP. O seguinte lema é apresentado por Kariv e Hakimi.

Lema 1 ([GAREY; JOHNSON, 1979]). Seja G = (V,E) um grafo e seja p um inteiro, 1 ≤
p ≤ n. O problema de definirmos se existe em G um conjunto dominante de cardinalidade ≤ p
(i.e. de definirmos se o número de dominação de G é ≤ p) é NP-Completo, mesmo no caso em
que G é um grafo planar de grau de vértice máximo igual a 3.

A prova do Lema 1 foi apresentada por [GAREY; JOHNSON, 1979], sendo baseada na NP-
Completude do problema da cobertura de vértices. Garey e Johnson provaram que o problema
da cobertura de vértices geral é NP-Completo mesmo quando G é um grafo planar com grau de
vértices máximo igual a 3. Na redução do problema da cobertura de vértices para o problema
do conjunto dominante, substituimos cada aresta (u, v) do grafo G pela estrutura apresentada
na Figura 3.5, e consideramos p = |E|+ k.
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Figura 3.5 – Redução do problema da cobertura de vértices para o problema do conjunto domi-
nante.

Os seguintes teoremas são apresentados por Kariv e Hakimi.

Teorema 1 ([KARIV; HAKIMI, 1979a]). Os problemas do p-centro em vértices e do p-centro
absoluto são NP-Difíceis, mesmo no caso onde a rede é um grafo planar não ponderado em
vértices, de grau máximo igual a 3, e com as arestas com comprimento 1.

Teorema 2 ([KARIV; HAKIMI, 1979a]). Os problemas do p-centro em vértices e do p-centro
absoluto são NP-Equivalentes.

Em [KARIV; HAKIMI, 1979b], é mostrado que a NP-Completude do problema do conjunto
dominante implica igualmente que o problema da p-mediana é NP-Completo, mesmo quando a
rede é um grafo planar com grau máximo de vértices igual a 3. O seguinte teorema é apresentado
por Kariv e Hakimi.

Teorema 3 ([KARIV; HAKIMI, 1979b]). O problema de encontrar uma p-mediana é NP-
Difícil, mesmo no caso onde a rede é um grafo planar com grau máximo igual a 3, com as
arestas com comprimento 1 e todos os vértices com peso 1.

A demonstração do Teorema 3 apresentada por Kariv e Hakimi, igualmente utiliza uma redução
em tempo polinomial do problema do conjunto dominante de cardinalidade p. Seja o problema
de decisão derivado do problema da p-mediana, no qual, dado um grafo G = (V,E), um inteiro
p (1 < p < n), e um valor real positivo h, devemos decidir se existe um subconjunto V ∗

p com
p vértices de V , tal que H(V ∗

p ) =
∑

v∈V w(v)d(v, V ∗
p ) ≤ h. Como uma observação apresen-

tada por Kariv e Hakimi, este problema pertence a NP, e pela demonstração do Teorema 3, o
problema é NP-Difícil. Portanto, o problema de decisão é NP-Completo.

Como apresentado no capítulo anterior, o estudo do redimensionamento é concluído com êxito
no momento em que encontramos um ponto ótimo na rede atendendo a todas as restrições.
Apresentaremos a seguir os métodos devidos a Kariv e Hakimi, e a Megiddo, para a resolução
do problema do 1-centro clássico, em árvores. Observamos que, como uma primeira aborda-
gem, consideramos a rede particionada para realizar em seguida a busca pelo melhor ponto de
localização.
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3.3 Método de Kariv e Hakimi

Centróide de uma Árvore

Em [KARIV; HAKIMI, 1979a] é apresentado um método para a obtenção do 1-centro absoluto
(ou em vértice) de uma árvore T , com a utilização do método do centróide. Seja v ∈ V (T ),
seja dv o grau de v em T , e sejam Tv,1, Tv,2, . . . , Tv,dv as subarvores de T − v. Denote por T+

v,i a
subárvore que consiste de Tv,i, o vértice v, e a aresta que conecta v a Tv,i. O lema e o corolário a
seguir são apresentados por Kariv e Hakimi, e definem, respectivamente, a subárvore contendo
o 1-centro de T , e uma condição para a definição do 1-centro de T .

Lema 2 ([KARIV; HAKIMI, 1979a]). Seja v ∈ V um vértice fixo e seja ṽ um vértice tal que
w(ṽ).d(ṽ, v) = maxv′∈V {w(v′). d(v′, v)}. Seja Tv,l a subárvore de T − v à qual ṽ pertence.
Então, o 1-centro de T está em T+

v,l.

Corolário 1 ([KARIV; HAKIMI, 1979a]). Sejam ṽ e v̂ dois vértices tais que ṽ ∈ Tv,l, v̂ ∈ Tv,k,
k ̸= l, e w(ṽ).d(ṽ, v) = w(v̂).d(v̂, v) = maxv′∈V {w(v′).d(v′, v). Então v é o 1-centro de T .

Por uma observação apresentada por Kariv e Hakimi, se o vértice v no Lema 1 não é uma folha
de T , então T+

(v,l) é uma subárvore própria de T . Desta forma, em um algoritmo baseado no
lema para a obtenção do 1-centro de uma árvore ponderada, a árvore T0 é considerada como
sendo a árvore original. Escolhemos um vértice v0 de T0 (onde v0 não é uma folha de T0)
e encontramos a subárvore T+

v0,l0
na qual (de acordo com o Lema 1) o 1-centro está. Seja

T1 = T0∩T+
v0,l0

. Escolhemos um vértice v1 de T1 (onde v1 não é uma folha de T1) e encontramos
a subárvore T+

v1,l1
de T na qual o 1-centro de T está. Desta forma, por Kariv e Hakimi, o 1-

centro precisa estar na subárvore T2 = T1 ∩ T+
v1,l1

. Pelo algoritmo apresentado, o processo é
repetido iteradamente até obtermos uma subárvore Tk que consiste em uma única aresta. O
centro local nesta aresta é o 1-centro da árvore T , e um (ou ambos) extremo(s) desta aresta é o
1-centro em vértice da árvore T .

Por uma análise apresentada por Kariv e Hakimi, exceto pelo último passo de encontrarmos o
centro local (ou encontrarmos qual extremo é o 1-centro em vértice), cada etapa (i.e., a obtenção
das subárvores T+

vi,li
e Ti+1) requer tempo O(n). A complexidade total do algoritmo é O(nk +

n lg n) para o 1-centro absoluto, e de O(nk) para o 1-centro em vértice. (O número de etapas é
dado por k, e o custo da última etapa é dado por n lg n, no caso do 1-centro absoluto. No caso
do 1-centro em vértice, a última etapa requer tempo O(n)). Por Kariv e Hakimi, o valor de k
depende do modo no qual escolhemos o vértice vi a cada etapa i do algoritmo. Para uma boa
escolha de vi, é apresentada a noção de centróide de uma árvore.

Para um vértice v de T , considerando-se Tv,1, Tv,2, . . . , Tv,dv as subárvores de T − v, seja |T | o
número de vértices em T e defina N(v) por

N(v) = max
1≤i≤dv

{|Tv,i|}. (3.3)

Por [KARIV; HAKIMI, 1979a], e [HARARY, 1969], um centróide da árvore T é um vértice
vc para o qual N(v) é mínimo, isto é,
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N(vc) = min
v∈V

{N(v)}. (3.4)

Observamos que uma árvore pode ter um ou dois centróides. No último caso, os dois centróides
são conectados por uma aresta [HARARY, 1969]. Adicionalmente, observamos que N(vc) ≤
⌊n/2⌋. Mais exatamente, o número de vértices em cada uma das subarvores Tvc,1, Tvc,2, . . . , Tvc,dvc

não é maior do que ⌊n/2⌋+1. No algoritmo de Kariv e Hakimi, se a cada etapa escolhemos um
centróide de Ti como sendo o vértice vi, então |Ti+1| ≤ ⌊|Ti|/2⌋+1, e o número k de etapas será
O(log n). Desta forma, objetivando a apresentação de um algoritmo O(n log n) para a obtenção
do 1-centro de uma árvore, Kariv e Hakimi forneceram um algoritmo O(n) para a obtenção do
centróide de uma árvore.

