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"A Matemadtica, quando a
compreendemos bem, possui ndo
somente a verdade, mas também a
suprema beleza."

(Bertrand Russel)



RESUMO GERAL

DO NASCIMENTO, Isis Paulo. O Problema do 1-Centro em Arvores: Variacoes e Apli-
cacoes. 2023. 44f. Dissertacdo (Mestrado em Modelagem Matemdtica e Computacional).
Instituto de Ciéncias Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ,
2023.

Problemas de localizacdo possuem aplicagdes em diversas areas, incluindo o estudo do plane-
jamento de redes de distribui¢do de energia. No presente trabalho, apresentamos o problema do
1-centro modificado em 4rvores com aplicagdes ao estudo do redimensionamento de redes de
energia, bem como um algoritmo para a resolu¢éo do problema em tempo O(n), onde conside-
ramos pesos e distancias positivas.

A pesquisa também inclui a apresentacdo de resultados computacionais para alguns dos méto-
dos apresentados, como os métodos de resolugdo em tempo O(n?), O(nlogn) e O(n), assim
como novas estratégias para a aplicacdo de problemas de localizacdo ao projeto de redes de
distribuicdo de energia.

Palavras-chave: Arvores, problemas de localizagdo, 1-centro.



GENERAL ABSTRACT

DO NASCIMENTO, Isis Paulo. The Problem of 1-Center in Trees: Variations and Ap-
plications. 2023. 44p. Dissertation (Master in Mathematical and Computational Modeling).

Instituto de Ciéncias Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ,
2023.

Location problems have applications in many areas, including the study of the planning of
power distribution systems. In the present work, we present the modified 1-center problem in
trees, with applications to the study of resizing of power distribution networks, as well as an
algorithm to solve the problem in O(n) time, considering positive weights and distances.

The research also includes the presentation of computational results for some of the methods
presented, such as the resolution methods in O(n?), O(nlogn) and O(n) time, and new strate-
gies for the application of location problems to the design of power distribution networks.

Keywords: Trees, location problems, 1-center.
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Introducao

1.1 Motivacao do Tema

A distribuicdo de energia elétrica no Brasil possui regulamentacdes e normas técnicas que de-
vem ser seguidas, objetivando-se exceléncia na prestacio do servico [ANEEL, 2022]. De acordo
com [GARCIA et al., 2003], o sistema de distribuicao de energia elétrica € a parte do sistema
de poténcia que abrange desde as subestacdes rebaixadoras até os transformadores (sistema de
distribuicdo primério) e destes até a entrada elétrica dos consumidores (sistema de distribuicdo
secundario).

Considerando fatores impeditivos ao controle do Estado em planejar ou remanejar novas redes
de distribuicdo que atue em regides menos favorecidas, em muitas vezes, uma porcentagem da
populacdo toma a iniciativa na aquisi¢cdo de servicos publicos, ainda que de maneira temporéria.
No caso da eletricidade, por vezes, seu fornecimento se dd por meio de conexdes nio regulares,
o chamado popularmente de "gato", com o redirecionamento de energia do sistema elétrico
principal a casas e/ou empresas inicialmente nao registradas.

Com o objetivo de atender de forma padrao a populacdo em tais regides e, por outro lado,
representando um beneficio a concessiondrias de energia elétrica, o estudo e a elaboracdo de
uma nova rede de energia tornaram-se imprescindiveis, assim como o estudo do problema do
redimensionamento de energia elétrica. Determinadas aplicagdes de algoritmos de particiona-
mento e de localizacdo em grafos ao planejamento e redimensionamento de redes de energia
sao apresentadas em [ASSIS; FRANCA; USBERTI, 2014], [GARCIA et al., 2003] e [SILVA;
FRANCA; SILVEIRA, 1996].

O problema de alocacdo de equipamentos envolve a decisdo sobre como alocar de forma oti-
mizada recursos limitados de maneira a atender determinadas demandas, podendo incluir a
minimizagdo do custo total, a maximizacao da eficiéncia ou o equilibrio de ambos. As técnicas
utilizadas para a resolugdo deste tipo de problema podem incluir programacao linear, algoritmos
genéticos e heuristicas [GARCIA et al., 2003].

Neste trabalho, apresentamos o problema do 1-centro modificado, aplicado ao redimensiona-
mento de uma rede de energia em drvores, assim como dois algoritmos, de tempos O(n logn) e
O(n), para sua solucdo, nos quais consideramos pesos e distincias positivas. O trabalho inclui
a apresentacdo de resultados computacionais obtidos na implementagcdao dos métodos.



1.2 Escopo da Dissertaciao

Na presente dissertacdo, apresentamos um estudo de métodos existentes para a resolucao de
problemas de localizacdo, dentre os quais, os métodos de [KARIV; HAKIMI, 1979a] e [ME-
GIDDO, 1983] para o problema do 1-centro.

O Capitulo 2 apresenta os conceitos, as defini¢cdes principais em teoria dos grafos e as notagdes
utilizadas no trabalho. Sdo também apresentadas as classes P, NP e NP-Completo, de problemas
de decisdo e, por fim, é apresentado o problema do 1-centro modificado em arvores e suas
generalizagdes.

O Capitulo 3 apresenta defini¢des de problemas de localizagdo em grafos, como os problemas
da 1-mediana, da p-mediana, do 1-centro e do p-centro. No capitulo sdo também apresentados
resultados de NP-Completude referentes aos problemas estudados, e os algoritmos de Kariv e
Hakimi, e de Megiddo, para a obten¢do do 1-centro em arvores.

No Capitulo 4, apresentamos algoritmos para a resolu¢do do problema do 1-centro em arvo-
res. O primeiro algoritmo, de tempo O(n?), é apresentado em [NASCIMENTO, 2018]. Um
segundo método, de tempo O(nlogn), é apresentado, e segue a estratégia do centrdide para a
obtencdo do 1-centro modificado. Os resultados que fundamentam tal método sdao igualmente
apresentados. O terceiro método requer tempo O(n) e utiliza propriedades da fungdo a ser
minimizada para a reducdo do problema, de uma instancia de tamanho n a uma instancia de
tamanho 7 + 2. O capitulo também inclui a apresentagdo de resultados computacionais referen-
tes a implementacdo dos métodos e um estudo das recorréncias em linguagem C++, indicando
um nimero menor de operagdes do método O(n), se comparado a algoritmos de localiza¢do de
grafos conhecidos. Por fim, sdo apresentados no capitulo variacdes de problemas de localiza-
cdo em grafos relacionadas ao problema do 1-centro modificado em arvores e aos problemas de
localiza¢ao abordados no estudo do redimensionamento de redes.

O Capitulo 5 € dedicado a apresentacdo das consideracdes finais e indicacdes de trabalhos futu-
ros.

1.3 Objetivo Geral

Este trabalho possui como objetivo reduzir a complexidade de tempo do algoritmo para obten-
¢do do 1-centro modificado em arvores.

1.4 Objetivos Especificos

Como objetivos especificos, temos:

* A pesquisa de técnicas existentes para a resolu¢cdo de problemas de localizacdo em arvo-
res, tais como a aplicacdo de centréides (Método de Kariv e Hakimi) e procedimentos de
reducdo (Método de Megiddo).

* Implementar algoritmos existentes e os desenvolvidos, objetivando uma primeira anélise
de performance dos métodos desenvolvidos.

» Apresentar problemas de localizacdo abertos e outros correlatos ao problema do redimen-
sionamento de redes.



Conceitos Preliminares

Neste capitulo, sdo apresentados conceitos, definicdes principais e notacdes utilizadas em teoria
dos grafos, com o objetivo de mostrar a aplicacao da teoria a um problema de alocacio de equi-
pamentos, no contexto do problema do redimensionamento de redes. Além de tais definicoes,
sdo apresentadas de modo ndo formal as classes P, NP e NP-Completo, de problemas de deci-
sdo e exemplos de problemas dessas classes, assim como a defini¢do do problema do 1-centro
modificado em drvores e suas generalizagdes.

2.1 Definicoes Principais

Um grafo é um par ordenado G = (V, F), onde V' € um conjunto finito, ndo vazio, de elementos
denominados vértices e I/ € um conjunto de pares ndo ordenados distintos de elementos de V'
denominados arestas. Se e = (u,v) é uma aresta de G, dizemos que u e v sdo adjacentes ou
vizinhos em (. Tais vértices sao as extremidades da aresta e a aresta é incidente aos vértices u e
v. A ordem do grafo GG é o nimero de vértices de V, denotado por |V|. O niimero de arestas de
E € denotado por | E|. Dado um grafo G qualquer, utilizamos |V | = n e |E| = m. A vizinhan¢a
de um vértice v, denotada por Adj(v), é o conjunto de seus vizinhos. O grau d(v) de um vértice
v € o numero de vizinhos que v contém, ou o nimero de arestas incidentes a ele ( [COGIS;
ROBERT, 2003], [CORMEN et al., 2009]).

Um grafo G’ = (V', E’) é um subgrafo de G = (V, E) quando V"’ é um subconjunto de V' e
E’ é um subconjunto de E. Um subgrafo induzido de um grafo G = (V| E) é um subgrafo
G’ = (V', E') cujas arestas sdo todas as arestas de G cujas extremidades estdo em V’. Neste
caso, dizemos que G’ = G[V'] € o subgrafo de G induzido por V'. Um caminho de um vértice
s para um vértice ¢t em um grafo G é uma sequéncia (vq, ..., vx) de vértices, tal que s = vy,
t = v e (vj,v41) € E(G), paral < j < k. O caminho € dito simples se todos os vértices
forem distintos. O comprimento do caminho é dado pelo seu nimero de arestas. Um ciclo é um
caminho no qual v; = vy.

Um grafo G = (V, E) é dito ser uma drvore se for aciclico (i.e. ndo possuir ciclos) e conexo (i.e.
existir um caminho entre qualquer par de vértices). Como um resultado cldssico, em qualquer
grafo G = (V, F), a soma dos graus de todos os seus vértices € igual a duas vezes o seu nimero
de arestas, isto €, > /() d(v) = 2|E|. Adicionalmente, se 7' = (V, E') € uma drvore, entdo
m=mn— 1.

Dizemos que um grafo G = (V, E) é ponderado em vértices quando cada vértice possui um



peso associado a ele. Denotaremos por w(v) o peso do vértice v € V(G). Para um conjunto
de vértices V' C V, definimos o peso de V' por w(V') = Y _,, w(v). Sendo G’ = (V', E')
um subgrafo de G = (V, E), definimos o peso de G’ por w(G') = w(V') = > o w(?').
Dizemos que G € ponderado em arestas quando cada aresta possui um peso associado a ela, e
denotaremos por w(e) o peso da aresta e € F(G), conforme a Figura 2.1 abaixo:

Figura 2.1 — Grafo G = (V, E); Arvore G’ = (V', E')

Dados dois vértices u e v em um grafo G(V, E), denominamos distdncia entre u € v 0 compri-
mento do menor caminho entre esses dois vértices. No caso da ndo existéncia de tal caminho,
consideramos a distdncia como infinita. Denotaremos por d(u, v) a distdncia entre os vértices u
e v (ver [CAMICIA; VICENTE, 2008]). Em um grafo conexo, distancia € uma métrica, isto &,
para todo vértice u, v e z de G(V, ), temos:

i. d(u,v) > 0comd(u,v) = 0 se e somente se u = v;
ii. d(u,v) = d(v,u) ocorre apenas quando o grafo é ndo orientado;
iii. d(u,v) +d(v,z) > d(u, ).

Uma 4rvore 7" na qual determinamos um de seus vértices como vértice raiz € dita drvore enrai-
zada. Como exemplo, na Figura 2.2 temos a representacdo de uma arvore 7' em uma implemen-
tacdo. Sendo v uma representagdo de um vértice v € V' (T') na implementagdo, os campos para
cada vértice v incluem v.rotulo,v.pesoev.grau. Oconjuntov.adj[1l .. v.grau] re-
presenta os vértices adjacentes a v na drvore T. Sendo k = grau(v) e Teww1)s Twwa)s -+ - s Lo,
as subdrvores de 7' obtidas pela remocdo de v em 7', o conjunto v.peso_subarvore [l

. v.grau] representa 0s pesos W(1{(vv,)), W(T(v05)); - - > W(T(way,)) das subdrvores T, .,),
To,09)s - - » Twwy)- Observamos que tal representacdo requer espaco O(n).

' :

56

Figura 2.2 — Arvore T = (V, E); Representacio de T'.