Por [KARIV; HAKIMI, 1979a], a desigualdade N(vc) ≤ ⌊n/2⌋ é uma condição necessária e
suficiente para que um vértice vc seja um centróide da árvore. Com base nesta propriedade, uma
versão do algoritmo de [GOLDMAN, 1971] pode ser utilizada para encontrarmos um centróide
de uma árvore em O(n) passos. Na execução do algoritmo, utilizamos uma cópia T ′ da árvore
original T como uma árvore auxiliar sobre a qual o algoritmo funciona. A cada vértice v da
árvore, temos a definição de uma variável n(v). Durante o algoritmo, se v é uma folha de T ′,
então T ′ − v está contida em uma das subarvores de T − v, e n(v) fornece então o número de
vértices desta subarvore.

CENTRÓIDE(T )
T ′ = T // Inicialização
para cada vértice v ∈ T ′ faça // Inicialização

n(v) = n− 1 ;
enquanto a árvore auxiliar T ′ não consistir de um único vértice v0 faça

seja v uma folha da árvore auxiliar T ′ ;
se n(v) ≤ ⌊n/2⌋ então

PARE // v é um centróide da árvore original T ;
senão

seja u o vértice adjacente a v em T ′ ;
n(u) = n(u)− (n− n(v)) ;
Remova o vértice v (e a aresta (u, v)) de T ′ ;

RETORNE o vértice v0 como um centróide de T ;

Em [KARIV; HAKIMI, 1979a], a prova detalhada da validade do algoritmo CENTRÓIDE, ou a
prova de que ele requer tempo O(n) para a obtenção do centróide de uma árvore T , é deixada
ao leitor. Com o algoritmo CENTRÓIDE, Kariv e Hakimi apresentam o algoritmo 1-CENTRO-
ARVORE para a obtenção do 1-centro de uma árvore. No algoritmo, as variáveis T ′, T ′′, e T ′′′

representam a cada etapa as subarvores Ti, T+
vi,li

, e Tvi,li , respectivamente. O algoritmo faz uso
de uma sub-rotina para a obtenção do centro-local sobre uma aresta e de T .

Um centro-local de um grafo G sobre uma aresta e ∈ E(G) é um ponto x∗(e) sobre e, tal que
F (x∗(e)) = minx(e) sobre e{F (x(e))}, e F (x∗(e)) é chamado o raio-local de G sobre e. Kariv e
Hakimi apresentam um algoritmo de tempo O(n log n) para a obtenção do centro-local de um
grafo G sobre uma aresta e ∈ E(G).
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1-CENTRO-ARVORE(T )
1. T ′ = T ; // Inicialização
2. se T ′ possui uma única aresta e então // Para 1-centro absoluto

Encontre o centro-local x∗ de T sobre e e PARE ; // x∗ é o 1-centro de T
se T ′ possui uma única aresta e = (vr, vs) então // Para 1-centro em vértice

Sejam:
dr = maxv′∈V {w(v′).d(v′, vr)} ;
ds = maxv′∈V {w(v′).d(v′, vs)} ;
se dr < ds então vr é o 1-centro em vértice de T ;
se dr > ds então vs é o 1-centro em vértice de T ;
se dr = ds então cada um de vr e vs é o 1-centro em vértice de T ;
PARE ;

3. vc = CENTRÓIDE(T ′) ;
4. Seja ṽ um vértice de T tal que w(ṽ).d(ṽ, vc) = maxv′∈V {w(v′).d(v′, vc)} ;

Seja T ′′′ a componente de T − vc que contém ṽ ;
Seja T ′′ = T ′′′+ o vértice vc+ a aresta que conecta vc a T ′′′ ;

5. se existe um vértice v̄ tal que v̄ ̸∈ T ′′ e w(v̄).d(v̄, vc) = w(ṽ).d(ṽ, vc) então
vc é o 1-centro em vértice de T ;
PARE ;

6. T ′ = T ′ ∩ T ′′ ;
Retorne a 2.

Por uma observação em [KARIV; HAKIMI, 1979a], na condicional do algoritmo, se n(v) é o
número de vértices da subarvore de T − v à qual u pertence, então n − n(v) é o número de
vértices da subarvore de T − u que contém v. Portanto, n(u) é corretamente atualizado, i.e.
quando u se torna uma folha, n(u) fornece o número de vértices da subarvore de T − u que
contém T ′ − u. Adicionalmente, se a relação n(v) ≤ ⌊n/2⌋ não é válida, então v não pode ser
um centróide e sua remoção de T ′ ainda preserva o(s) centróide(s) de T em T ′. Ver [KARIV;
HAKIMI, 1979a].

3.4 Método de Megiddo

Sendo T = (V,E) uma árvore com n vértices, com um comprimento não negativo d(vi, vj) as-
sociado a cada aresta (vi, vj) e um peso não negativo w(vi) associado a cada vértice vi, em [ME-
GIDDO, 1983] temos a apresentação de uma abordagem ao problemaa do 1-centro análoga à
abordagem por Kariv e Hakimi. Uma aresta (vi, vj) é identificada com um segmento de reta de
comprimento d(vi, vj), de forma que podemos considerar qualquer ponto sobre a aresta (vi, vj).
Por Megiddo, um ponto x = (vi, vj; t) é caracterizado como estando localizado a uma distância
t de vi, e a uma distância d(vi, vj) − t de vj . Portanto a distância d(x, y) entre quaisquer dois
pontos sobre a árvore está bem definida, a saber, é o comprimento do único caminho de x a y
na árvore. O centro ponderado de T é um ponto x que minimiza a função

r(x) = max{w(vi)d(x, vi) : vi ∈ V }. (3.5)
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O centro absoluto é único a menos que todos os pesos sejam iguais a zero. O problema re-
lacionado de encontrarmos um vértice vj que minimize a função r(x), i.e., o ponto x estando
restrito a ser um vértice da árvore, é também apresentado por [MEGIDDO, 1983], assim como
um algoritmo de tempo linear para o caso ponderado geral.

Observações Iniciais

Por [MEGIDDO, 1983], a função r(x) é convexa sobre qualquer caminho simples da árvore.
Isto é, se P é um caminho simples e vi é qualquer vértice, então considere o vértice vj que
esteja sobre o caminho P e seja mais próximo de vi. O vértice vj particiona o caminho em duas
partes sobre cada uma das quais a função

gvi(x) = d(x, vi) (3.6)

é linear e crescente à medida em que nos distanciamos de vj . Desta forma, gvi(x) é linear por
partes sobre P (com no máximo duas partes) e convexa. A função r(x) = max{w(vi)d(x, vi) :
vi ∈ V } é portanto linear por partes e convexa, sendo o máximo de funções convexas.

Como uma observação apresentada por Megiddo, dado qualquer ponto x, podemos determinar
em tempo O(n) em qual das subárvores o centro se situa, e o algoritmo de Kariv e Hakimi
está fundamentado nesta observação. Dado que o centro se situa em uma subárvore T ′, o
procedimento verifica o centróide x de T ′ objetivando determinar em qual das subárvores de
T ′, enraizada em x, está o centro.

Visto que o centróide define subárvores cujos tamanhos são no máximo metade do tamanho de
T ′, o procedimento termina em O(log n) testes e portanto requer tempo O(n log n). A melhoria
sugerida por [MEGIDDO, 1983] está na redução do custo de um teste. No algoritmo apresen-
tado por [MEGIDDO, 1983], também são efetuados O(log n) testes. Contudo, o custo de cada
teste não é maior do que três quartos do custo do teste precedente.

O Algoritmo de Tempo Linear

Seja vc denotando o centróide de T , isto é, vc é um vértice tal que para todo vértice adjacente
vj , temos | Tvc,vj |≤ n/2 (onde n é o número de vértices de T ). Seja

rvj(vc) = max{w(vi)d(vc, vi) : vi ∈ V (Tvc,vj)}. (3.7)

Por [MEGIDDO, 1983] e [KARIV; HAKIMI, 1979a], o centróide vc pode ser encontrado em
tempo O(n). Então, supondo-se que vc seja conhecido, primeiramente, calculamos rvj(vc), para
cada vértice vj adjacente a vc, o que pode ser feito em tempo O(n). Se existem dois vértices
vj1 , vj2 (vj1 ̸= vj2) adjacentes a vc, tais que rvj1 (vc) = rvj2 (vc) = r(vc), então o próprio vc é o
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centro. Caso contrário, sendo vj adjacente a vc e rvj(vc) > rvk(vc) para todo outro vértice vk
adjacente a vc, sabemos que o centro situa-se na subárvore Tvc,vj .