Para um dado vértice v € V(G), a obteng@o dos pesos das subarvores pode ser realizada como
segue. Se o vértice v € uma folha de T, entdo, para sua tnica subarvore T, ,,), temos

w(Tlwwn) = w(T = v) = w(T) — w(v). (2.1)
Se v ndo € uma folha de 7', entdo, para cada subérvore 1, ,,) de 1" enraizada em v;, temos

W(Twy) = w(T) — w(v) — | S (T 2.2)

Com as Equacdes 2.1 e 2.2, dado um vértice v de T, temos que o procedimento para o cédlculo
de v.peso_subarvore[l..v.grau] inicia-se pelas folhas de T. Para cada folha v de T, o
célculo de v.peso_subarvore[1] € imediato. As folhas v de T podem ser entdo suprimidas
de T, dando origem a novas folhas em T. Para cada nova folha v de T, podemos aplicar a Equa-
¢do 2.2 para o cdlculo de v.peso_subarvore[i]. O procedimento segue sucessivamente até
que ndo se tenha mais vértices em T. O tempo total requerido pelo procedimento é O(n). Ob-
servamos que os pesos de todas as subarvores de todos os vértices em T podem igualmente ser
obtidos em tempo linear pela aplicacdo de um algoritmo de busca em profundidade em T.

Diversos conceitos em teoria dos grafos sao apresentados por [COGIS; ROBERT, 2003] e
[CORMEN et al., 2009]. Em [CORMEN et al., 2009], temos as defini¢cdes das classes de pro-
blemas P, NP e NP-Completo, assim como diversos resultados de NP-Completude. Em algumas
demonstracdes de NP-Completude de problemas de localizagdo em grafos, temos a utilizacao
de reducdes em tempo poliomial de problemas como o problema da cobertura de vértices e o
problema do conjunto dominante (ver [KARIV; HAKIMI, 1979a], [KARIV; HAKIMI, 1979b]
e [GAREY; JOHNSON, 1979].

Para a apresentacdo dos problemas, considerando-se um grafo G = (V, E'), uma cobertura de
vértices de G é um subconjunto V' C V(G) tal que se (u,v) € E(G), entdo ou u € V', ou
v € V' ouu,v € V. Ou seja, cada vértice cobre suas arestas incidentes, e uma cobertura
de vértices para GG € um conjunto de vértices que cobre todas as arestas em E(G). O tamanho
de uma cobertura de vértices € dado pelo nimero de vértices nela. No problema da cobertura
de vértices, devemos encontrar uma cobertura de vértices de tamanho minimo para um dado
grafo. Podemos enunciar este problema de otimizagdo como um problema de decisdo: dado
um grafo G = (V| F) e um tamanho k, o grafo GG possui uma cobertura de vértices de tamanho
k. Como um exemplo, o grafo GG da Figura 2.3 possui o conjunto {vs, v3, v4, v5} como uma de
suas coberturas de vértices, a qual ndo € a de menor tamanho.

Dado um grafo G = (V, E), um conjunto dominante de G é um subconjunto V' C V(G) tal
que, para todo u € V(G), ouu € V', ou um vizinho v € V'. Ou seja, cada vértice estd em V'
ou possui um vizinho em V’. O tamanho de um conjunto dominante é dado pelo seu nimero
de vértices. O niimero de dominac¢do ~v(G) de G é o nimero de vértices no menor conjunto
dominante para G. Na versdo de decisdao do problema do conjunto dominante, para um dado
grafo G = (V, E') e um tamanho k, devemos decidir se o grafo possui um conjunto dominante de
tamanho no maximo k. Como problema de otimizacdo, dado um grafo G = (V, E), devemos
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Figura 2.3 — Cobertura de vértices de G = (V, E).

determinar v(G). Como um exemplo, o grafo GG da Figura 2.4 possui o conjunto dominante
{v1,v2}, 0 qual ndo é uma cobertura de vértices.

Figura 2.4 — Conjunto dominante de G = (V, F).

2.2 NP-Completude

Segundo [CORMEN et al., 2009], problemas podem ser classificados como tratdveis se pu-
derem ser solucionados em tempo polinomial, € como intratdveis se requererem tempo super-
polinomial para a obteng¢do de uma solugdo. O status da classe dos problemas NP-Completos
¢ desconhecido. Nao sdo conhecidos algoritmos de tempo polinomiais para a solucao de um
problema NP-Completo. Por outro lado, ndo existe uma prova de limite inferior de tempo
super-polinomial para qualquer problema desta classe.

A classe P, informalmente, consiste dos problemas que podem ser resolvidos em tempo polino-
mial. Especificamente, por [CORMEN et al., 2009], sdo problemas que podem ser soluciona-
dos em tempo O(n*), para alguma constante k, onde n € o tamanho da entrada para o problema.
A classe NP consiste dos problemas que sao “verificiveis” em tempo polinomial. Isto &, se pos-
suimos um “certificado” de uma solucao, entdo podemos verificar que o certificado esta correto
em tempo polinomial no tamanho da entrada do problema. Um problema em P estd também em
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NP, pelo fato de que se o problema estd em P entdo ele pode ser resolvido em tempo polinomial
sem ser fornecido um certificado. Isto €, temos P C NP. Contudo, a questdo P = NP permanece
em aberto. De modo nao formal, um problema € NP-Completo se estd em NP e é ao menos tao
“dificil” quanto qualquer problema em NP. Por [CORMEN et al., 2009], se algum problema
NP-Completo puder ser solucionado em tempo polinomial, entdo todo problema em NP possui
um algoritmo de tempo polinomial. Uma demonstra¢do de que um problema ¢ NP-Completo
pode representar uma boa evidéncia de sua intratabilidade. Neste caso, em lugar de buscar-
mos um algoritmo eficiente para a solu¢c@o exata de um problema, podemos buscar desenvolver
um algoritmo de aproximag¢do ou ainda resolver um caso especial tratdvel. (Determinados pro-
blemas NP-Dificeis para a classe geral de grafos podem ser resolvidos eficientemente quando
restritos a drvores. Como exemplo, pode ser mostrado que se 7' é uma darvore com n > 2 vérti-
ces, entdo seu nimero cromdtico é dado por x(7") = 2. Contudo, para a classe geral de grafos,
a determinacdo de x(G) é um problema NP-Dificil [NASCIMENTO, 2018].)

Em um problema de otimizagdo, cada solugdo vidvel possui um valor associado, e buscamos
encontrar uma solucio vidvel com o melhor valor. A NP-Completude aplica-se diretamente a
problemas de decisdo, para os quais a resposta € “sim” ou “ndo”. Apesar deste fato, podemos
fazer uso da relacdo entre problemas de decisdo e problemas de otimizacdo. Como um exemplo
de problema de decisdo e seu problema de otimizagdo correlato, temos o problema de deci-
dirmos se existe uma coloragdo vilida dos vértices de um dado grafo G = (V, E) que utilize
no maximo k cores (sendo £ um nimero de cores dado), e o problema de encontrarmos x (G).
Podemos resolver este problema de decisdo encontrando o valor de x(G), e entdo comparando
X(G) com o pardmetro k do problema de decisdo. Por [CORMEN et al., 2009], o problema
de decisdao é em um sentido mais fdcil, ou pelo menos ndo mais dificil do que o problema de
otimizacdo. Expressando este fato de forma relevante a8 NP-Completude, se podemos fornecer
evidéncia de que um problema de decisdo € dificil, também fornecemos evidéncia de que seu
problema de otimizacdo relacionado € dificil [CORMEN et al., 2009].

A noc¢do de que um problema ndo € mais fécil ou mais dificil do que outro pode ser aplicada
quando ambos os problemas sdo problemas de decisdo, e pode ser utilizada em quase todas
as provas de NP-Completude. Seja A um problema de decisdo, que desejamos solucionar em
tempo polinomial. Seja B um problema de decisdo que ja saibamos como resolver em tempo
polinomial. Um algoritmo de reducdo é um procedimento de tempo polinomial que transforma
qualquer instancia « do problema de decisdo A em uma instancia 8 do problema de decisao
B, de forma que suas respostas sejam iguais. Isto €, a resposta para « é “sim” se e somente
se a resposta para 3 for “sim”. Desta forma, para resolvermos o problema A em tempo po-
linomial, dada uma instancia a do problema A, utilizamos o algoritmo de redugdo em tempo
polinomial para transforma-la em uma instancia 5 do problema B. Em seguida, executamos
o algoritmo de decisdo em tempo polinomial para B, tendo como entrada a instincia 5. Por
fim, utilizamos a resposta para /5 como resposta para «. Por outro lado, poderiamos utilizar a
técnica para mostrarmos a inexisténcia de algoritmo de tempo polinomial para um problema
B. Primeiramente, podemos supor um problema de decisdao A para o qual ndo possa existir ne-
nhum algoritmo de tempo polinomial. Supomos, além disso, que temos uma redugdo em tempo
polinomial que transforma instancias de A em instancias de B. Podemos utilizar, entdo, uma
prova por contradi¢do para mostrar que nenhum algoritmo de tempo polinomial pode existir
para B. (Se houvesse um algoritmo de tempo polinomial para B, poderiamos utilizar a redugao
em tempo polinomial para transformar uma instancia o« de A em uma instancia 5 de B, obtendo
uma resposta para o também em tempo polinomial.) Como apresentado por [CORMEN et al.,
2009], em uma demonstracdo de NP-Completude, ndo assumimos a inexisténcia de um algo-
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ritmo de tempo polinomial para o problema A. Temos a demonstracdo de que o problema B é
NP-Completo com a suposi¢do de que o problema A também seja NP-Completo.

2.3 O Problema do 1-Centro Modificado

Conforme [RABUSKE, 1992], a teoria dos grafos proporciona ferramentas simples e poderosas
para a constru¢do de modelos e resolucido de problemas em matemdtica discreta. Baseada na
simples idéia de pontos interligados por linhas, a teoria dos grafos combina estes elementos em
um rico sortimento de formas e dota estas propriedades com caracteristicas flexiveis, tornando-
se uma ferramenta qtil no estudo de diversos tipos de sistemas.

No estudo do problema do redimensionamento de redes, temos a aplicagdo de conceitos e al-
goritmos de localizacdo em grafos em etapas que incluem, por exemplo, a obten¢do de solu-
cOes iniciais para a posterior aplicacdo de outras técnicas (ver [GARCIA et al., 2003], [NAS-
CIMENTO, 2018]). Para a defini¢cdo do problema do 1-centro modificado, apresentado por
[NASCIMENTO, 2018], consideramos primeiramente mapas de localizagdo de 4rea das comu-
nidades ou o mapa de rotas. Apds a defini¢do da drea de estudo, temos sua representacdo por
um mapa de estudo, ver Figura 2.5, em desenho técnico (incluindo cabeamento, postes, trans-
formadores, distancia entre os postes, quantidade de consumo (kVA) em cada poste pertencente
as vias da comunidade estudada, etc.).

=== Rua, Av., Beco

O Poste

—— Cabeamento

Tipo de Cabo

Figura 2.5 — Mapa de estudo.

Conforme a Figura 2.6 podemos observar uma rede de distribuicdo em drvore com n vértices €
n — 1 arestas, os vértices da arvore representam os postes € as arestas o cabeamento.



Figura 2.6 — Representacdo da rede de distribuicao.

Seja T' = (V, E) uma drvore ponderada, com uma fung¢do peso k(v;) associando a cada vértice
v; € V um real positivo, e uma fung¢fo distancia d(e,) associando a cada aresta e, € E um real
positivo. Sendo e;, = (v;, v;), denotaremos por d(e;) = d(v;, v;) a distancia entre v; e v,.

Seja V/ C V. A funcéo peso k pode ser estendida ao conjunto de vértices V' como a soma dos
pesos dos vértices em V. Isto €, temos

BV = k(v). (2.3)

v, eV’

Seja T = (V', E’) uma subérvore de 7" = (V, E'). Denotamos por k(7") = k(V') o peso
da subdrvore 7”. Para uma aresta (v;,v;) de T = (V, E), seja T'(v;) a drvore T enraizada
em v; e seja T'(v;,v;) a subarvore de 7'(v;) enraizada em v;. Para tal subdrvore, a nota¢do
Tw;w;) = T'(vs, v;) serd igualmente utilizada.

No estudo do problema do 1-centro modificado, consideramos uma rede secunddria de energia,
dada por uma drvore ponderada 7' = (V, E'). Por [NASCIMENTO, 2018], consideramos uma
fonte fixa de energia ¢ a ser implantada em um vértice da arvore, denominada transformador. No
problema, devemos definir a localizacao de um transformador, que minimize a queda de tensao
maxima na rede. Por [NASCIMENTO, 2018], quanto maior for o comprimento do condutor de
energia, maior serd a queda de tensdo, consequente do aumento de resisténcia elétrica.

Para a darvore T = (V, E), caso o transformador seja instalado em um vértice v; € V(T),
devemos calcular a queda de tensdo total para cada vértice v; € T, com v; # v;. A queda
de tensdo total de v; para um vértice v; € definida como sendo a soma das quedas de tensdo
ocorridas em cada uma das arestas do tnico caminho de v; av; em 7.

Para a definicdo da queda de tensdo em uma aresta (v;,vy) € E(T), consideraremos o peso
k(v;) como a demanda de energia no vértice v; € T. Assim, definimos a queda de tensdo em
uma aresta (v, v;) € E(T), denotada por ¢(v;, vy), por

oy = 020 BT 0 0) ) o

onde



* d(v;,v;) € a distancia de v; a vy,
* k(T (vj,vy)) € o peso da subarvore T'(v;, v;), ou demanda acumulada de T'(v;, vy,), e
* u(vj,v;) € a constante do material condutor utilizado no trecho entre v; e vy.

Conforme apresentado na Figura 2.7 abaixo:

KTm) |

d(v;,ve) \ O
05)_®
O, Oz

(@) N (©)

Figura 2.7 — Defini¢@o do calculo de queda de tensdo. (a) Distancia entre os vértices v; € vy.
(b) Demanda acumulada em uma subdrvore 7'(v;, v;). (c) Constante do material utilizado no
trecho (vj, vy).

Observamos que, para uma aresta (v;,vy) € E(T), temos d(vj,vy,) = d(vg,v;) € (v, vp) =
1(vg, vj). Contudo, ndo necessariamente temos k(7'(v;, vgy)) = k(T (vg, v;)). Seja P(v;,v;) =
(Vi,u1,Ug, . .., upy, vj) 0 caminho em 7" do vértice v; em que se localiza o transformador a um
vértice v; qualquer de 7'. Definimos a queda de tensdo total entre v; € v; por

Q(vi,vy) = qvi,wr) + qlur, us) + -+ qlup,v) = Y gl ). 2.5

(vie,v1) EP(vi,v5)

Isto €, Q)(v;,v;) € a soma das quedas de tensdo ocorridas nos trechos ao longo do caminho
P(v;,v;). Se Q(v;, v;) representa uma queda maxima em alguma subérvore de 7'(v;), o caminho

(v, ur, Ug, . . ., Up, vj), € dito caminho de queda mdxima. Para v; € V(T'), seja
(vi) = max {Qvi, ve)} (2.6)

a queda de tensdo total mdxima a partir de v;, isto €, a queda de tensao total mdxima consideran-
do-se um transformador em v;. O 1-centro modificado de T é um vértice v* € V(T) que
minimize esta queda de tensdo total mdxima, isto €, um vértice tal que

®(v*) = min {P(v)}. 2.7
() = min {2()} @)
Como exemplos de algoritmos de localizagdo em arvores, estdo o algoritmo de Kariv e Hakimi,
e o algoritmo de Megiddo, para a obten¢do do I-centro (cldssico) em arvores. No Capitulo
3, temos a descricdo dos métodos, e de suas complexidades, como um estudo das técnicas
existentes em arvores.

No Capitulo 4, apresentamos métodos para a obten¢do do 1-centro modificado em arvores. Es-
pecificamente, apresentamos um algoritmo de tempo O(n) com o menor nimero de operagdes,
se comparado a algoritmos classicos para o problema do 1-centro em arvores.
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Problemas de Localizacao

Em [NASCIMENTO, 2018], foram estudados problemas de localizacao correlatos ao problema
do redimensionamento de redes, abordado no presente trabalho. Tais problemas, pesquisados
por [KARIV; HAKIMI, 1979a], [HAKIMI; SCHMEICHEL; PIERCE, 1978] e [KARIV; HA-
KIMI, 1979b], contextualizaram o presente trabalho, e representaram abordagens iniciais para
a obten¢do de novos métodos para problemas de localizacdo. Neste capitulo, apresentamos as
defini¢des dos problemas de localizagdo cléssicos, os principais resultados de NP-Completude
em problemas de localizag¢do, assim como os métodos de [KARIV; HAKIMI, 1979b], e de
[MEGIDDO, 1983], para a resoluc¢do do problema do 1-centro em arvores.

3.1 Definicoes de Problemas

As definicdes de problemas como o da 1-mediana, p-mediana, 1-centro, p-centro e conjuntos
dominantes de raio r em redes, nos permitem avaliar suas possiveis aplicagdes ao problema do
redimensionamento de energia, podendo incluir grafos ponderados e nao ponderados, e proble-
mas em vértices ou absolutos.

No problema da 1-mediana (ou 1-median problem) em um grafo, devemos encontrar um vértice
que minimiza a soma das distancias de caminhos minimos ponderadas do proprio vértice a
todos os outros vértices, cada um associado a um peso positivo, como representado na Figura
3.1 abaixo:

H@') =min Y, w(v) d(u,v)
v € (G)

Figura 3.1 — Problema da 1-mediana em grafos.



Por [BURKARD; KRARUP, 1998], para problemas NP-Dificeis definidos sobre um grafo, ca-
sos especiais bem resolvidos podem ocorrer se, por exemplo, o grafo possui certas propriedades.
Como um dos casos especiais bem resolvidos, o problema da 1-mediana em uma arvore foi con-
siderado primeiramente por [HUA, 1961]. Em [GOLDMAN, 1962] um algoritmo simples foi
desenvolvido para este problema. Como uma observacao, se uma aresta (u,v) é removida na
arvore, obtemos duas arvores 77 e T5. Seja W; o peso de todos os vértices na arvore 7;, para
© = 1, 2. Entdo a localizag¢do 6tima se situa na arvore com o maior peso acumulado. Esta obser-
vagdo baseia o algoritmo apresentado em [GOLDMAN, 1962] e faz uso do fato de que todos
0s pesos sa0 ndo negativos, mas ndo € valida se pesos de vértices negativos sdo permitidos.

Conforme a Figura 3.2, o problema da p-mediana (ou p-median problem) é o problema de iden-
tificarmos um subconjunto X, de p vértices que minimizam a soma das distancias de caminhos
minimos ponderadas de cada outro vértice no grafo ao vértice mais proximo em X,.

HX)= 2, W) dX,m)
v e VG)

HUG) = min { HX,) )
X,cV(G)

Figura 3.2 — Problema da p-mediana em grafos.

Por [KARIV; HAKIMI, 1979b], o problema da p-mediana em um grafo ¢ NP-Dificil. O pro-
blema permanece NP-Dificil mesmo quando a rede possui uma estrutura simples, como por
exemplo um grafo planar com o grau de vértice maximo igual a 3 [KARIV; HAKIMI, 1979b].
Contudo, os autores apresentaram resultados que conduziram a algoritmos eficientes quando
a rede é uma arvore. Em particular, [KARIV; HAKIMI, 1979b] mostraram que a 1-mediana
de uma arvore € idéntica a seu w-centrdide. O trabalho também apresentou um algoritmo que
encontra a p-mediana de uma drvore (para p > 1) em tempo O(n?p?). Em [TAMIR, 1996] foi
apresentado um algoritmo em tempo O(pn?) para o problema. Em [DASKIN; MAASS, 2015]
sdo apresentados alguns resultados existentes na literatura para o problema classico.

O problema do 1-centro (ou 1-center problem), representado na Figura 3.3, pode ser definido
como segue: dado um conjunto de n pontos de demanda, um espago de localizacdes vidveis
para um servi¢o (ou uma instalacao) e uma fung¢do para calcular o custo de transporte entre um
servigco (ou instalacdo) e qualquer ponto de demanda, encontrar um posicionamento 6timo do
servico que minimize o custo maximo de transporte do servico ao ponto de demanda.
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Fu)= max {w@)duy)}
ve G

Fu" = min {Fu)}
u e "G)

Figura 3.3 — Problema do 1-centro em grafos.
Na Figura 3.4 podemos observar que dado um conjunto X,, = x4, ..., ), de p pontos em um grafo
G = (V, E), adistancia d(X,, v,) entre X, e um n6 v; é computada como min;_; _, d(x;, v;).
Seja

F(X,) = max {w(v)d(X,,v)}. 3.1)

veV(Q)

Seja X tal que

F(X;) = min_ {F(X,)}. (3.2)

Entdo X, ¢ chamado p-centro de G e F'(X ) € chamado p-raio de G, sendo denotado por 7, (G).
Isto €, no problema do p-centro (ou p-center problem), devemos encontrar um conjunto X,, de
p pontos em G tal que max;—;

-----

d(xs,v3) FX)= ‘frela;/icG) { w(v) d(X,v) }

FX,)) = min {F(X,) }
X,c1G)

Figura 3.4 — Problema do p-centro em grafos.

O problema do I-centro absoluto ponderado foi definido e resolvido por [HAKIMI, 1965]
(ver [TANSEL; FRANCIS; LOWE, 1983a]). Para o problema do 1-centro absoluto, é vidvel que
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sua solucdo esteja em um vértice do grafo ou em um ponto no interior de uma aresta (que nao
seja a extremidade de tal aresta). Em [HAKIMI; SCHMEICHEL; PIERCE, 1978] mostraram
que o método de Hakimi pode ser implementado em tempo O(|E|n*logn). Refinamentos
posteriores do procedimento foram obtidos por [KARIV; HAKIMI, 1979b], resultando em um
algoritmo O(|E|nlogn) para o caso ponderado e O(|E|n) para o caso nido ponderado.

O problema do p-centro foi formulado por [HAKIMI, 1965]. Em [KARIV; HAKIMI, 1979a]
mostraram que o problema em uma rede geral é NP-Dificil. Em [HANDLER; MIRCHAN-
DANI, 1979] foram considerados os problemas do p-centro absoluto e em vértice em uma
arvore para o caso especial de p = 2, e foram obtidos dois algoritmos O(n) similares. Em
[KARIV; HAKIMI, 1979a] descreveram um algoritmo de tempo O(n?logn) para a obtengdo
do p-centro absoluto para uma arvore vértice ponderada. Em [TANSEL; FRANCIS; LOWE,
1983b] apresentaram um survey sobre os problemas da p-mediana e do p-centro.

3.2 NP-Completude do Problema de Determinar os p-Centros

Em [KARIV; HAKIMI, 1979a], ¢ mostrado que a NP-Completude do problema do conjunto
dominante implica que os problemas de encontrarmos p-centros (absolutos ou em vértices) sao
NP-Dificeis, mesmo quando a rede € um grafo planar com grau maximo de vértices igual a 3.
Isto implica que € altamente improvdvel que existam algoritmos de tempo polinomial para os
problemas de p-centros.

Um problema pode ser NP-Completo apenas se ele pertence ao conjunto NP. Isto €, apenas
se ele € um problema de decisdo para o qual um certificado pode ser verificado em tempo
polinomial. Desta forma, o problema do p-centro, como um problema de otimizacao, nao pode
ser classificado como um problema NP-Completo. Contudo, Kariv e Hakimi mostram que o
problema do p-centro é NP-Dificil, isto é, mostram que o problema do conjunto dominante,
como um problema NP-Completo, pode ser reduzido em tempo polinomial ao problema do p-
centro. Desta forma, existe um algoritmo de tempo polinominal para o problema do p-centro se
e somente se P = NP. O seguinte lema € apresentado por Kariv e Hakimi.

Lema 1 ((GAREY; JOHNSON, 1979]). Seja G = (V, E) um grafo e seja p um inteiro, 1 <
p < n. O problema de definirmos se existe em G um conjunto dominante de cardinalidade < p
(i.e. de definirmos se o niimero de dominacdo de G é < p) é NP-Completo, mesmo no caso em
que G € um grafo planar de grau de vértice mdximo igual a 3.

A prova do Lema 1 foi apresentada por [GAREY; JOHNSON, 1979], sendo baseada na NP-
Completude do problema da cobertura de vértices. Garey e Johnson provaram que o problema
da cobertura de vértices geral ¢ NP-Completo mesmo quando G é um grafo planar com grau de
vértices maximo igual a 3. Na reducdo do problema da cobertura de vértices para o problema
do conjunto dominante, substituimos cada aresta (u,v) do grafo GG pela estrutura apresentada
na Figura 3.5, e consideramos p = |E| + k.
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Figura 3.5 — Redu¢do do problema da cobertura de vértices para o problema do conjunto domi-
nante.

Os seguintes teoremas sao apresentados por Kariv e Hakimi.

Teorema 1 ([KARIV; HAKIMI, 1979a]). Os problemas do p-centro em vértices e do p-centro
absoluto sdo NP-Dificeis, mesmo no caso onde a rede é um grafo planar ndo ponderado em
vértices, de grau mdximo igual a 3, e com as arestas com comprimento 1.

Teorema 2 ([KARIV; HAKIMI, 1979a]). Os problemas do p-centro em vértices e do p-centro
absoluto sao NP-Equivalentes.

Em [KARIV; HAKIMI, 1979b], € mostrado que a NP-Completude do problema do conjunto
dominante implica igualmente que o problema da p-mediana é NP-Completo, mesmo quando a
rede € um grafo planar com grau maximo de vértices igual a 3. O seguinte teorema € apresentado
por Kariv e Hakimi.

Teorema 3 ([KARIV; HAKIMI, 1979b]). O problema de encontrar uma p-mediana é NP-
Dificil, mesmo no caso onde a rede é um grafo planar com grau mdximo igual a 3, com as
arestas com comprimento 1 e todos os vértices com peso 1.