Seja u um vértice não pertencente à subárvore Tvc,vj . Se o centro x está em T+
vc,vj

a uma distância
t a partir de vc, então d(u, x) = d(u, vc) + t. A seguir na Figura 3.6, temos o centróide vc da
árvore T , com um vértice que não está em Tvc,vj , com um vértice x em Tvc,vj a uma distância t
a partir de vc.

Figura 3.6 – Distância d(u, x).

Conforme a Figura 3.7, sejam a e b vértices não pertencentes a Tvc,vj . Iremos assumir, sem
perda de generalidade, que

w(a)d(a, vc) ≥ w(b)d(b, vc). (3.8)

Figura 3.7 – Vértices a e b.

Resolvendo (para t) a equação

w(a)(d(a, vc) + t) = w(b)(d(b, vc) + t), (3.9)
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podemos afirmar que existe um valor tab (com 0 ≤ tab ≤ ∞) tal que, para todo x em T+
vc,vj

a
uma distância t de vc, temos

w(a)(d(a, x)) ≥ w(b)(d(b, x)) ⇔ 0 ≤ t ≤ tab. (3.10)

Como apresentado na Figura 3.8 a seguir,

Figura 3.8 – Definição de tab.

Substituindo d(a, x) = d(a, vc) + t e d(b, x) = d(b, vc) + t na equação w(a)(d(a, x)) =
w(b)(d(b, x)), temos

w(a)d(a, vc) + w(a)t = w(b)d(b, vc) + w(b)t (3.11)

e

[w(a)− w(b)]t = w(b)d(b, vc)− w(a)d(a, vc). (3.12)

Definimos, então,

tab =
w(b)d(b, vc)− w(a)d(a, vc)

w(a)− w(b)
. (3.13)

Desta forma, se sabemos que o centro se situa a uma distância menor do que tab de vc, então
poderíamos desconsiderar o vértice b no processo de encontrar o centro. Similarmente, o vértice
a poderia ser eliminado se sabemos que o centro se situa a uma distância maior do que tab a
partir de vc.
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Megiddo mostra como explorar eficientemente esta observação, e como reconhecer se o centro
se situa dentro de uma distância t de x ou não, onde x é qualquer vértice folha e t é qualquer
número real positivo. Adicionalmente, por Megiddo, podemos decidir se o centro está dentro
de uma distância de t a partir de x em tempo O(n).

Considerando-se T a árvore original, seu centróide vc e a subárvore T+
vc,vj

a qual é conhecida
conter o centro, o algoritmo de Megiddo arranja os vértices que não estão na subárvore T+

vc,vj

em pares disjuntos (a1, b1), (a2, b2), ..., (as, bs) (desconsiderando um vértice, se o número de
vértices for ímpar). Observamos que existirão ao menos (n/4) − 1 de tais pares visto que
no máximo n/2 vértices pertencem a Tvc,vj . Para cada par (a, b), assumindo, sem perda de
generalidade, que

w(a)(d(a, vc) + t) ≥ w(b)(d(b, vc) + t), (3.14)

se w(a) ≥ w(b), então o vértice b é “descartado”. Caso contrário, seja

tab =
w(b)d(b, vc)− w(a)d(a, vc)

w(a)− w(b)
. (3.15)

O algoritmo obtem a mediana tm de todos os valores taibi (para todos os pares dos quais ne-
nhum vértice foi descartado) em tempo O(n) (ver [AHO; HOPCROFT; ULLMAN, 1974]
e [MEGIDDO, 1983]). Em seguida, o algoritmo verifica em tempo O(n) se o centro se en-
contra (em Tvc,vj ) dentro de uma distância de tm de vc. Se o centro de fato se situa dentro de
uma distância de tm de vc, considerando um par (a, b) tal que tab ≥ tm, então, onde quer que o
centro x∗ se situe (dado que ele está em Tj(c) a uma distância de não mais que tm de c), temos
w(a)d(a, x∗) ≥ w(b)d(b, x∗). Desta forma, por Megiddo, podemos seguramente descartar o
vértice b neste caso.

Similarmente, se x∗ está a uma distância maior do que tm de vc, então dos pares (a, b), tais
que tab ≤ tm, o vértice a pode ser descartado. Pela argumentação apresentada [MEGIDDO,
1983], um vértice é descartado de aproximadamente metade dos pares. Isto é, são descartados
aproximadamente 1/8 dos vértices da árvore. O problema é então reduzido ao problema do
centro ponderado em uma nova árvore T ′. Para cada vértice a não pertencente a Tvcvj , e não
descartado, formamos uma aresta (u, vc), com comprimento d(a, vc), com w(a) permanecendo
o mesmo como em T . Todas estas arestas são adicionadas à árvore Tvcvj , formando a nova
árvore T ′.

Tendo em vista que n/8 vértices foram descartados, o tempo requerido time(n) para uma árvore
com n vértices satisfaz

time(n) ≤ time(7n/8) + Cn. (3.16)

Desta forma, temos time(n) = O(n). Por [MEGIDDO, 1983], pela convexidade da função
r(x), o vértice que minimiza r(x) é ou idêntico ou adjacente ao ponto no qual r(x) possui seu
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mínimo global. Portanto, com a obtenção do mínimo global, temos no máximo dois vértices
(extremos de uma aresta) candidatos a mínimo global de r(x) em vértice.

No método apresentado por Megiddo, para cada par (a, b) de vértices não pertencentes à árvore
T+
vcvj

, são verificadas as condições para a remoção do vértice a ou do vértice b do processo de
obtenção do centro de T . Esta estratégia utilizada permitiu a remoção de n/8 vértices da árvore
T a cada etapa do algoritmo, dando origem à nova árvore T ′, de menor ordem.

Para o problema do 1-centro modificado, consideremos T a árvore original, vc o centróide de
T , T+

vc,vj
a árvore que contém o 1-centro modificado de T , e a e b dois vértices não pertencentes

a T+
vc,vj

. Se a corresponde ao vértice de perda máxima a partir de vc, dentre todos os vértices
não pertencentes a T+

vc,vj
, então podemos seguramente remover o vértice b da árvore T , inde-

pendentemente da distância do 1-centro modificado x∗ ao centróide vc ou a qualquer folha de
T+
vc,vj

. Consequentemente, todos os vértices não pertencentes a T+
vc,vj

podem ser removidos de
T , com exceção do vértice a, o qual deverá ter seu peso e sua distância d(a, vc) ao centróide
vc modificados para a definição da árvore T ′, de menor ordem. Observamos que, como será
apresentado no Capítulo 4, pela natureza do problema e da função a ser minimizada, e pela
estratégia utilizada, o tempo requerido pelo algoritmo para o problema do 1-centro modificado
será dado por

S(n) ≤ S
(n
2
+ 2

)
+ Cn. (3.17)
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4
Algoritmos Polinomiais e Resultados para o

Problema 1-Centro Modificado

Nesta seção apesentamos métodos para a resolução do problema do 1-centro em árvores, abor-
dado no trabalho de [NASCIMENTO, 2018]. São apresentadas as melhorias em complexidade
obtidas, algumas das quais, baseadas nos métodos estudados no Capitulo 3. Em seguida, são
apresentados resultados de avaliação de performance dos métodos, referentes às implementa-
ções desenvolvidas e aos experimentos computacionais realizados. Por fim, são apresentadas
observações referentes ao critério de parada utilizado no algoritmo linear, à eficiência do mé-
todo, quando comparado ao método para o problema do 1-centro clássico em árvores, e refe-
rentes às variações do problema do p-centro clássico estudadas.

4.1 Algoritmo de Tempo Quadratico

Objetivando a adoção de terminologia correlata à apresentada por [KARIV; HAKIMI, 1979a],
definimos v∗ como o 1-centro modificado de T e Φ(v∗) como o 1-raio modificado de T , deno-
tado por r1. Observamos que, no problema do 1-centro modificado são considerados pesos de
subárvores e, com isso, temos a assimetria nos valores utilizados para as arestas. Desta forma,
no exemplo da Figura 4.1, a árvore T possui o vértice v1 como 1-centro e o vértice v2 como seu
1-centro modificado, evidenciando a distinção entre os dois problemas.

Figura 4.1 – Exemplo do problema do 1-centro modificado.