A demonstracao do Teorema 3 apresentada por Kariv e Hakimi, igualmente utiliza uma redugdo
em tempo polinomial do problema do conjunto dominante de cardinalidade p. Seja o problema
de decisdo derivado do problema da p-mediana, no qual, dado um grafo G = (V, E'), um inteiro
p (1 < p < n), e um valor real positivo i, devemos decidir se existe um subconjunto V* com
p vértices de V, tal que H(V;") = > ., w(v)d(v,V,’) < h. Como uma observagdo apresen-
tada por Kariv e Hakimi, este problema pertence a NP, e pela demonstracdo do Teorema 3, o
problema é NP-Dificil. Portanto, o problema de decisdo é NP-Completo.

Como apresentado no capitulo anterior, o estudo do redimensionamento € concluido com éxito
no momento em que encontramos um ponto 6timo na rede atendendo a todas as restricoes.
Apresentaremos a seguir os métodos devidos a Kariv e Hakimi, e a Megiddo, para a resolugdo
do problema do 1-centro cldssico, em arvores. Observamos que, como uma primeira aborda-
gem, consideramos a rede particionada para realizar em seguida a busca pelo melhor ponto de
localizagao.
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3.3 Método de Kariv e Hakimi

Centroide de uma Arvore

Em [KARIV; HAKIMI, 1979a] € apresentado um método para a obtencao do 1-centro absoluto
(ou em vértice) de uma darvore 7', com a utilizagdo do método do centréide. Seja v € V(T),
sejad, o graudevem T, esejam T, 1,7, 2,...,T, 4, as subarvores de T'— v. Denote por qufi a
subdrvore que consiste de 7T, ;, o vértice v, € a aresta que conecta v a T, ;. O lema e o coroldrio a
seguir sdo apresentados por Kariv e Hakimi, e definem, respectivamente, a subarvore contendo
o 1-centro de 7', e uma condi¢do para a defini¢do do 1-centro de 7.

Lema 2 ([KARIV; HAKIMI, 1979a]). Seja v € V um vértice fixo e seja v um vértice tal que
w(0).d(v,v) = maxyey{w(). d(v',v)}. Seja T, a subdrvore de T — v a qual v pertence.
Entao, o I-centro de T estd em T,),.

Corolario 1 ([KARIV; HAKIMI, 1979a]). Sejam v e © dois vértices tais que © € T),;, 0 € T, ,
k#1, ew(?).dd,v) =w().d(v,v) = maxyecy{w(').d(v',v). Entdo v é o I-centro de T.

Por uma observacdo apresentada por Kariv e Hakimi, se o vértice v no Lema 1 nio é uma folha
de T, entdo T( ) ¢ uma subdrvore prépria de 7. Desta forma, em um algoritmo baseado no
lema para a obteng:ao do 1-centro de uma 4rvore ponderada, a arvore 7y € considerada como
sendo a drvore original. Escolhemos um vértice vy de 7y (onde vy ndo € uma folha de 7j)
e encontramos a subdrvore T;g 1, ha qual (de acordo com o Lema 1) o I-centro estd. Seja
T =1, ﬂqug o Escolhemos um vértice v; de T3 (onde v; ndo € uma folha de 77) e encontramos
a subarvore T;; u de 7" na qual o 1-centro de 7" estd. Desta forma, por Kariv e Hakimi, o 1-
centro precisa estar na subdrvore 7o = Ty N T,F o, - Pelo algoritmo apresentado, o processo €
repetido iteradamente até obtermos uma subdarvore 7} que consiste em uma unica aresta. O
centro local nesta aresta é o 1-centro da arvore 7', e um (ou ambos) extremo(s) desta aresta é o
1-centro em vértice da arvore 7'.

Por uma anélise apresentada por Kariv e Hakimi, exceto pelo ultimo passo de encontrarmos o
centro local (ou encontrarmos qual extremo € o 1-centro em vértice), cada etapa (i.e., a obtenc@o
das subdrvores Tv+ 1; © Ti+1) requer tempo O(n). A complexidade total do algoritmo é O(nk +
nlgn) para o 1-centro absoluto, e de O(nk) para o 1-centro em vértice. (O nimero de etapas é
dado por £, e o custo da tltima etapa é dado por n1gn, no caso do 1-centro absoluto. No caso
do 1-centro em vértice, a dltima etapa requer tempo O(n)). Por Kariv e Hakimi, o valor de k
depende do modo no qual escolhemos o vértice v; a cada etapa ¢ do algoritmo. Para uma boa
escolha de v;, é apresentada a nocdo de centréide de uma arvore.

Para um vértice v de 7', considerando-se 7,1, T} 2, . . ., T, 4, as subdrvores de 7' — v, seja |T'| o
nimero de vértices em 7" e defina N (v) por

N(v) = max {|T,.|}. (3.3)

1<i<d,

Por [KARIV; HAKIMI, 1979a], e [HARARY, 1969], um centroide da arvore T' é um vértice
v. para o qual N (v) é minimo, isto é,
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N(v.) = min{N(v)}. (3.4)

veV

Observamos que uma drvore pode ter um ou dois centréides. No tltimo caso, os dois centroides
sdo conectados por uma aresta [HARARY, 1969]. Adicionalmente, observamos que N (v.) <
|n/2]. Mais exatamente, o nimero de vértices em cada uma das subarvores 15, 1, T}, 2, - - ., To. a,,
ndo é maior do que |n/2] + 1. No algoritmo de Kariv e Hakimi, se a cada etapa escolhemos um
centréide de T; como sendo o vértice v;, entdo |T;41| < ||T;|/2]+1, e o niimero k de etapas serd
O(logn). Desta forma, objetivando a apresenta¢ao de um algoritmo O(n logn) para a obtengao
do 1-centro de uma arvore, Kariv e Hakimi forneceram um algoritmo O(n) para a obtencéo do
centréide de uma drvore.

Por [KARIV; HAKIMI, 1979a], a desigualdade N(v.) < |n/2] é uma condi¢do necessdria e
suficiente para que um vértice v, seja um centroide da arvore. Com base nesta propriedade, uma
versdo do algoritmo de [GOLDMAN, 1971] pode ser utilizada para encontrarmos um centroide
de uma arvore em O(n) passos. Na execucdo do algoritmo, utilizamos uma cépia 7" da drvore
original 7" como uma arvore auxiliar sobre a qual o algoritmo funciona. A cada vértice v da
arvore, temos a defini¢do de uma varidvel n(v). Durante o algoritmo, se v é uma folha de 77,
entdo 7" — v estd contida em uma das subarvores de 7' — v, e n(v) fornece entdo o nimero de
vértices desta subarvore.

CENTROIDE(T)
=T // Inicializagao
para cada vértice v € T" faca /I Inicializagdo
n(v)=n-—1;

enquanto a arvore auxiliar 7" nao consistir de um unico vértice v, faca
seja v uma folha da arvore auxiliar 7" ;
se n(v) < |n/2] entdo
PARE // v € um centréide da drvore original 7";
senao
seja u o vértice adjacente avem 1" ;
n(u) = n(u) — (n —n(v));
Remova o vértice v (e a aresta (u,v)) de 7" ;
RETORNE o vértice vy como um centréide de 71" ;

Em [KARIV; HAKIMI, 1979a], a prova detalhada da validade do algoritmo CENTROIDE, ou a
prova de que ele requer tempo O(n) para a obtengdo do centréide de uma arvore 7', é deixada
ao leitor. Com o algoritmo CENTROIDE, Kariv e Hakimi apresentam o algoritmo 1-CENTRO-
ARVORE para a obtenc¢do do 1-centro de uma arvore. No algoritmo, as varidveis 77, 7", e T""
representam a cada etapa as subarvores 77, T;’ 1,» € T, » respectivamente. O algoritmo faz uso
de uma sub-rotina para a obten¢do do centro-local sobre uma aresta e de 7'.

Um centro-local de um grafo GG sobre uma aresta ¢ € E(G) é um ponto z*(e) sobre e, tal que
F(x*(e)) = ming(e) sobre e { F'(x(€))}, € F'(2*(e)) € chamado o raio-local de G sobre e. Kariv e
Hakimi apresentam um algoritmo de tempo O(nlogn) para a obtengdo do centro-local de um
grafo G sobre uma aresta e € F(Q).
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1-CENTRO-ARVORE(T)

1. T"=T; /I Inicializag¢ao
2. se T” possui uma tnica aresta e entao /] Para 1-centro absoluto
Encontre o centro-local z* de 1" sobre ¢ € PARE ; // x* é 0 1-centro de T’
se 7" possui uma tnica aresta e = (v,, v) entao // Para 1-centro em vértice
Sejam:

d, = maxyecy{w().d(v', v.)};
ds = max, ey {w(v).d(v',vs)} 3
se d, < d, entao v, € o 1-centro em vértice de T ;
se d, > d, entao v, é o 1-centro em vértice de 1" ;
se d, = d, entdo cada um de v, € v, € 0 1-centro em vértice de T ;
PARE ;
. v. = CENTROIDE(T") ;
4. Seja v um vértice de T tal que w(0).d(v, v.) = maxycy{w(v).d(v',v.)} ;
Seja T"" a componente de T — v, que contém 0 ;
Seja T” = T""+ o vértice v.+ a aresta que conecta v, a 1" ;
5. se existe um vértice v tal que v ¢ 7" e w(v).d(v,v.) = w(v).d(?, v.) entdo
v. € 0 1-centro em vértice de T ;

|9Y)

PARE ;
6. 7" =T1T"N"NT";
Retorne a 2.

Por uma observac¢do em [KARIV; HAKIMI, 1979a], na condicional do algoritmo, se n(v) é o
nimero de vértices da subarvore de 7' — v a qual u pertence, entdo n — n(v) é o ndmero de
vértices da subarvore de 7' — u que contém v. Portanto, n(u) é corretamente atualizado, i.e.
quando u se torna uma folha, n(u) fornece o nimero de vértices da subarvore de 7" — u que
contém 7" — u. Adicionalmente, se a relagdo n(v) < |n/2| ndo é vilida, entdo v ndo pode ser
um centréide e sua remogédo de 7" ainda preserva o(s) centréide(s) de 7" em 7”. Ver [KARIV;
HAKIMI, 1979a].

3.4 Método de Megiddo

Sendo 7" = (V, E') uma arvore com n vértices, com um comprimento nao negativo d(v;, v;) as-
sociado a cada aresta (v;, v;) € um peso nao negativo w(v;) associado a cada vértice v;, em [ME-
GIDDO, 1983] temos a apresentacdo de uma abordagem ao problemaa do 1-centro andloga a
abordagem por Kariv e Hakimi. Uma aresta (v;, v;) € identificada com um segmento de reta de
comprimento d(v;, v;), de forma que podemos considerar qualquer ponto sobre a aresta (v;, v;).
Por Megiddo, um ponto = = (v;, v;;t) € caracterizado como estando localizado a uma distancia
t de v;, e a uma distancia d(v;, v;) — t de v;. Portanto a distancia d(x,y) entre quaisquer dois
pontos sobre a arvore estd bem definida, a saber, € o comprimento do tnico caminho de = a y
na arvore. O centro ponderado de 'I' é um ponto x que minimiza a fungdo

r(x) = max{w(v;)d(z,v;) : v; € V'}. (3.5)
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O centro absoluto € Unico a menos que todos os pesos sejam iguais a zero. O problema re-
lacionado de encontrarmos um vértice v; que minimize a fun¢do r(z), i.e., o ponto = estando
restrito a ser um vértice da arvore, € também apresentado por [MEGIDDO, 1983], assim como
um algoritmo de tempo linear para o caso ponderado geral.

Observacoes Iniciais

Por [MEGIDDO, 1983], a fung¢do r(x) é convexa sobre qualquer caminho simples da drvore.
Isto €, se P € um caminho simples e v; € qualquer vértice, entdo considere o vértice v; que
esteja sobre o caminho P e seja mais proximo de v;. O vértice v; particiona o caminho em duas
partes sobre cada uma das quais a fungdo

gui(x) = d(z, v;) (3.6)

¢ linear e crescente a medida em que nos distanciamos de v; . Desta forma, gv;(x) € linear por
partes sobre P (com no maximo duas partes) e convexa. A func¢do r(z) = max{w(v;)d(z, v;) :
v; € V'} é portanto linear por partes e convexa, sendo o maximo de fungdes convexas.

Como uma observacao apresentada por Megiddo, dado qualquer ponto x, podemos determinar
em tempo O(n) em qual das subdrvores o centro se situa, e o algoritmo de Kariv e Hakimi
estd fundamentado nesta observacdo. Dado que o centro se situa em uma subarvore 77, o
procedimento verifica o centréide = de 7" objetivando determinar em qual das subarvores de
T', enraizada em z, estd o centro.