Como uma primeira abordagem para a determinação de polinomialidade do problema, um pri-
meiro método para a obtenção do 1-centro modificado pode consistir na aplicação de n buscas
em profundidade na árvore T , cada uma possuindo um vértice vi ∈ V (T ) como raiz. Para
cada vértice vi ∈ V (T ), a busca em profundidade enraizada em vi calcula as quedas de tensão
ocorridas nas arestas de cada caminho raiz-folha da árvore de profundidade. Então, calcula a



queda de tensão total em cada folha da árvore de profundidade enraizada em vi e define a queda
de tensão total máxima ocorrida, considerando-se o transformador em vi. Tendo em vista que o
cálculo das demandas acumuladas de cada subárvore requer tempo linear, o método utiliza um
pré-processamento em tempo O(n) para o cálculo de todas as demandas acumuladas das subár-
vore de T . O algoritmo de pré-processamento procede de forma similar ao algoritmo de [HUA,
1961] para o cálculo da 1-mediana em árvores, iniciando a definicão dos pesos das subárvores
a partir das folhas de T . Ao término, o 1-centro modificado de T será o vértice vi com a menor
queda de tensão total máxima. Tendo em vista a aplicacão de n buscas em profundidade em T ,
esta primeira abordagem requer tempo O(n2).

4.2 Algoritmo de Tempo O(n log n)

Seja T uma árvore de entrada para o problema do redimensionamento de redes, com pesos
em vértices e distâncias em arestas estritamente positivos. Seja v um vértice de T com grau
dv. Seja T − v o grafo obtido de T pela remocão do vértice v. Objetivando uma adequacão
aos resultados apresentados por [KARIV; HAKIMI, 1979a], T − v consiste de dv subárvores
Tv,1, Tv,2, . . . , Tv,dv . Denotamos por T+

v,i a subárvore que consiste de Tv,i, o vértice v, e a aresta
que conecta v a Tv,i. Com base nos resultados apresentados por Kariv e Hakimi, temos a
seguinte extensão.

Lema 3. Seja v ∈ V (G) um vértice fixo e seja ṽ um vértice tal que a queda de tensão total seja
máxima a partir de v, i.e. Q(v, ṽ) = maxv′∈V Q(v, v′). Seja Tv,l a subárvore de T − v á qual ṽ
pertence. Então, o 1-centro modificado de T está em T+

v,l.

Prova. Assuma que o 1-centro modificado v∗ de T não esteja em T+
v,l. Então Q(v∗, ṽ) >

Q(v, ṽ), considerando-se que as demandas e distâncias sejam todas positivas em T . Portanto,
se r1 é o 1-raio modificado de T , então r1 ≥ Q(v∗, ṽ) > Q(v, ṽ) = maxv′∈V Q(v, v′). Desta
forma, por um argumento análogo ao apresentado por Kariv e Hakimi, a escolha de v como o
1-centro modificado de T é melhor do que a escolha de v∗, o que é uma contradição.

O lema conduz ao resultado a seguir.

Corolário 2. Sejam ṽ e v̂ dois vértices tais que ṽ ∈ Tv,l, v̂ ∈ Tv,k, k ̸= l, e Q(v, ṽ) =
Q(v, v̂) = maxv′∈V Q(v, v′). Então v é o 1-centro modificado de T .

Observamos que, se o vértice v no Lema 3 não é uma folha de T , então T+
v,l é uma subárvore

própria de T .

Aplicação da Abordagem por Centróides

Analogamente à abordagem por [KARIV; HAKIMI, 1979a], com a utilização o algoritmo CEN-
TRÓIDE, podemos definir o método para a obtenção do 1-centro modificado de uma árvore. No
algoritmo a seguir, as variáveis T ′, T ′′, e T ′′′ representam a cada passo as subarvores Ti, T+

vi,li
,

e Tvi,li , respectivamente.
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Por argumentações análogas às apresentadas por Kariv e Hakimi, o algoritmo obtém o 1-centro
modificado de uma árvore em O(n log n) passos. A cada passo, escolhemos um centróide de
Ti como sendo o vértice vi. Temos |Ti+1| ≤ ⌊Ti/2⌋ + 1, e o número k de passos é O(log n).
Considerando-se n uma potência de 2, isto é, sendo n = 2k, para algum k, se a cada passo
diminuímos o número de vértices da árvore corrente à metade, temos a seguinte sequência de
cardinalidades para V (T ):

n

20
→ n

21
→ n

22
→ ...

n

2k
.

Se n = 2k, então log2 n = log2 2
k = k. Ou seja, o número de passos é dado por k = O(log n).

1-CENTRO MODIFICADO(T )
T ′ = T
enquanto T ′ possuir mais de uma aresta faça

vc = CENTRÓIDE(T ′) ;
seja ṽ ∈ T tal que Q(vc, ṽ) = maxv′∈V (T )Q(vc, v

′) ;
seja T ′′′ a componente de T − vc que contém ṽ ;
seja T ′′ a subárvore que consiste de T ′′′, o vértice vc,

e a aresta que conecta vc a T ′′′ ;
se existe um vértice v̄ tal que v̄ ̸∈ T ′′ e Q(vc, v̄) = Q(vc, ṽ) então

RETORNE o vértice vc ;
// Pelo Corolário 2, o vértice vc é o 1-centro modificado de T ;

T ′ = T ′ ∩ T ′′ ;
se T ′ possui uma única aresta e = (vr, vs) então

seja dr = maxv′∈V Q(vr, v
′) ;

seja ds = maxv′∈V Q(vs, v
′) ;

se dr < ds então RETORNE o vértice vr ;
senão RETORNE o vértice vs ;

4.3 Algoritmo de Tempo Linear

Para a resolução do problema do 1-centro em árvores, a estratégia apresentada por [MEGIDDO,
1983] inclui a remoção de alguns vértices da árvore a cada iteração. Com tal estratégia, é
apresentada a seguinte recorrência.

time(n) ≤ time(7n/8) + Cn. (4.1)

Esta recorrência segue do fato de que n/8 vértices são descartados a cada iteração no método

apresentado por Megiddo. Desta forma, o tempo requerido time(n) para uma árvore com n
vértices é linear, i.e. time(n) = O(n). Para o problema do 1-centro modificado em árvores,
uma estratégia de remoção de vértices a cada iteração também pode ser utilizada para a obtenção
de um algoritmo de tempo linear. Contudo, para o problema do 1-centro modificado em árvores,
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tal estratégia conduz a um método com melhor convergência, comparativamente ao método
apresentado em [MEGIDDO, 1983].

Seja T = T0 uma árvore instância do problema do 1-centro modificado com n vértices. Seja
v0 o centróide de T0. A partir de v0, na busca pela subárvore que possui o 1-centro modificado,
verificamos qual das subárvores corresponde à perda máxima. Isto é, verificamos qual das
subárvores corresponde ao valor máximo de Q(v0, v

′).

Sejam v0,1, . . . , v0,d os vizinhos de v0 em T0, e sejam R(v0, v0,1), . . . , R(v0, v0,d) os valores de
perdas máximas em T+

v0,v0,1
, . . . , T+

v0,v0,d
. Isto é, os valores de perdas máximas a partir de v0 nas

direccões de v0,1, . . . , v0,d, respectivamente (ver Fig. 4.2). Seja R(v0, v0,k) = max1≤i≤d{R(v0, v0,i)}.
Como exemplo, para a árvore T = T0 apresentada na Figura 4.3, temos k = 5.

Figura 4.2 – Árvore T = T0 e os valores de perdas máximas R(v0, v0,1), . . . , R(v0, v0,d) a partir
de v0 nas subárvores T+

v0,v0,1
, . . . , T+

v0,v0,d
.

Figura 4.3 – Perda máxima em T = T0 a partir de v0.

Seja R(v0, v0,q) = max1≤i≤d
i ̸=k

{R(v0, v0,i)}. Isto é, R(v0, v0,q ) corresponde à perda máxima a

partir de v0 na subárvore T0\Tv0,k (ver Figura 4.4).
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Figura 4.4 – Perda máxima em T0 \ Tv0,k a partir de v0.

Se R(v0, v0,k) = R(v0, v0,q) então, pelo Corolário 2, sabemos que v0 é o 1-centro modificado
de T0. Caso contrário, seja T ′

0 a árvore obtida de T+
v0,v0,k

pela inclusão de um vértice falso u,
adjacente a v0 (ver Figura 4.5).

Figura 4.5 – Árvore T ′
0.

Em T ′
0, sejam

• w(u) =
∑

v∈T0\T+
v0,v0,k

w(v) , o somatório dos pesos dos vértices removidos de T0 na
criação de T ′

0 (ver Figura 4.6),

• d(v0, u) =
100∗R(v0,v0,q)

w(u)
(ver Figura 4.7), e

• µ(v0, u) = 1.
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Figura 4.6 – Peso do vértice u.