Visto que o centréide define subarvores cujos tamanhos sdo no mdximo metade do tamanho de
T’, o procedimento termina em O(log n) testes e portanto requer tempo O(n logn). A melhoria
sugerida por [MEGIDDO, 1983] est4 na reducao do custo de um teste. No algoritmo apresen-
tado por [MEGIDDO, 1983], também sao efetuados O(logn) testes. Contudo, o custo de cada
teste ndo € maior do que trés quartos do custo do teste precedente.

O Algoritmo de Tempo Linear

Seja v. denotando o centréide de 7', isto €, v. € um vértice tal que para todo vértice adjacente

v;, temos | T,,_,, |< n/2 (onde n é o nimero de vértices de 7). Seja

Ty, (Ve) = max{w(vs)d(ve, vi) 1 v; € V(T ;) }- (3.7

Por [MEGIDDO, 1983] e [KARIV; HAKIMI, 1979a], o centréide v. pode ser encontrado em
tempo O(n). Entdo, supondo-se que v, seja conhecido, primeiramente, calculamos 7, (v..), para
cada vértice v; adjacente a v., 0 que pode ser feito em tempo O(n). Se existem dois vértices
Vi, Vj, (5, # vj,) adjacentes a v, tais que 7y, (ve) = T, (ve) = 7(v.), entdo o préprio v. € o
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centro. Caso contrério, sendo v; adjacente a v, € 7y, (v.) > 7y, (ve) para todo outro vértice vy,
adjacente a v., sabemos que o centro situa-se na subarvore 7,

c)U5°

Seja u um vértice ndo pertencente a subarvore T, ,,.. Se o centro x estdem T, v, auma distancia
t a partir de v,, entdo d(u,z) = d(u,v.) + t. A seguir na Figura 3.6, temos o centréide v, da
arvore T', com um vértice que ndo estd em 7, ,;, com um vértice = em 7, ,, a uma distancia ¢
a partir de v..

Ad(u,x) = d(u,v.) +t
Figura 3.6 — Distancia d(u, ).

Conforme a Figura 3.7, sejam a e b vértices ndo pertencentes a T, ,,. Iremos assumir, sem
perda de generalidade, que

w(a)d(a,v.) > w(b)d(b,v.). (3.8)

Figura 3.7 — Vértices a e b.

Resolvendo (para t) a equacdo

w(a)(d(a,ve) +t) = w(b)(d(b,v.) + t), (3.9)
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podemos afirmar que existe um valor ¢, (com 0 < t,, < 00) tal que, para todo x em 7, qf v, @
uma distancia t de v., temos

w(a)(d(a,x)) 2 wb)(d(b,z)) & 0<t<la. (3.10)

Como apresentado na Figura 3.8 a seguir,

Figura 3.8 — Defini¢do de t,;.

Substituindo d(a,z) = d(a,v.) + t e d(b,x) = d(b,v.) + t na equagdo w(a)(d(a,z)) =
w(b)(d(b, z)), temos

w(a)d(a,v.) + w(a)t = w(b)d(b,v.) +w(b)t (3.11)

[w(a) —w()]t = w(b)d(b,v.) — w(a)d(a,v.). (3.12)
Definimos, entao,

b w(b)d(b,v.) — w(a)d(a,v.)
! w(a) —w(b) '

(3.13)

Desta forma, se sabemos que o centro se situa a uma distancia menor do que t,, de v., entdo
poderiamos desconsiderar o vértice b no processo de encontrar o centro. Similarmente, o vértice
a poderia ser eliminado se sabemos que o centro se situa a uma distancia maior do que ¢, a
partir de v,.
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Megiddo mostra como explorar eficientemente esta observagdo, e como reconhecer se o centro
se situa dentro de uma distancia ¢ de x ou ndo, onde x é qualquer vértice folha e ¢ é qualquer
numero real positivo. Adicionalmente, por Megiddo, podemos decidir se o centro esta dentro
de uma distancia de ¢ a partir de = em tempo O(n).

Considerando-se 7" a drvore original, seu centréide v, e a subarvore 7, v, @ qual ¢ conhecida
conter o centro, o algoritmo de Megiddo arranja os vértices que ndo estdo na subarvore 7" v
em pares disjuntos (aq,by), (as, b2), ..., (as, bs) (desconsiderando um vértice, se o nimero de
vértices for fmpar). Observamos que existirdo ao menos (n/4) — 1 de tais pares visto que
no maximo n/2 vértices pertencem a T, . Para cada par (a,b), assumindo, sem perda de
generalidade, que

w(a)(d(a,v.) +t) > w(b)(d(b,v.) + t), (3.14)

z

se w(a) > w(b), entdo o vértice b € “descartado”. Caso contrario, seja

_w(b)d(b,v.) — w(a)d(a,v,.)
top = w(a) = w(b) . (3.15)

O algoritmo obtem a mediana ¢,, de todos os valores ¢,,;, (para todos os pares dos quais ne-
nhum vértice foi descartado) em tempo O(n) (ver [AHO; HOPCROFT; ULLMAN, 1974]
e [MEGIDDO, 1983]). Em seguida, o algoritmo verifica em tempo O(n) se o centro se en-
contra (em 7T, ) dentro de uma distancia de ¢,, de v.. Se o centro de fato se situa dentro de
uma distancia de ¢, de v., considerando um par (a, b) tal que ¢,, > t,,, entdo, onde quer que o
centro z* se situe (dado que ele estd em 7}(c) a uma distancia de ndo mais que ¢,, de c), temos
w(a)d(a,z*) > w(b)d(b, x*). Desta forma, por Megiddo, podemos seguramente descartar o
vértice b neste caso.

Similarmente, se x* estd a uma distancia maior do que ¢,, de v., entdo dos pares (a,b), tais
que ty < t,,, 0 vértice a pode ser descartado. Pela argumentacdo apresentada [MEGIDDO,
1983], um vértice é descartado de aproximadamente metade dos pares. Isto &, sdo descartados
aproximadamente 1/8 dos vértices da arvore. O problema € entdo reduzido ao problema do
centro ponderado em uma nova arvore 71". Para cada vértice a ndo pertencente a 7, € ndo
descartado, formamos uma aresta (u, v..), com comprimento d(a, v.), com w(a) permanecendo
o mesmo como em 7'. Todas estas arestas sdo adicionadas a arvore T,,,,, formando a nova
arvore T".

Tendo em vista que n/8 vértices foram descartados, o tempo requerido time(n) para uma arvore
com n vértices satisfaz

time(n) < time(7n/8) 4+ Cn. (3.16)

Desta forma, temos time(n) = O(n). Por [MEGIDDO, 1983], pela convexidade da fung@o
r(z), o vértice que minimiza r(z) é ou idéntico ou adjacente ao ponto no qual r(z) possui seu
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minimo global. Portanto, com a obtencdo do minimo global, temos no maximo dois vértices
(extremos de uma aresta) candidatos a minimo global de 7(z) em vértice.

No método apresentado por Megiddo, para cada par (a, b) de vértices ndo pertencentes a drvore
T v;» 30 verificadas as condi¢des para a remogéo do vértice a ou do vértice b do processo de

obtencdo do centro de 7. Esta estratégia utilizada permitiu a remogao de n/8 vértices da drvore
T a cada etapa do algoritmo, dando origem a nova arvore 7", de menor ordem.

Para o problema do 1-centro modificado, consideremos 7" a arvore original, v. o centrdide de
T, T;g v, @ arvore que contém o 1-centro modificado de 7', e a e b dois vértices ndo pertencentes
aTl) 5 Se a corresponde ao vértice de perda maxima a partir de v., dentre todos os vértices
nao pertencentes a 7., ;> entdo podemos seguramente remover o vértice b da arvore 7', inde-
pendentemente da distancia do 1-centro modificado x* ao centréide v. ou a qualquer folha de
T, o5 Consequentemente, todos os vértices ndo pertencentes a 7., v podem ser removidos de
T, com excecdo do vértice a, o qual deverd ter seu peso e sua distancia d(a,v.) ao centréide
v. modificados para a defini¢do da arvore 7", de menor ordem. Observamos que, como sera
apresentado no Capitulo 4, pela natureza do problema e da funcdo a ser minimizada, e pela
estratégia utilizada, o tempo requerido pelo algoritmo para o problema do 1-centro modificado
serd dado por

S(n) < 8 (g + 2) +Cn. (3.17)
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Algoritmos Polinomiais e Resultados para o
Problema 1-Centro Modificado

Nesta secdo apesentamos métodos para a resolu¢do do problema do 1-centro em arvores, abor-
dado no trabalho de [NASCIMENTO, 2018]. Sao apresentadas as melhorias em complexidade
obtidas, algumas das quais, baseadas nos métodos estudados no Capitulo 3. Em seguida, sdo
apresentados resultados de avaliacdo de performance dos métodos, referentes as implementa-
coes desenvolvidas e aos experimentos computacionais realizados. Por fim, sdo apresentadas
observagdes referentes ao critério de parada utilizado no algoritmo linear, a eficiéncia do mé-
todo, quando comparado ao método para o problema do 1-centro cldssico em arvores, e refe-
rentes as variagdes do problema do p-centro clédssico estudadas.

4.1 Algoritmo de Tempo Quadratico

Objetivando a adogdo de terminologia correlata a apresentada por [KARIV; HAKIMI, 1979a],
definimos v* como o 1-centro modificado de T' e ®(v*) como o 1-raio modificado de T, deno-
tado por r;. Observamos que, no problema do 1-centro modificado sdo considerados pesos de
subdrvores e, com isso, temos a assimetria nos valores utilizados para as arestas. Desta forma,
no exemplo da Figura 4.1, a drvore 7" possui o vértice v; como 1-centro e o vértice v, cOmo seu
1-centro modificado, evidenciando a distin¢@o entre os dois problemas.

Figura 4.1 — Exemplo do problema do 1-centro modificado.

Como uma primeira abordagem para a determinacdo de polinomialidade do problema, um pri-
meiro método para a obtencdo do 1-centro modificado pode consistir na aplicacdo de n buscas
em profundidade na drvore 7', cada uma possuindo um vértice v; € V(T') como raiz. Para
cada vértice v; € V(T), a busca em profundidade enraizada em v; calcula as quedas de tensdo
ocorridas nas arestas de cada caminho raiz-folha da arvore de profundidade. Entdo, calcula a



queda de tensao total em cada folha da drvore de profundidade enraizada em v; e define a queda
de tensdo total méxima ocorrida, considerando-se o transformador em v;. Tendo em vista que o
célculo das demandas acumuladas de cada subarvore requer tempo linear, o método utiliza um
pré-processamento em tempo O(n) para o cdlculo de todas as demandas acumuladas das subér-
vore de T'. O algoritmo de pré-processamento procede de forma similar ao algoritmo de [HUA,
1961] para o célculo da 1-mediana em 4rvores, iniciando a definicao dos pesos das subarvores
a partir das folhas de 7. Ao término, o 1-centro modificado de 7" serd o vértice v; com a menor
queda de tensdo total maxima. Tendo em vista a aplicacao de n buscas em profundidade em 7',
esta primeira abordagem requer tempo O(n?).

4.2  Algoritmo de Tempo O(nlogn)

Seja T" uma arvore de entrada para o problema do redimensionamento de redes, com pesos
em vértices e distdncias em arestas estritamente positivos. Seja v um vértice de 7' com grau
d,. Seja’T" — v o grafo obtido de 7" pela remocdo do vértice v. Objetivando uma adequacio
aos resultados apresentados por [KARIV; HAKIMI, 1979a], T" — v consiste de d, subarvores

Tv1, T2, ..., T, 4, Denotamos por T;“ - a subdrvore que consiste de 7T, ;, o vértice v, e a aresta

7

que conecta v a T,,. Com base nos resultados apresentados por Kariv e Hakimi, temos a
seguinte extensao.

Lema 3. Sejav € V(G) um vértice fixo e seja U um vértice tal que a queda de tensao total seja
mdxima a partir de v, i.e. Q(v,0) = maxycy Q(v,v"). Seja T, a subdrvore de T' — v d qual v
pertence. Entdo, o 1-centro modificado de T estd em T.,.

Prova. Assuma que o 1-centro modificado v* de 7" ndo esteja em va ;- Entdo Q(v*,v) >
Q) (v, 0), considerando-se que as demandas e distincias sejam todas positivas em 7'. Portanto,
se r; € o 1-raio modificado de T, entéo r; > Q(v*,?0) > Q(v,0) = maxyecy Q(v,v). Desta
forma, por um argumento andlogo ao apresentado por Kariv e Hakimi, a escolha de v como o
1-centro modificado de 7' é melhor do que a escolha de v*, o que é uma contradi¢do.

]

O lema conduz ao resultado a seguir.

Corolario 2. Sejam v e v dois vértices tais que v € Ty, 0 € Typ, k # 1, e Q(v,0) =
Q(v,0) = maxyey Q(v,v"). Entdo v é o 1-centro modificado de T.