Figura 4.7 – Distância d(v0, u).

Sendo |V (T ′
0)| ≥ 4, os lemas a seguir estabelecem uma redução para o problema do redimensi-

onamento de redes em árvores.

Lema 4. Em T ′
0, considerando-se pesos, distâncias e constantes estritamente positivos, a perda

máxima total a partir de u é maior do que a perda máxima total a partir de v0.

Prova. Em T ′
0, a perda máxima a partir de v0 é dada por R(v0, v0,k), e a perda máxima partir de

u é dada por R(v0, v0,k) + [100 ∗R(v0, v0,k)/w(u)] ∗ w(T ′
0 − u)/100.

Como consequência, o vértice u não pode ser o 1-centro modificado da árvore T ′
0. Além disso,

cada vértice falso u em T ′
i , para i = 0, 1, . . ., é uma folha de T ′

i e, por construção, foi originado
pela remoção de uma subárvore que não continha um vértice que minimizasse a perda máxima.

Se vi é um centróide de Ti, com |V (Ti)| > 4, então vi não pode ser vizinho de dois vértices
falsos em T ′

i . Se |V (Ti)| = 3, então |V (T ′
i )| = 3. Se |V (Ti)| = 4, então |V (T ′

i )| = 4. Desta
forma, um possível critério de parada em um algoritmo para a definição do 1-centro modificado
de uma árvore T = T0 pode ser dado por |V (Ti)| ≤ 4.

Lema 5. Um vértice v em T0 é um 1-centro modificado de T0 se e somente se v for um 1-centro
modificado de T ′

0.

29



Prova. Em T0 e em T ′
0, as perdas máximas a partir de qualquer vértice v diferente de u são

iguais, pelos valores definidos para w(u), d(v0, u) e µ(v0, u).

Lema 6. Sendo T0 uma árvore de ordem n, a árvore T ′
0 possui ordem no máximo ⌊n/2⌋+ 2.

Prova. Este lema segue da construção da árvore T ′
0 a partir de T0, e da definição de centróide.

O método 1-CENTRO MODIFICADO LINEAR(T ) a seguir determina o 1-centro modificado da
árvore T e é baseado nos Lemas 3, 4, 5, e 6.

1-CENTRO MODIFICADO LINEAR(T )
T ′ = T
enquanto |V (T ′)| > 4 faça

vc = CENTRÓIDE(T ′) ;
seja ṽ ∈ T ′ tal que Q(vc, ṽ) = maxv′∈V (T ′) Q(vc, v

′) ;
seja T ′′′ a componente de T ′ − vc que contém ṽ ;
seja T ′′ a subárvore que consiste de T ′′′, o vértice vc, o vértice u

e a aresta que conecta vc a T ′′′, e a aresta (vc, u) ;
defina w(u), d(vc, u) e µ(vc, u) ;
se existe um vértice v̄ tal que v̄ ̸∈ T ′′ e Q(vc, v̄) = Q(vc, ṽ) então

RETORNE o vértice vc ;
T ′ = T ′′ ;

RETORNE o vértice vs com menor perda máxima, dentre os vértices em V (T ′),
com |V (T ′)| ≤ 4 ;

Pelo Lema 6, temos uma redução do problema, de uma instância de tamanho n a uma instância
de tamanho menor ou igual a ⌊n/2⌋ + 2. Isto é, temos a seguinte recorrência para o tempo
requerido pelo algoritmo:

tempo(n) ≤ tempo(⌊n/2⌋+ 2) + Cn. (4.2)

Lema 7. Seja T uma árvore ponderada com n vértices, com distâncias, pesos e constantes po-
sitivas, como instância do problema do redimensionamento de redes. O algoritmo 1-CENTRO

MODIFICADO LINEAR(T ) requer tempo O(n).

Prova. Seja

S(n) = S
(n
2
+ 2

)
+ Cn. (4.3)

Aplicando o método da substituição, temos
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S(n) = S
( n

22
+ 1 + 2

)
+ C

(n
2
+ 2

)
+ Cn

= S

(
n

23
+

1

2
+ 1 + 2

)
+ C

( n

22
+ 1 + 2

)
+ C

(n
2
+ 2

)
+ Cn (4.4)

...

Supondo n = 2k, para um inteiro positivo k, temos

S(n) = S

(
n

2k
+ 2

(
1 +

1

2
+

1

4
+ . . .

))
+ Cn

(
1 +

1

2
+

1

4
+ · · ·+ 1

2k−2

)
+

+ C

(
2

(
1 +

1

2
+

1

4
+ · · ·+ 1

2k−2

))
+ C

(
2

(
1 +

1

2
+

1

4
+ · · ·+ 1

2k−3

))
+

+ · · ·+ C

(
2

(
1 +

1

2
+

1

4

))
+ C

(
2

(
1 +

1

2

))
+ C

(
2
(
1
))

. (4.5)

Substituindo, temos

S(n) = S


=1

n

2k
+

≤4

2

(
1 +

1

2
+

1

4
+ . . .

)+ Cn


≤2

1 +
1

2
+

1

4
+ · · ·+ 1

2k−2

+

+ C


≤4

2

(
1 +

1

2
+

1

4
+ · · ·+ 1

2k−2

)+ C


≤4

2

(
1 +

1

2
+

1

4
+ · · ·+ 1

2k−3

)+

+ · · ·+ C


≤4

2

(
1 +

1

2
+

1

4

)+ C


≤4

2

(
1 +

1

2

)+ C

( ≤4

2
(
1
) )

. (4.6)

Isto é,

S(n) ≤ O(1) + 2Cn+ 4C log n = O(n). (4.7)

4.4 Resultados

Problemas de localização possuem aplicações que incluem a cobertura de uma determinada
região com a localização de p hospitais, torres de telefonia móvel, instalação de sirenes de
alerta e de depósitos de baterias em uma rede de delivery por drones, dentre outras ( [LIU,
2019]). Nesta seção, apresentamos uma primeira avaliação da performance computacional dos
métodos desenvolvidos para a resolução do problema do 1-centro modificado. Os experimentos
foram realizados com a utilização de um Intel(R) Core(TM) i7 - 9750H CPU @ 2.60GHz, 16.0
GB RAM - Windows 11.
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O desenvolvimento em C++ dos softwares utilizados incluiu a implementação de classes para
o armazenamento de instâncias do problema em espaço linear, e para a execução dos métodos
CENTRÓIDE em tempo O(n) e 1-CENTRO MODIFICADO em tempo O(n2), O(n log n) e O(n).
A abordagem incluiu a criação de instâncias de tamanhos de 7, 10, 13, 16, ..., e 37 vértices,
assim como uma comparação de desempenho com o primeiro método de cálculo do 1-centro
modificado em tempo quadrático, apresentado em [NASCIMENTO, 2018]. Para o conjunto
de instâncias geradas, com a representação de pesos de vértices e arestas, demandas acumu-
ladas, quedas de tensão e constantes de condutividade elétrica em precisão simples, o método
1-CENTRO MODIFICADO em tempo linear representou uma melhoria de 18,92% em média,
no tempo de execução (em operações elementares) comparativamente aos métodos O(n2) e
O(n log n).

Dentre as principais classes desenvolvidas, estão class TFila, class TVertice, class
TArvore, class TArvoreLinear. Dentre os principais métodos desenvolvidos, estão void

alg_1_Centro_Modif_Quad(void), void alg_1_Centro_Modif_nlogn(void), e void
alg_1_Centro_Modif_n(void), referentes aos métodos de tempo O(n2), O(n log n) e O(n),
respectivamente. Para o conjunto de instâncias geradas, com a representação de pesos de vérti-
ces e arestas, demandas acumuladas, quedas de tensão e constantes de condutividade elétrica em
precisão simples, a seguir a Tabela 4.1 apresenta de forma aproximada os números de operações
elementares em cada um dos métodos e a Figura 4.8 nos mostra a performance dos métodos.

Métodos
n = 7 n = 10 n = 13 n = 16 n = 19 n = 22

O(n2) 647 1378 2341 3552 5125 6809
O(n log n) 641 987 1816 1735 2979 3638
O(n) 478 848 1031 1113 1394 1804

Métodos
n = 25 n = 28 n = 31 n = 34 n = 37

O(n2) 8723 11906 13147 16169 19291
O(n log n) 4294 5065 4214 4881 7712
O(n) 1941 2082 1799 2143 2742

Tabela 4.1 – Número de operações elementares.

Figura 4.8 – Performance dos métodos O(n2), O(n log n) e O(n) para o problema do 1-centro
modificado em instâncias com n = 7, 10, . . . , 37.
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Observamos que, para as instâncias geradas, o método de tempo O(n) mostrou-se sensivelmente
mais rápido do que a estratégia de tempo O(n log n), representando uma melhoria de 64% em
operações elementares, para determinadas instâncias.

Como novas abordagens para a resolução do problema do redimensionamento de redes de ener-
gia, podemos citar a aplicação de uma variação do problema do 1-centro inverso, objetivando
uma adequação de setores de uma rede em projeto à capacidade de equipamentos utilizados na
distribuição de energia.

4.5 Observações

Critérios de Parada

Seja T ′ uma árvore com 3 vértices, e T ′′ e T ′′′ árvores com 4 vértices, como apresentado na
Figura 4.9 a seguir. Pela localização do centróide vc de T ′, a remoção de qualquer subárvore de
vc para a inclusão de um vértice simulador não acarretará em uma diminuição na ordem de T ′.
Considerando-se T ′′, pela localização do centróide vc, a remoção de duas subárvores quaisquer
de vc para a inclusão de um vértice simulador acarretará em uma diminuição na ordem de T ′′,
dando origem a uma árvore isomorfa a T ′. Em T ′′′, a remoção de uma subárvore de vc para a
inclusão de um vértice simulador pode dar origem a uma nova árvore isomorfa a T ′ ou isomorfa
à própria T ′′′.

Figura 4.9 – Árvores com 3 e 4 vértices.

Para qualquer árvore com ao menos 5 vértices, a remoção de subárvores do centróide vc dá
origem a uma nova árvore de ordem necessariamente menor. Desta forma, o critério de parada
utilizado assegura o tempo O(n) do algoritmo.

Eficiência do Método

Seja T uma árvore com n vértices, seja v0 o centróide de T , seja R(v0, v0,k) = max1≤i≤d

{R(v0, v0,i)} o valor de perda máxima a partir do centróide v0, seja v′ o vértice para o qual
ocorre a perda máxima a partir de v0 em T , i.e. seja R(v0, v0,k) = Q(v0, v

′). Seja Tv0,vk a
subárvore de T − v0 que contém v′ e seja T+

v0,vk
= Tv0,vk + v0.

Seja R(v0, v0,q) = max1≤i≤d , i ̸=k {R(v0, v0,i)}. Isto é, seja R(v0, v0,q) o valor de perda máxima
a partir de v0 na subárvore T\T+

v0,vk
. Seja v′′ o vértice para o qual ocorre a perda máxima a
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partir de v0 em T\Tv0,vk , i.e. seja R(v0, v0,q) = Q(v0, v
′′)).

Seja x um vértice em T+
v0,vk

. Se R(x, p) é o valor de perda máxima a partir do vértice x em T ,
e se o caminho de perda máxima ⟨x, . . . , v0, . . . , vp⟩ contém o centróide v0, então R(x, p) =
Q(x, vp) = Q(x, v′′). Isto é, a perda máxima a partir de x na árvore T ocorre no caminho para o
vértice v′′. Consequentemente, todos os vértices em T\T+

v0,vk
podem ser removidos da árvore T ,

com exceção do vértice v′′, sendo transformado em um vértice simulador. Na definição de u =
v′′ como um novo vértice simulador, temos a redefinição do peso w(u) =

∑
v∈T\T+

v0,v0,k
w(v), e

a inclusão da aresta (v0, u), com d(v0, u) = Q(v0, v
′′) e µ(v0, u) = 1.

Desta forma, a nova árvore T ′ é definida com a devida redefinição do peso w(v′′), da distância
d(v0, v

′′) e de µ(v0, v
′′), de forma a considerar todas as demandas acumuladas dos vértices em

T\T+
v0,vk

, para qualquer caminho de x a um vértice de T\T+
v0,vk

.

Observamos que, diferentemente da estratégia apresentada por Megiddo, tais remoções podem
ser realizadas independentemente da localização do 1-centro modificado em T+

v0,vk
. Esta pos-

sibilidade se deve ao fato de que, um caminho de perda máxima deve ser composto de subca-
minhos de perda máxima. Especificamente, para o caminho de perda máxima x ; v0 ; vp,
composto pelos subcaminhos x ; v0 e v0 ; vp em T , devemos ter v0 ; vp como um
subcaminho de perda máxima. Caso contrário, poderiamos substituir tal subcaminho por um
subcaminho de maior perda a partir de vc, contradizendo o valor máximo do caminho original
x ; v0 ; vp.

Portanto, em uma etapa do método 1-CENTRO MODIFICADO LINEAR, sendo T ′ a árvore cor-
rente com n′ vértices, temos a remoção de n′

2
− 2 vértices para a obtenção de uma nova ár-

vore de menor ordem. O conjunto de remoções no método dá origem à recorrência S(n) ≤
S((n/2) + 2) + Cn. O conjunto de remoções no algoritmo de Megiddo resulta na recorrência
S(n) ≤ S(7n/8)+Cn. Em um estudo comparativo entre as duas recorrências, considerando-se
C = 30 e S(n) = 118 (para n ≤ 4) obtemos os valores apresentados na tabela 4.2 a seguir.
Os valores podem indicar uma eficiência do método apresentado, com respeito aos métodos
clássicos para a resolução do problema do 1-centro em árvores.

Recorrências
n = 7 n = 10 n = 13 n = 16 n = 19 n = 22

S(n) = S(7n/8) + Cn 658 1198 1648 2458 3028 3688
S(n) = S((n/2) + 2) + Cn 478 778 1078 1258 1378 1738

Recorrências
n = 25 n = 28 n = 31 n = 34 n = 37

S(n) = S(7n/8) + Cn 4018 4828 4214 5518 6898
S(n) = S((n/2) + 2) + Cn 1888 2098 2218 2398 2758

Tabela 4.2 – Recorrências dos métodos.

Generalizações do Problema

Seja G = (V,E) um grafo conexo, ponderado em vértices e arestas. Objetivando a generali-
zação do problema do 1-centro modificado em árvores a grafos conexos, observamos que as
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funções de distância d(vj, vk) e de peso k(G′), estendem-se de forma imediata, assim como a
constante µ(vj, vk) do material condutor utilizado no trecho entre vj e vk. Contudo, o conceito
de demandas acumuladas pode ser revisto, de acordo com a aplicação da definição de 1-centro
ou de p-centro a ser utilizada no estudo do problema do redimensionamento de redes.

Seja ei = (vj, vk) ∈ E(G). Seja G(vj, vk) o subgrafo de G induzido pelos vértices alcançáveis
a partir de vk, sem a utilização da aresta (vj, vk). Se G é um grafo sem pontes, então G(vj, vk) =
G, e portanto

k(G(vj, vk)) = k(G). (4.8)

Como apresentado no Capítulo 2, na definição da queda de tensão em uma aresta (vj, vk) ∈
E(G), consideraremos o peso k(vi) como a demanda de energia no vértice vi ∈ T . Assim,
definimos a queda de tensão em uma aresta (vj, vk) ∈ E(G), denotada por q(vj, vk), por

q(vj, vk) =
d(vj, vk) ∗ k(G(vj, vk)) ∗ µ(vj, vk)

100
=

d(vj, vk) ∗ k(G) ∗ µ(vj, vk)
100

. (4.9)

Tendo em vista o valor fixo k(G), consideramos µ(vj, vk) = 100 em uma redução em tempo
polinomial imediata do problema do p-centro em grafos com pesos uniformes em vértices para
o problema do p-centro modificado com tal formulação, indicando a NP-Completude do pro-
blema.

Seja T = (V,E) uma árvore, ponderada em vértices e arestas. Para a generalização do problema
do 1-centro modificado em árvores a um p-centro modificado, observamos que novamente as
funções de distância d(vj, vk) e de peso k(T (vj, vk)) estendem-se de forma imediata, assim
como a constante µ(vj, vk) do material condutor utilizado no trecho entre vj e vk. Contudo, o
conceito de demandas acumuladas pode ser revisto, de acordo com as definições de p-centro e
de suprimento de energia, utilizadas no estudo do problema do redimensionamento de redes.