Observamos que, se o vértice v no Lema 3 ndo é uma folha de 7°, entdo Tj ; € uma subdarvore
prépria de 7'

Aplicacao da Abordagem por Centrdéides

Analogamente a abordagem por [KARIV; HAKIMI, 1979a], com a utilizagdo o algoritmo CEN-
TROIDE, podemos definir o método para a obten¢do do 1-centro modificado de uma arvore. No
algoritmo a seguir, as varidveis 7", T", e T" representam a cada passo as subarvores T;, T, 1o
e 1., ,, respectivamente.
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Por argumentagdes andlogas as apresentadas por Kariv e Hakimi, o algoritmo obtém o 1-centro
modificado de uma drvore em O(nlogn) passos. A cada passo, escolhemos um centréide de
T; como sendo o vértice v;. Temos |T;41| < |71;/2] + 1, e o niimero & de passos € O(logn).
Considerando-se n uma poténcia de 2, isto é, sendo n = 2%, para algum k, se a cada passo
diminuimos o nimero de vértices da drvore corrente a metade, temos a seguinte sequéncia de
cardinalidades para V' (T):

Se n = 2*, entdo log, n = log, 2" = k. Ou seja, o nimero de passos é dado por k = O(logn).

1-CENTRO MODIFICADO(T)
=T
enquanto 7" possuir mais de uma aresta faca
v. = CENTROIDE(T") ;
seja 0 € T tal que Q(ve, V) = maxyecy(r) @(ve, V') ;
seja 7" a componente de T' — v, que contém ¥ ;
seja T"” a subdrvore que consiste de 1", o vértice v,.,
e a aresta que conecta v.a 1" ;
se existe um vértice v tal que v € T" e Q(v., v) = Q(v., V) entdo
RETORNE o vértice v, ;
// Pelo Corolario 2, o vértice v, € o 1-centro modificado de T;
T7=1TnNnT",
se 7" possui uma tnica aresta e = (v, v;) entao
seja d, = maxy ey Q(v,, V') ;
seja ds = maxy ey Q(vs,v') ;
se d, < d, entao RETORNE o vértice v, ;
senao RETORNE o vértice vy ;

4.3 Algoritmo de Tempo Linear

Para a resolucdo do problema do 1-centro em drvores, a estratégia apresentada por [MEGIDDO,
1983] inclui a remog¢do de alguns vértices da drvore a cada iteragdo. Com tal estratégia, é
apresentada a seguinte recorréncia.

time(n) < time(7n/8) + Cn. 4.1)

Esta recorréncia segue do fato de que n/8 vértices sdo descartados a cada itera¢do no método

apresentado por Megiddo. Desta forma, o tempo requerido time(n) para uma arvore com n
vértices € linear, i.e. time(n) = O(n). Para o problema do 1-centro modificado em &rvores,
uma estratégia de remocao de vértices a cada iteragdo também pode ser utilizada para a obtengao
de um algoritmo de tempo linear. Contudo, para o problema do 1-centro modificado em arvores,
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tal estratégia conduz a um método com melhor convergéncia, comparativamente ao método
apresentado em [MEGIDDO, 1983].

Seja T' = Tj uma drvore instancia do problema do 1-centro modificado com n vértices. Seja
vp o centroide de Tj. A partir de vy, na busca pela subédrvore que possui o 1-centro modificado,
verificamos qual das subdrvores corresponde a perda maxima. Isto é, verificamos qual das
subdrvores corresponde ao valor maximo de Q(vg, v').

Sejam vg 1, . . .,V 4 08 Vizinhos de vy em Ty, e sejam R(vg, vg 1), .., R(vo, voq) Os valores de

z . + + 7 ’ . .
perdas maximas em T ..., Ty o .- Isto €, os valores de perdas maximas a partir de v nas
direccoes de vy 1, . . . , v 4, respectivamente (ver Fig. 4.2). Seja R(vg, vo k) = max;<;<q4{ R(vo, v0;)}.

Como exemplo, para a drvore 1" = Tj, apresentada na Figura 4.3, temos k = 5.

Figura 4.2 — Arvore T' = T} e os valores de perdas méaximas R(vo, vo 1), - . ., R(vo, v q4) a partir
. + +
de vy nas subarvores T, ..., T o -

O(vo,v’)

maxima

Figura 4.3 — Perda méxima em 7" = T a partir de v.

Seja R(vg, vo4) = maxi<i<a{R(vo,v0,)}. Isto & R(vg,vp,,) corresponde a perda maxima a
ik

partir de vy na subarvore TO\TUQ . (ver Figura 4.4).
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Figura 4.4 — Perda méxima em T \ Ty, , a partir de vo.

Se R(vg,vox) = R(vg,v0,) entdo, pelo Coroldrio 2, sabemos que vy € o 1-centro modificado
de Ty. Caso contrdrio, seja Ty a drvore obtida de 7} ,  pela inclusao de um vértice falso u,
adjacente a v, (ver Figura 4.5).

R(VO,VOJ)
T

Figura 4.5 — Arvore T},

Em T, sejam

*wu) = Xenr o w(v) , o somatério dos pesos dos vértices removidos de 7j na

criagdo de 7 (ver Figura 4.6),

e d(vg,u) = W (ver Figura 4.7), e

o (v, u) = 1.
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T,\T,

Vo Vo

SRR

Figura 4.6 — Peso do vértice u.

100 * R(vo.vy,)

d(vo,) =
¢ w(u)

©

Figura 4.7 — Distancia d(vg, u).

Sendo |V (T})| > 4, os lemas a seguir estabelecem uma redugio para o problema do redimensi-
onamento de redes em arvores.

Lema 4. Em T}, considerando-se pesos, distdncias e constantes estritamente positivos, a perda
mdxima total a partir de u é maior do que a perda mdxima total a partir de v.

Prova. Em Tj, a perda maxima a partir de vy é dada por R(vy, vo ), € a perda maxima partir de
u € dada por R(vg, vo ) + [100 * R(vg, vox)/w(u)] * w(T§ — w)/100. O

Como consequéncia, o vértice u ndo pode ser o 1-centro modificado da drvore 7j. Além disso,
cada vértice falso v em 77, para: = 0,1, ..., ¢ uma folha de 7] e, por construgdo, foi originado
pela remocao de uma subdrvore que ndo continha um vértice que minimizasse a perda maxima.

Se v; é um centréide de T;, com |V (7T;)| > 4, entdo v; ndo pode ser vizinho de dois vértices
falsos em 7}. Se |V(T;)| = 3, entdo |V(T})| = 3. Se |V(T;)| = 4, entdo |V (T})| = 4. Desta
forma, um possivel critério de parada em um algoritmo para a definicdo do 1-centro modificado
de uma arvore 7' = Ty pode ser dado por |V (T;)| < 4.

Lema 5. Um vértice v em Iy é um 1-centro modificado de Ty se e somente se v for um I-centro
modificado de T},
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Prova. Em T, e em T}, as perdas maximas a partir de qualquer vértice v diferente de u sdo
iguais, pelos valores definidos para w(u), d(vg, u) e p(vo, u). O

Lema 6. Sendo T, uma drvore de ordem n, a drvore T} possui ordem no mdximo |n/2] + 2.

Prova. Este lema segue da construgdo da drvore 7§ a partir de 7j, e da definicio de centréide.
O]

O método 1-CENTRO MODIFICADO LINEAR(7') a seguir determina o 1-centro modificado da
arvore 1" e é baseado nos Lemas 3, 4, 5,¢e 6.

1-CENTRO MODIFICADO LINEAR(T)

=T

enquanto |V (7")| > 4 faca
v. = CENTROIDE(T") ;
seja 0 € T" tal que Q(v., V) = maxyecy (1) Q(ve, V') ;
seja T"" a componente de 7" — v, que contém ¥ ;
seja T" a subdrvore que consiste de 7", o vértice v,., 0 vértice u

e a aresta que conecta v. a 7", e a aresta (v, u) ;
defina w(u), d(v., u) € p(ve, u) ;
se existe um vértice v tal que v € 7" e Q(v.., v) = Q(v., V) entdo
RETORNE o vértice v, ;

T — T" :

RETORNE o vértice vs com menor perda méaxima, dentre os vértices em V' (7"),
com |[V(T")]| < 4;

Pelo Lema 6, temos uma redugdo do problema, de uma instancia de tamanho n a uma instancia
de tamanho menor ou igual a [n/2]| + 2. Isto é, temos a seguinte recorréncia para o tempo
requerido pelo algoritmo:

tempo(n) < tempo(|n/2] 4+ 2) + Cn. 4.2)

Lema 7. Seja T' uma drvore ponderada com n vértices, com distdncias, pesos e constantes po-
sitivas, como instancia do problema do redimensionamento de redes. O algoritmo 1-CENTRO
MODIFICADO LINEAR(T') requer tempo O(n).

Prova. Seja

S(n) =S (% +2) +Cn. 4.3)
Aplicando o método da substituicao, temos
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n

S(n):S<22+1+2)+C’<g+2)+Cn

:S(%+%+1+2>+C<%+1+2>+C<g+2)+0n (4.4)

Supondo n = 2%, para um inteiro positivo k, temos
S(n)zs(%+2(1+%+%+...>>+Cn(1+%+%+---+%)+
+C(2<1+1+1+---+L))+(]<2(1+1+1+...+L>)+
2 4 2k—2 2 4 2k=3
1 1 1
+---+C(2<1+§+1>)+C<2(1+§>)+C<2(1)>. (4.5)

Substituindo, temos

_ <4 <2
=1 I 1 I —_— 1

™ 1 1 1 1
Sn)=8| = + 2(1+—+—+...> +Cn 1+_+_+”'+W +

2 4

<4 <4

colo(ie el colo(ie e ] +
24 k=2 24 k=3

<4 <4

r = 1 — <4
1 1 1 r !
+--+C 2<1+§+Z) +C 2(1+§) +C( 2(1)). (4.6)
Isto é,
S(n) < O(1) 4+ 2Cn + 4Clogn = O(n). 4.7

4.4 Resultados

Problemas de localizacdo possuem aplicagdes que incluem a cobertura de uma determinada
regido com a localizacdo de p hospitais, torres de telefonia movel, instalacdo de sirenes de
alerta e de depdsitos de baterias em uma rede de delivery por drones, dentre outras ( [LIU,
2019]). Nesta secao, apresentamos uma primeira avaliacdo da performance computacional dos
métodos desenvolvidos para a resoluc@o do problema do 1-centro modificado. Os experimentos
foram realizados com a utilizagao de um Intel(R) Core(TM) i7 - 9750H CPU @ 2.60GHz, 16.0

GB RAM - Windows 11.
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O desenvolvimento em C++ dos softwares utilizados incluiu a implementagdo de classes para
o armazenamento de instancias do problema em espaco linear, e para a execucao dos métodos
CENTROIDE em tempo O(n) e 1-CENTRO MODIFICADO em tempo O(n?), O(nlogn) e O(n).
A abordagem incluiu a cria¢do de instancias de tamanhos de 7, 10, 13, 16, ..., e 37 vértices,
assim como uma comparacio de desempenho com o primeiro método de célculo do 1-centro
modificado em tempo quadratico, apresentado em [NASCIMENTO, 2018]. Para o conjunto
de instancias geradas, com a representacdo de pesos de vértices e arestas, demandas acumu-
ladas, quedas de tens@o e constantes de condutividade elétrica em precisao simples, o método
1-CENTRO MODIFICADO em tempo linear representou uma melhoria de 18,92% em média,
no tempo de execugdo (em operagdes elementares) comparativamente aos métodos O(n?) e
O(nlogn).

Dentre as principais classes desenvolvidas, estdo class TFila, class TVertice, class
TArvore, class TArvoreLinear. Dentre os principais métodos desenvolvidos, estdo void
alg_1_Centro_Modif_Quad(void),void alg_1_Centro_Modif_nlogn(void),€void
alg_1_Centro_Modif_n (void), referentes aos métodos de tempo O(n?), O(nlogn)e O(n),
respectivamente. Para o conjunto de instancias geradas, com a representacdo de pesos de vérti-
ces e arestas, demandas acumuladas, quedas de tensao e constantes de condutividade elétrica em
precisdo simples, a seguir a Tabela 4.1 apresenta de forma aproximada os nimeros de operacdes
elementares em cada um dos métodos e a Figura 4.8 nos mostra a performance dos métodos.

Métodos
n=7|n=10|n=13|n=16 | n=19 | n=22
O(n?) 647 1378 2341 3552 5125 6809
O(nlogn) 641 987 1816 1735 2979 3638
O(n) 478 848 1031 1113 1394 1804
Métodos
n=25|n=28|n=31|n=34|n=37|
O(n?) 8723 | 11906 | 13147 | 16169 | 19291
O(nlogn) 4294 5065 4214 4881 7712
O(n) 1941 2082 1799 2143 2742
Tabela 4.1 — Numero de operacdes elementares.
Operagoes
20000
10000
B Busca
[ centroide
[ wvértices Simuladores

7 10 13 16 19 22 25 28 31 34 37 n

Figura 4.8 — Performance dos métodos O(n?), O(nlogn) e O(n) para o problema do 1-centro
modificado em instancias com n = 7, 10, ..., 37.
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Observamos que, para as instancias geradas, o método de tempo O(n) mostrou-se sensivelmente
mais rapido do que a estratégia de tempo O(nlogn), representando uma melhoria de 64% em
operagOes elementares, para determinadas instancias.