Variações de Problemas de Localização Correlatos

Na definição e na abordagem ao problema do 1-centro modificado em árvores, foram estudadas
inúmeras variações do problema do 1-centro clássico. As variações estudadas são apresenta-
das a seguir, muitas das quais não incluindo a assimetria observada nas demandas acumuladas,
definidas no problema do 1-centro modificado. Em [BEN-MOSHE et al., 2007], apresentam
algoritmos eficientes para resolver os problemas de centros em redes como cactos pondera-
dos. Em particular, para redes ponderadas em cactos de tamanho n, são propostos um algo-
ritmo de tempo O(n log n) para a resolução do problema do 1 centro e um algoritmo de tempo
O(n log3 n) para a resolução do problema de 2-centro contínuo ponderado. Também são forne-
cidas soluções aprimoradas para os problemas gerais de p-centro em redes cactos, e as ideias
desenvolvidas são então aplicadas para a resolução do problema do 1-centro “indesejável” em
redes cactos ponderadas.

Em [BHATTACHARYA; DAS; DEV, 2019] apresentam um algoritmo de tempo linear para o
problema do k-centro ponderado em árvores para um k fixo, resolvendo parcialmente a questão
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de longa data sobre o limite inferior da complexidade de tempo do problema. A complexi-
dade de tempo atual do algoritmo conhecido para o problema com k como parte da entrada é
O(n log n) de Wang et al. (2018). Se existe um algoritmo de tempo O(n) para k’s arbitrários
ainda permanece em aberto.

Segundo [BHATTACHARYA et al., 2020] um estudo é apresentado sobre alguns proble-
mas fundamentais de localização de instalações do ponto de vista da eficiência de espaço.
Em [BHATTACHARYA; SHI, 2014], é mostrado que o problema do 1-centro no espaço Eucli-
diano e em redes de árvores pode ser resolvido eficientemente no modelo de espaço constante.
Os autores apresentam um algoritmo que requer espaço O(1) para o problema do 1-centro em
árvores.

Por [BHATTACHARYA; SHI, 2014], em um modelo de problema de localização de instala-
ções, pesos de vértices incertos são representados por intervalos de pesos possíveis, e procura-se
uma solução “robusta” que minimize o máximo “arrependimento” (Kouvelis et al., 1993). Pri-
meiro, Bhattacharya et al. fornecem um algoritmo de tempo O(n) para as redes de caminho
e, em seguida, apresentam um algoritmo de tempo O(n log n) para as redes em árvore, que
melhora o algoritmo anteriormente melhor para esse problema (Yu et al., 2008), com complexi-
dade de tempo O(n log2 n). Os autores apresentam também um algoritmo de tempo O(n log n)
para redes uniciclo, possuindo apenas um ciclo. O algoritmo apresentado para cactos requer
tempo O(n log2 n). Por [BHATTACHARYA; SHI, 2014], não existem resultados publicados
anteriormente, adaptados especificamente para redes de cactos. Ao resolver esses problemas,
são apresentadas várias estruturas de dados, que podem ser úteis para outras aplicações.

Conforme [BHATTACHARYA; SHI, 2014] é apresentado um problema do p-centro (p ≥ 2)
em redes gerais pode ser transformado no conhecido problema de medida de Klee (Overmars
e Yap, 1991), resultando em um algoritmo significativamente melhorado para o caso contínuo,
de tempo O(mpnp/22log ∗n log n) para p ≥ 3, onde n é o número de vértices, m é o número de
arestas, e log∗n denota o logaritmo iterado de n (ver [CORMEN et al., 2009]). Para p = 2, o
tempo de execução do algoritmo melhorado é O(m2n log2 n).

Visto [BHATTACHARYA et al., 2006] é considerado o problema de localizar uma instalação
em forma de caminho ou em forma de árvore (extensiva) em árvores, sob a condição de que
as instalações existentes já estejam localizadas. Os autores apresentam um método de poda
paramétrica para resolver os problemas de localização de 1-centro ponderado extensivo dis-
creto/contínuo condicional em árvores em tempo linear. Os resultados apresentados melhoram
os resultados de tempo de O(n log n), devidos a Tamir et al. (J. Algebra 56:50–75, 2005).

De acordo com [CABELLO; ROTE, 2010] consideramos o problema de encontrar centros
“indesejáveis” em grafos. Para grafos arbitrários com n vértices e m arestas, os autores apre-
sentam um algoritmo randômico com tempo esperado O(n log2 n +m log n). Para grafos pla-
nares, os autores apresentam algoritmos com tempo esperado O(n log n) e tempo de pior caso
O(n log3 n). Para grafos com largura de árvore limitada, é fornecido um algoritmo que requer
tempo O(n log n) no pior caso. Os algoritmos fazem uso de busca paramétrica e diversos resul-
tados para o cálculo de distâncias em grafos com largura de árvore limitada e grafos planares.

[GØRTZ; WIRTH, 2006] abordam o problema do k-centro, algumas de suas variações e as-
simetria. Variações do k-centro podem modelar problemas da vida real com mais precisão do
que a formulação original. Por Gørtz e Wirth, a assimetria é um impedimento para a aproxi-
mação em muitos problemas em grafos, como k-centro, localização de instalações, k-mediana
e o TSP. Os autores fornecem um algoritmo de O(log∗ n)-aproximação para o problema do
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k-centro ponderado assimétrico. No trabalho, os vértices são ponderados, com um custo total
para a abertura de centros. Na variação de p-vizinho cada vértice deve ter p centros (não ponde-
rados) próximos. Por fim, são apresentadas versões não aproximáveis do problema do k-centro
assimétrico.

[HARTMANN; LENDL; WOEGINGER, 2020] apresentam um estudo sobre um problema de
localização contínuo em grafos não direcionados onde todas as arestas possuem comprimento
unitário. O objetivo é cobrir todo o grafo com um número mínimo de centros com alcance
de cobertura δ > 0. Equivalentemente, no problema abordado devemos posicionar o menor
número possível de centros com a condição de que cada ponto em cada aresta esteja a uma dis-
tância no máximo δ de um desses centros. Os autores investigam este problema de cobertura em
termos do parâmetro racional δ, e apresentam condições em que o problema pode ser resolvido
em tempo polinomial, e em que o problema é NP-difícil. No trabalho, também é apresentada
uma analise de complexidade parametrizada, com o tamanho da solução como parâmetro: o
problema resultante é tratável por parâmetro fixo, para δ < 3/2, e é W[2]-difícil para δ ≥ 3/2.

[NGUYEN; ANH, 2015] consideram uma generalização do problema da 1-mediana inverso, o
problema do k-centro inverso, em árvores com pesos de vértices variáveis. Em contraste com a
possibilidade de resolução em tempo linear do problema da 1-mediana inverso em árvores, os
autores provam que o problema do k-centro inverso em árvores é NP-difícil. Adicionalmente, o
problema do 1-centro inverso, um caso especial do problema apresentado com k = 1, em uma
árvore com n vértices pode ser resolvido em tempo O(n2).

No problema do 1 centro inverso em uma rede devemos modificar os comprimentos das arestas
ou os pesos dos vértices dentro de certos limites, de modo que o vértice pré-especificado se
torne um 1-centro (absoluto) da rede perturbada e o custo de modificação seja minimizado.
Em [NGUYEN; NGUYEN-THU; HUNG, 2018], apresentam um estudo sobre o problema do
1-centro inverso em uma árvore ponderada com custo uniforme de modificação do comprimento
da aresta, uma generalização para o problema análogo em uma árvore não ponderada.

[PUERTO; RODRíGUEZ-CHíA; TAMIR, 2010] apresentam um modelo minimax unificando
várias classes de problemas de localização de centro planar de instalação única. Os autores
consideram o problema do p-centro em árvores onde os clientes são modelados como subárvores
contínuas. São abordados modelos não ponderados e ponderados. Os autores mostram que uma
modificação relativamente simples dos algoritmos de tempo linear clássicos de Handler para
problemas não ponderados de 1- e 2-centros em relação a clientes pontuais resolve linearmente
os problemas não ponderados de 1- e 2-centros com adendos do modelo de cliente de subárvore
acima. Também são desenvolvidos algoritmos de tempo polinomial para os problemas de p-
centro baseados na resolução de problemas de cobertura e busca sobre domínios especiais.

[WANG; ZHANG, 2017] apresentam um algoritmo de tempo O(nlogn) para o problema do
k-centro em árvores.

Em [WANG; ZHANG, 2016], consideram o problema do 1-centro para dados incertos em
redes de árvores. Neste problema, é dada uma árvore T e n pontos incertos (ponderados), cada
um com m possíveis localizações em T associadas a probabilidades. O objetivo é encontrar um
ponto x∗ em T tal que a distância máxima (ponderada) esperada de x∗ a todos os pontos incertos
seja minimizada. Segundo Wang e Zhang, esse problema não foi investigado anteriormente. Os
autores propõem uma técnica refinada de poda e busca que resolve o problema em tempo linear.

[YU; LI; LEE, 2018] propõem um novo tipo de problema de localização de rede para a definição
de instalações múltiplas, mas distintas, chamado de problema dos centros de p-serviços. Neste
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problema, devemos localizar instalações no grafo, cada uma das quais fornecendo um serviço
distinto requerido por todos os vértices. Para cada vértice, sua distância de p-serviço é a soma
de suas distâncias ponderadas aos p centros. O objetivo é minimizar o valor máximo entre as
distâncias de p-serviços de todos os vértices. Yu et al. mostram que o problema dos centros
de p-serviços em um grafo geral é NP-difícil e propõem um algoritmo simples de aproximação
com fator p/c para qualquer constante inteira c. Além disso, apresentam um estudo do caso
básico p = 2 em caminhos e árvores. Quando a rede subjacente é um caminho, o problema
dos centros de 2-serviços é resolvido em tempo O(n), onde n é o número de vértices. Quando
a rede subjacente é uma árvore, é apresentado um algoritmo de tempo O(n3) para o caso de
pesos não negativos, um algoritmo de tempo O(n log n) para o caso de pesos positivos e um
algoritmo de tempo O(n) para o caso de pesos uniformes.

[YU; LIN; WANG, 2008] apresentam algoritmos eficientes para os problemas do 1-centro e da
1-mediana minmax-regret em um grafo geral e uma árvore com pesos de vértices incertos. Para
o problema do 1-centro minmax-regret em um grafo geral, é apresentada uma melhoria no limite
superior anterior de O(mn2 log n) para O(mnlogn). Para o problema em uma árvore, o limite
superior é melhorado de O(n2) para O(n log2 n). Para o problema da 1-mediana minmax-regret
em um grafo geral, o limite superior é melhorado de O(mn2 log n) para O(mn2 + n3 log n).
Para o problema em uma árvore, o limite superior é melhorado de O(n log2 n) para O(n log n).

[BANIK et al., 2016] apresentam dois algoritmos melhorados para o problema do p-centro
discreto ponderado para redes em árvore com n vértices. Um dos algoritmos propostos roda
em tempo O(n log n + p log2 n log(n/p)). É observado que, para todos os valores de p, o
algoritmo apresentado mostrou-se tão rápido quanto ou mais rápido que o algoritmo de tempo
O(n log2 n) mais eficiente, obtido pela aplicação da técnica de aceleração de Cole ao algoritmo
devido a Megiddo e Tamir.

[CALIK; LABBÉ; YAMAN, 2015] apresentam diferentes variantes do problema do p-centro.
Revisam casos polinomiais especiais, determinam a complexidade dos problemas, apresentam
formulações de programação linear inteira mista, algoritmos exatos e heurísticas, e apresentam
revisões de várias extensões do problema.

Generalizando um resultado de [PLESNíK, 1987] apresentam um algoritmo polinomial com
uma razão de erro de pior caso de 2 para o problema do p-centro em grafos conexos com com-
primentos em arestas e pesos em vértices. Uma pequena modificação deste algoritmo fornece
razão 2 também para o problema do p-centro absoluto. Ambas as heurísticas são melhores
possíveis no sentido de que qualquer razão menor implicaria P = NP.

[HANDLER; MIRCHANDANI, 1979] apresentam algoritmos para um conjunto de problemas
de otimização baseados em redes, considerando aplicações em redes de comunicação, redes de
distribuição de energia e redes de transportes.

Em [JAEGER; GOLDBERG, 1994] estendem a polinomialidade do problema do p-centro não
capacitado ao caso em que cada centro pode servir a um número limitado de clientes e mostram
que o problema do p-centro capacitado em árvores pode ser solucionado em tempo polinomial
quando as capacidades são idênticas.
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5
Conclusão

5.1 Considerações Finais

Nesta dissertação, apresentamos um estudo sobre o problema do 1-centro modificado em árvo-
res, como aplicação ao problema do redimensionamento de redes de energia. Em tal estudo,
foram apresentados resultados fundamentando a técnica de utilização de centróides para a ob-
tenção do 1-centro modificado de uma árvore. Os resultados estendem os apresentados por
[KARIV; HAKIMI, 1979a] em algoritmos para a obtenção do 1-centro. Com a utilização da
técnica, foi desenvolvido um primeiro método de tempo O(n log n) para a obtenção do 1-centro
modificado em uma árvore. O estudo igualmente incluiu a apresentação de condições para a
utilização da técnica de vértices simuladores. Em tal estratégia, diversas subárvores são substi-
tuídas por um único vértice simulador, possibilitando a eliminação de inúmeros vértices a cada
etapa, com a sensível diminuição do tempo requerido por um algoritmo de tempo linear, quando
comparado aos algoritmos clássicos existentes para a obtenção de 1-centro.

A implementação dos métodos desenvolvidos possibilitou a verificação da superioridade do
algoritmo de tempo O(n), quando comparado a outros métodos. Igualmente, foram resolvidos
casos especiais da recorrência do método de tempo linear apresentado para o problema do 1-
centro modificado em árvores e da recorrência do método para o problema do 1-centro clássico
em árvores apresentado por [MEGIDDO, 1983], indicando um menor tempo requerido pelo
método desenvolvido no presente trabalho, embora ambos requeiram tempo O(n).

Aplicações de conceitos de teoria da localização em problemas de redimensionamento de ener-
gia são apresentadas em [GARCIA et al., 2003] e [SILVA; FRANCA; SILVEIRA, 1996]. Além
disso, com os estudos de NP-Completude sobre problemas de localização existentes, foi pos-
sível a verificação de NP-Completude para uma determinada formulação de generalização do
problema do 1-centro modificado em árvores para o p-centro, considerando-se a classe geral de
grafos.

5.2 Trabalhos Futuros

Como apresentado no Capítulo 4, [BEN-MOSHE et al., 2007] apresentam algoritmos eficientes
para a resolução de problemas de centros em redes de cactos ponderados. Em particular, para as
redes ponderadas de cactos de tamanho n, é proposto um algoritmo de tempo O(n log n) para
a resolução do problema do 1-centro e um algoritmo de tempo O(n log3 n) para a resolução do



problema do 2-centro contínuo ponderado.

[BHATTACHARYA; DAS; DEV, 2019] apresentam um algoritmo de tempo linear para o pro-
blema do k-centro ponderado em árvores para um k fixo, resolvendo parcialmente uma questão
sobre o limite inferior da complexidade de tempo do problema.

No problema do 1-centro inverso em uma rede devemos modificar os comprimentos das arestas
ou os pesos dos vértices dentro de certos limites, de modo que um vértice pré-especificado se
torne um 1-centro 1 (absoluto) da rede perturbada e o custo de modificação seja minimizado.
Em [NGUYEN; NGUYEN-THU; HUNG, 2018], é apresentado um estudo sobre o problema do
1-centro inverso em uma árvore ponderada com custo uniforme de modificação do comprimento
da aresta.

[YE; LI; WANG, 2018] apresentam um estudo sobre o problema de encontrar um centro de
caminho em uma árvore na qual os pesos dos vértices são incertos e a incerteza é descrita por
intervalos dados. Devemos encontrar uma solução de arrependimento minmax, que minimize a
perda de pior caso na função objetivo. [YE; LI; WANG, 2018] apresentam um algoritmo de
tempo O(n log n) para o problema.

Como atividades futuras, podem ser citados estudos de aplicações de algoritmos de 1-centro
modificado para redes cactos, no contexto do problema do redimensionamento de redes. Além
disso, a complexidade de tempo atual do algoritmo conhecido para o problema do k-centro
ponderado em árvores para um k fixo, com k sendo parte da entrada, é O(n log n). Como um
problema em aberto citado, está a verificação da existência de um algoritmo de tempo O(n)
para k’s arbitrários. Por fim, pode ser investigada a aplicação do problema do 1-centro inverso
e do problema do centro de caminho em uma árvore, ao problema do redimensionamento de
redes de energia.
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