Como novas abordagens para a resolug¢ao do problema do redimensionamento de redes de ener-
gia, podemos citar a aplicacdo de uma variacdo do problema do 1-centro inverso, objetivando
uma adequacdo de setores de uma rede em projeto a capacidade de equipamentos utilizados na
distribuicdo de energia.

4.5 Observacoes

Critérios de Parada

Seja T" uma arvore com 3 vértices, e 7" e T"" arvores com 4 vértices, como apresentado na
Figura 4.9 a seguir. Pela localizag¢do do centréide v, de 7", a remogado de qualquer subarvore de
v, para a inclusio de um vértice simulador ndo acarretard em uma diminui¢ao na ordem de 7".
Considerando-se 1", pela localizagdo do centréide v.., a remocao de duas subéarvores quaisquer
de v, para a inclusdo de um vértice simulador acarretarda em uma diminui¢do na ordem de 7",
dando origem a uma arvore isomorfa a 7’. Em 7", a remog¢do de uma subérvore de v, para a
inclusdo de um vértice simulador pode dar origem a uma nova arvore isomorfa a 7" ou isomorfa
a propria 1",

T T” 7

O—0©—™0 O—0——~0C——0

Figura 4.9 — Arvores com 3 e 4 vértices.

Para qualquer drvore com ao menos 5 vértices, a remoc¢do de subdrvores do centréide v, da
origem a uma nova arvore de ordem necessariamente menor. Desta forma, o critério de parada
utilizado assegura o tempo O(n) do algoritmo.

Eficiéncia do Método

Seja T' uma arvore com n vértices, seja vy o centréide de 7', seja R(vo,vox) = Maxj<i<q
{R(vg,v0,)} o valor de perda mdxima a partir do centréide vy, seja v’ o vértice para o qual
ocorre a perda maxima a partir de vo em 7', i.e. seja R(vg,vox) = Q(vo, ). Seja T, ., a

subérvore de 7' — vy que contém v’ e seja T;g’vk = Ty, + Vo.

Seja R(vo, Vo,q) = Maxi<i<q , izk {L(Vo, Vo) }. Isto &, seja R(vo, vo,4) 0 valor de perda maxima
a partir de vy na subdrvore T\ T/ ve- S€ja v o vértice para o qual ocorre a perda médxima a
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partir de vy em T\ Ty, o, , i.e. seja R(vg, vo,) = Q(vo,0")).

Seja x um vértice em 7,0 . Se R(x,p) é o valor de perda maxima a partir do vértice x em T,
e se 0 caminho de perda médxima (z, ..., vp,...,v,) contém o centréide vy, entdo R(z,p) =
Q(z,v,) = Q(x,v"). Isto é, a perda mdxima a partir de = na drvore 7" ocorre no caminho para o
vértice v”. Consequentemente, todos os vértices em T\Tavk podem ser removidos da arvore 7',
com excecdo do vértice v”, sendo transformado em um vértice simulador. Na definicdo de u =

v” como um novo vértice simulador, temos a redefini¢ao do peso w(u) =3+ w(v), €
v0,v0,k

a inclusdo da aresta (vg, u), com d(vg, u) = Q(vg,v") e pu(vy, u) = 1.

Desta forma, a nova arvore 7" é definida com a devida redefini¢do do peso w(v"”), da distincia

d(vg,v") e de p(vg,v"), de forma a considerar todas as demandas acumuladas dos vértices em
+ . yos —+

T\T, ... para qualquer caminho de x a um vértice de T\T,} .

Observamos que, diferentemente da estratégia apresentada por Megiddo, tais remog¢des podem
ser realizadas independentemente da localizagio do 1-centro modificado em 7}, . Esta pos-
sibilidade se deve ao fato de que, um caminho de perda maxima deve ser composto de subca-
minhos de perda maxima. Especificamente, para o caminho de perda mdxima z ~» vy ~ vy,
composto pelos subcaminhos z ~ vy € vy ~ v, em T, devemos ter vy ~» v, cOmo um
subcaminho de perda maxima. Caso contrdrio, poderiamos substituir tal subcaminho por um
subcaminho de maior perda a partir de v., contradizendo o valor mdximo do caminho original

T~ Vg~ Upe

Portanto, em uma etapa do método 1-CENTRO MODIFICADO LINEAR, sendo 7" a arvore cor-
rente com n’ vértices, temos a remocgao de %/ — 2 vértices para a obtencao de uma nova ar-
vore de menor ordem. O conjunto de remog¢des no método déd origem a recorréncia S(n) <
S((n/2) + 2) + Cn. O conjunto de remogdes no algoritmo de Megiddo resulta na recorréncia
S(n) < S(7n/8)+ Cn. Em um estudo comparativo entre as duas recorréncias, considerando-se
C' =30e S(n) = 118 (para n < 4) obtemos os valores apresentados na tabela 4.2 a seguir.
Os valores podem indicar uma eficiéncia do método apresentado, com respeito aos métodos
cléassicos para a resolucdo do problema do 1-centro em arvores.

Recorréncias
n=7|n=10[n=13|n=16 | n=19 | n =22
658 | 1198 | 1648 | 2458 | 3028 | 3688
478 778 | 1078 | 1258 | 1378 | 1738

S(n) =S("n/8) + Cn
S(n) =S5((n/2)+2)+Cn

Recorréncias

n=25|n=28|n=31|n=34|n=37|
4018 | 4828 | 4214 | 5518 6898

S(n) =S("/8)+Cn
S((n/2)+2)+Cn

e
2
I

1888 2098 2218 2398 2758

Tabela 4.2 — Recorréncias dos métodos.

Generalizacoes do Problema

Seja G = (V, E') um grafo conexo, ponderado em vértices e arestas. Objetivando a generali-
zacdo do problema do 1-centro modificado em arvores a grafos conexos, observamos que as
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fungdes de distancia d(v;, vy) e de peso k(G’), estendem-se de forma imediata, assim como a
constante /¢(v;, vi) do material condutor utilizado no trecho entre v; e vj,. Contudo, o conceito
de demandas acumuladas pode ser revisto, de acordo com a aplicag¢do da definicao de 1-centro
ou de p-centro a ser utilizada no estudo do problema do redimensionamento de redes.

Sejae; = (v;,vx) € E(G). Seja G(v;, v;) o subgrafo de GG induzido pelos vértices alcangdveis
a partir de vy, sem a utilizagdo da aresta (v;, vx). Se G é um grafo sem pontes, entdo G (v;, vy,) =
(G, e portanto

k(G(v;, 1)) = k(G). 4.8)

Como apresentado no Capitulo 2, na defini¢do da queda de tensdo em uma aresta (v;,vy) €
E(G), consideraremos o peso k(v;) como a demanda de energia no vértice v; € T. Assim,
definimos a queda de tensdo em uma aresta (v;, v;) € E(G), denotada por ¢(v;, vy), por

005, 00) = d(vj, vg) * k(G(lv(;(,)vk)) * (v, vg) _ d(vj,vg) * kl(OC(J)) * /L(Uj,?]k)‘ 4.9)

Tendo em vista o valor fixo k(G), consideramos (v, v;) = 100 em uma redugio em tempo
polinomial imediata do problema do p-centro em grafos com pesos uniformes em vértices para
o problema do p-centro modificado com tal formulagdo, indicando a NP-Completude do pro-
blema.

SejaT = (V, E') uma arvore, ponderada em vértices e arestas. Para a generaliza¢do do problema
do 1-centro modificado em arvores a um p-centro modificado, observamos que novamente as
fungdes de distancia d(v;,vi) e de peso k(T'(vj,vy)) estendem-se de forma imediata, assim
como a constante £(v;, v) do material condutor utilizado no trecho entre v; e v;. Contudo, o
conceito de demandas acumuladas pode ser revisto, de acordo com as defini¢cdes de p-centro e
de suprimento de energia, utilizadas no estudo do problema do redimensionamento de redes.

Variacoes de Problemas de Localizacdo Correlatos

Na defini¢do e na abordagem ao problema do 1-centro modificado em arvores, foram estudadas
inimeras variagdes do problema do 1-centro cldssico. As varia¢des estudadas sdo apresenta-
das a seguir, muitas das quais nao incluindo a assimetria observada nas demandas acumuladas,
definidas no problema do 1-centro modificado. Em [BEN-MOSHE et al., 2007], apresentam
algoritmos eficientes para resolver os problemas de centros em redes como cactos pondera-
dos. Em particular, para redes ponderadas em cactos de tamanho n, sdo propostos um algo-
ritmo de tempo O(nlog n) para a resolu¢do do problema do 1 centro e um algoritmo de tempo
O(n log® n) para a resoluc¢@o do problema de 2-centro continuo ponderado. Também sdo forne-
cidas solugdes aprimoradas para os problemas gerais de p-centro em redes cactos, e as ideias
desenvolvidas sdo entdo aplicadas para a resolucdo do problema do 1-centro “indesejivel” em
redes cactos ponderadas.

Em [BHATTACHARYA; DAS; DEV, 2019] apresentam um algoritmo de tempo linear para o
problema do k-centro ponderado em drvores para um k fixo, resolvendo parcialmente a questao
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de longa data sobre o limite inferior da complexidade de tempo do problema. A complexi-
dade de tempo atual do algoritmo conhecido para o problema com &k como parte da entrada é
O(nlogn) de Wang et al. (2018). Se existe um algoritmo de tempo O(n) para k’s arbitrarios
ainda permanece em aberto.

Segundo [BHATTACHARYA et al., 2020] um estudo € apresentado sobre alguns proble-
mas fundamentais de localizacdo de instalacdes do ponto de vista da eficiéncia de espago.
Em [BHATTACHARYA; SHI, 2014], ¢ mostrado que o problema do 1-centro no espaco Eucli-
diano e em redes de drvores pode ser resolvido eficientemente no modelo de espago constante.
Os autores apresentam um algoritmo que requer espaco O(1) para o problema do 1-centro em
arvores.

Por [BHATTACHARYA; SHI, 2014], em um modelo de problema de localiza¢do de instala-
coes, pesos de vértices incertos sao representados por intervalos de pesos possiveis, e procura-se
uma solu¢do “robusta” que minimize o méximo “arrependimento” (Kouvelis et al., 1993). Pri-
meiro, Bhattacharya et al. fornecem um algoritmo de tempo O(n) para as redes de caminho
e, em seguida, apresentam um algoritmo de tempo O(nlogn) para as redes em arvore, que
melhora o algoritmo anteriormente melhor para esse problema (Yu et al., 2008), com complexi-
dade de tempo O(n log? n). Os autores apresentam também um algoritmo de tempo O(n logn)
para redes uniciclo, possuindo apenas um ciclo. O algoritmo apresentado para cactos requer
tempo O(n 1og2 n). Por [BHATTACHARYA; SHI, 2014], ndo existem resultados publicados
anteriormente, adaptados especificamente para redes de cactos. Ao resolver esses problemas,
sdo apresentadas vdrias estruturas de dados, que podem ser Uteis para outras aplicacoes.

Conforme [BHATTACHARYA; SHI, 2014] € apresentado um problema do p-centro (p > 2)
em redes gerais pode ser transformado no conhecido problema de medida de Klee (Overmars
e Yap, 1991), resultando em um algoritmo significativamente melhorado para o caso continuo,
de tempo O(mpnp/ 29log*n |og n) para p > 3, onde n é o nimero de vértices, m é o nimero de
arestas, e log*n denota o logaritmo iterado de n (ver [CORMEN et al., 2009]). Para p = 2, o
tempo de execucio do algoritmo melhorado é O(m?n log® n).

Visto [BHATTACHARYA et al., 2006] € considerado o problema de localizar uma instalagdo
em forma de caminho ou em forma de drvore (extensiva) em arvores, sob a condicao de que
as instalacdes existentes jd estejam localizadas. Os autores apresentam um método de poda
paramétrica para resolver os problemas de localizagdo de 1-centro ponderado extensivo dis-
creto/continuo condicional em arvores em tempo linear. Os resultados apresentados melhoram
os resultados de tempo de O(nlogn), devidos a Tamir et al. (J. Algebra 56:50-75, 2005).

De acordo com [CABELLO; ROTE, 2010] consideramos o problema de encontrar centros
“indesejaveis” em grafos. Para grafos arbitrarios com n vértices e m arestas, os autores apre-
sentam um algoritmo randémico com tempo esperado O(nlog® n + mlogn). Para grafos pla-
nares, 0s autores apresentam algoritmos com tempo esperado O(n log n) e tempo de pior caso
O(nlog®n). Para grafos com largura de arvore limitada, é fornecido um algoritmo que requer
tempo O(nlogn) no pior caso. Os algoritmos fazem uso de busca paramétrica e diversos resul-
tados para o cdlculo de distancias em grafos com largura de drvore limitada e grafos planares.

[GORTZ; WIRTH, 2006] abordam o problema do k-centro, algumas de suas variagdes e as-
simetria. Varia¢des do k-centro podem modelar problemas da vida real com mais precisao do
que a formulagdo original. Por Ggrtz e Wirth, a assimetria € um impedimento para a aproxi-
macdo em muitos problemas em grafos, como k-centro, localizacdo de instalagdes, k-mediana
e o TSP. Os autores fornecem um algoritmo de O(log™ n)-aproximagdo para o problema do
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k-centro ponderado assimétrico. No trabalho, os vértices sdo ponderados, com um custo total
para a abertura de centros. Na variagcao de p-vizinho cada vértice deve ter p centros (ndo ponde-
rados) préximos. Por fim, sdo apresentadas versdes nao aproximaveis do problema do k-centro
assimétrico.

[HARTMANN; LENDL; WOEGINGER, 2020] apresentam um estudo sobre um problema de
localizag@o continuo em grafos ndo direcionados onde todas as arestas possuem comprimento
unitario. O objetivo € cobrir todo o grafo com um ndmero minimo de centros com alcance
de cobertura & > 0. Equivalentemente, no problema abordado devemos posicionar o menor
numero possivel de centros com a condi¢ao de que cada ponto em cada aresta esteja a uma dis-
tancia no maximo o de um desses centros. Os autores investigam este problema de cobertura em
termos do parametro racional J, e apresentam condicdes em que o problema pode ser resolvido
em tempo polinomial, e em que o problema é NP-dificil. No trabalho, também ¢ apresentada
uma analise de complexidade parametrizada, com o tamanho da solucdo como parametro: o
problema resultante € tratdvel por parAmetro fixo, para § < 3/2, e é W[2]-dificil para § > 3/2.

[NGUYEN; ANH, 2015] consideram uma generalizacdo do problema da 1-mediana inverso, o
problema do k-centro inverso, em drvores com pesos de vértices varidveis. Em contraste com a
possibilidade de resolu¢do em tempo linear do problema da 1-mediana inverso em arvores, 0s
autores provam que o problema do k-centro inverso em arvores ¢ NP-dificil. Adicionalmente, o
problema do 1-centro inverso, um caso especial do problema apresentado com k£ = 1, em uma
drvore com n vértices pode ser resolvido em tempo O(n?).

No problema do 1 centro inverso em uma rede devemos modificar os comprimentos das arestas
ou os pesos dos vértices dentro de certos limites, de modo que o vértice pré-especificado se
torne um 1-centro (absoluto) da rede perturbada e o custo de modificacdo seja minimizado.
Em [NGUYEN; NGUYEN-THU; HUNG, 2018], apresentam um estudo sobre o problema do
1-centro inverso em uma 4rvore ponderada com custo uniforme de modificagdo do comprimento
da aresta, uma generalizacdo para o problema andlogo em uma arvore ndo ponderada.

[PUERTO; RODRiIGUEZ-CHiA; TAMIR, 2010] apresentam um modelo minimax unificando
varias classes de problemas de localizacdo de centro planar de instalacdo unica. Os autores
consideram o problema do p-centro em arvores onde os clientes sdo modelados como subarvores
continuas. Sdo abordados modelos ndo ponderados e ponderados. Os autores mostram que uma
modificagcdo relativamente simples dos algoritmos de tempo linear cldssicos de Handler para
problemas nao ponderados de 1- e 2-centros em relag@o a clientes pontuais resolve linearmente
os problemas nio ponderados de 1- e 2-centros com adendos do modelo de cliente de subédrvore
acima. Também sdo desenvolvidos algoritmos de tempo polinomial para os problemas de p-
centro baseados na resolu¢do de problemas de cobertura e busca sobre dominios especiais.

[WANG; ZHANG, 2017] apresentam um algoritmo de tempo O(nlogn) para o problema do
k-centro em arvores.

Em [WANG; ZHANG, 2016], consideram o problema do 1-centro para dados incertos em
redes de drvores. Neste problema, é dada uma arvore 7' e n pontos incertos (ponderados), cada
um com m possiveis localiza¢des em 7' associadas a probabilidades. O objetivo € encontrar um
ponto z* em 7" tal que a distancia maxima (ponderada) esperada de =* a todos os pontos incertos
seja minimizada. Segundo Wang e Zhang, esse problema nao foi investigado anteriormente. Os
autores propdem uma técnica refinada de poda e busca que resolve o problema em tempo linear.

[YU; LL; LEE, 2018] propdem um novo tipo de problema de localizacao de rede para a defini¢dao
de instalacdes multiplas, mas distintas, chamado de problema dos centros de p-servigos. Neste
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problema, devemos localizar instalacdes no grafo, cada uma das quais fornecendo um servigo
distinto requerido por todos os vértices. Para cada vértice, sua distancia de p-servico € a soma
de suas distancias ponderadas aos p centros. O objetivo € minimizar o valor maximo entre as
distancias de p-servigcos de todos os vértices. Yu ef al. mostram que o problema dos centros
de p-servicos em um grafo geral é NP-dificil e propdem um algoritmo simples de aproximag¢do
com fator p/c para qualquer constante inteira c. Além disso, apresentam um estudo do caso
basico p = 2 em caminhos e drvores. Quando a rede subjacente € um caminho, o problema
dos centros de 2-servicos € resolvido em tempo O(n), onde n é o nimero de vértices. Quando
a rede subjacente é uma drvore, é apresentado um algoritmo de tempo O(n?) para o caso de
pesos ndo negativos, um algoritmo de tempo O(nlogn) para o caso de pesos positivos e um
algoritmo de tempo O(n) para o caso de pesos uniformes.

[YU; LIN; WANG, 2008] apresentam algoritmos eficientes para os problemas do 1-centro e da
1-mediana minmax-regret em um grafo geral e uma arvore com pesos de vértices incertos. Para
o problema do 1-centro minmax-regret em um grafo geral, € apresentada uma melhoria no limite
superior anterior de O(mn?logn) para O(mnlogn). Para o problema em uma drvore, o limite
superior é melhorado de O(n?) para O(n log” n). Para o problema da 1-mediana minmax-regret
em um grafo geral, o limite superior ¢ melhorado de O(mn?logn) para O(mn? + n3logn).
Para o problema em uma 4rvore, o limite superior é melhorado de O(n log®n) para O(nlogn).

[BANIK et al., 2016] apresentam dois algoritmos melhorados para o problema do p-centro
discreto ponderado para redes em arvore com n vértices. Um dos algoritmos propostos roda
em tempo O(nlogn + plog?nlog(n/p)). E observado que, para todos os valores de p, o
algoritmo apresentado mostrou-se tdo rapido quanto ou mais rapido que o algoritmo de tempo
O(n log? n) mais eficiente, obtido pela aplica¢do da técnica de aceleragdo de Cole ao algoritmo
devido a Megiddo e Tamir.

[CALIK; LABBE; YAMAN, 2015] apresentam diferentes variantes do problema do p-centro.
Revisam casos polinomiais especiais, determinam a complexidade dos problemas, apresentam
formulacgdes de programagao linear inteira mista, algoritmos exatos e heuristicas, e apresentam
revisdes de vdrias extensdes do problema.

Generalizando um resultado de [PLESNiK, 1987] apresentam um algoritmo polinomial com
uma razao de erro de pior caso de 2 para o problema do p-centro em grafos conexos com com-
primentos em arestas e pesos em vértices. Uma pequena modificacio deste algoritmo fornece
razdo 2 também para o problema do p-centro absoluto. Ambas as heuristicas sdo melhores
possiveis no sentido de que qualquer razdo menor implicaria P = NP.

[HANDLER; MIRCHANDANI, 1979] apresentam algoritmos para um conjunto de problemas
de otimizagdo baseados em redes, considerando aplica¢des em redes de comunicacgdo, redes de
distribuicdo de energia e redes de transportes.

Em [JAEGER; GOLDBERG, 1994] estendem a polinomialidade do problema do p-centro nao
capacitado ao caso em que cada centro pode servir a um nimero limitado de clientes e mostram
que o problema do p-centro capacitado em drvores pode ser solucionado em tempo polinomial
quando as capacidades sdo idénticas.
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Conclusao

5.1 Consideracoes Finais

Nesta dissertacdo, apresentamos um estudo sobre o problema do 1-centro modificado em 4rvo-
res, como aplicagdo ao problema do redimensionamento de redes de energia. Em tal estudo,
foram apresentados resultados fundamentando a técnica de utiliza¢do de centrdides para a ob-
tencdo do 1-centro modificado de uma &drvore. Os resultados estendem os apresentados por
[KARIV; HAKIMI, 1979a] em algoritmos para a obten¢do do 1-centro. Com a utilizacio da
técnica, foi desenvolvido um primeiro método de tempo O(n logn) para a obtengéo do 1-centro
modificado em uma arvore. O estudo igualmente incluiu a apresentacdo de condi¢des para a
utilizagdo da técnica de vértices simuladores. Em tal estratégia, diversas subarvores sao substi-
tuidas por um unico vértice simulador, possibilitando a eliminacao de inimeros vértices a cada
etapa, com a sensivel diminuicao do tempo requerido por um algoritmo de tempo linear, quando
comparado aos algoritmos cldssicos existentes para a obtencao de 1-centro.

A implementacdo dos métodos desenvolvidos possibilitou a verificagdo da superioridade do
algoritmo de tempo O(n), quando comparado a outros métodos. Igualmente, foram resolvidos
casos especiais da recorréncia do método de tempo linear apresentado para o problema do 1-
centro modificado em arvores e da recorréncia do método para o problema do 1-centro cldssico
em 4drvores apresentado por [MEGIDDO, 1983], indicando um menor tempo requerido pelo
método desenvolvido no presente trabalho, embora ambos requeiram tempo O(n).

Aplicacdes de conceitos de teoria da localizacdo em problemas de redimensionamento de ener-
gia sdo apresentadas em [GARCIA et al., 2003] e [SILVA; FRANCA; SILVEIRA, 1996]. Além
disso, com os estudos de NP-Completude sobre problemas de localizagdo existentes, foi pos-
sivel a verificacdo de NP-Completude para uma determinada formulagcdo de generalizacdo do
problema do 1-centro modificado em arvores para o p-centro, considerando-se a classe geral de
grafos.

5.2 Trabalhos Futuros

Como apresentado no Capitulo 4, [BEN-MOSHE et al., 2007] apresentam algoritmos eficientes
para a resolucdo de problemas de centros em redes de cactos ponderados. Em particular, para as
redes ponderadas de cactos de tamanho n, é proposto um algoritmo de tempo O(n logn) para
a resolucio do problema do 1-centro e um algoritmo de tempo O(n log® n) para a resolugio do



problema do 2-centro continuo ponderado.

[BHATTACHARYA; DAS; DEV, 2019] apresentam um algoritmo de tempo linear para o pro-
blema do k-centro ponderado em arvores para um k fixo, resolvendo parcialmente uma questao
sobre o limite inferior da complexidade de tempo do problema.

No problema do 1-centro inverso em uma rede devemos modificar os comprimentos das arestas
ou os pesos dos vértices dentro de certos limites, de modo que um vértice pré-especificado se
torne um 1-centro 1 (absoluto) da rede perturbada e o custo de modificacdo seja minimizado.
Em [NGUYEN; NGUYEN-THU; HUNG, 2018], é apresentado um estudo sobre o problema do
1-centro inverso em uma 4rvore ponderada com custo uniforme de modificagdo do comprimento
da aresta.

[YE; LI; WANG, 2018] apresentam um estudo sobre o problema de encontrar um centro de
caminho em uma 4arvore na qual os pesos dos vértices sdo incertos e a incerteza € descrita por
intervalos dados. Devemos encontrar uma solugdo de arrependimento minmax, que minimize a
perda de pior caso na funcdo objetivo. [YE; LI; WANG, 2018] apresentam um algoritmo de
tempo O(n logn) para o problema.

Como atividades futuras, podem ser citados estudos de aplica¢gdes de algoritmos de 1-centro
modificado para redes cactos, no contexto do problema do redimensionamento de redes. Além
disso, a complexidade de tempo atual do algoritmo conhecido para o problema do k-centro
ponderado em drvores para um k fixo, com k sendo parte da entrada, ¢ O(nlogn). Como um
problema em aberto citado, estd a verificagdo da existéncia de um algoritmo de tempo O(n)
para k’s arbitrarios. Por fim, pode ser investigada a aplicacdo do problema do 1-centro inverso
e do problema do centro de caminho em uma arvore, ao problema do redimensionamento de
redes de energia.
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